九年级奥数实数的运算重点知识点总结
- 格式:docx
- 大小:17.70 KB
- 文档页数:1
实数运算知识点总结一、实数的基本性质1. 实数的定义及性质实数是指包括有理数和无理数的数集。
实数的性质包括封闭性、传递性、结合律、交换律和分配律等。
2. 实数的大小比较对于任意实数a和b,有两个重要性质:反对称性和三角不等式。
3. 实数的绝对值绝对值是实数a到原点的距离。
绝对值的性质包括非负性、非零性、三角不等式和绝对值的运算法则。
4. 实数的方根与幂实数的n次方根、实数的n次幂的运算法则和性质。
二、实数的运算1. 实数的加法运算实数的加法运算法则,包括交换律、结合律和单位元素等性质。
2. 实数的减法运算实数的减法定义,以及减法的性质和规律。
3. 实数的乘法运算实数的乘法运算法则,包括交换律、结合律、分配律和零因子等性质。
4. 实数的除法运算实数的除法定义,包括零的倒数、分数的相乘和相除等性质。
5. 实数的乘方运算实数的乘方运算法则,包括同底数幂的乘法法则和除法法则等。
三、实数的运算法则1. 基本的实数运算法则包括整数的加减法和乘法运算、有理数的加减法和乘法运算、实数的加减法和乘法运算等基本法则。
2. 实数的化简运算将实数的表达式化为最简形式,包括有理数的四则运算和乘方运算、无理数的运算等。
3. 实数的合并与分解将实数的表达式进行合并或分解,以便进行进一步的运算。
四、实数的应用1. 实数的应用于代数方程实数的应用包括一元一次方程、一元二次方程等的求解和实数的性质应用等方面。
2. 实数的应用于不等式实数的应用包括一元一次不等式、一元二次不等式等的求解和实数的性质应用等方面。
3. 实数的应用于几何问题实数的应用包括平面几何和立体几何中实数的运用、问题的建立和解决。
五、实数的推论与应用1. 实数的应用问题实数的运算和性质在实际生活中的应用,如金融、工程、物理等领域的问题解决。
2. 实数性质的证明实数的性质和运算法则的证明,以及实数应用问题的解题过程。
3. 实数性质的应用实数的性质在代数方程、不等式、几何问题和实际应用问题中的具体应用。
实数运算职实数知识点梳理实数是指全部的有理数和无理数的集合。
在实数上进行基本的加减乘除运算,掌握实数的性质和运算规律是非常重要的。
以下是实数运算的一些重要知识点:1.实数的分类:-有理数:可以表示为两个整数的比值的数,包括正整数、负整数、零和分数。
-无理数:无法表示为两个整数的比值的数,包括无限不循环小数和无限循环小数。
2.实数的运算:-加法:实数的加法满足交换律、结合律和存在逆元素(即存在相反数)的性质。
-减法:减法是加法的逆运算,即a-b等于a+(-b)。
-乘法:实数的乘法满足交换律、结合律和存在逆元素(即存在倒数)的性质。
-除法:除法是乘法的逆运算,即a/b等于a*(1/b)。
3.实数的性质:-封闭性:实数的加、减、乘、除运算结果仍然是实数。
-对加法和乘法的分配性:a*(b+c)=a*b+a*c,(a+b)*c=a*c+b*c。
-对加法和乘法的交换性:a+b=b+a,a*b=b*a。
-对加法和乘法的结合性:(a+b)+c=a+(b+c),(a*b)*c=a*(b*c)。
-加法的单位元素是0,乘法的单位元素是1-加法的逆元素是相反数,乘法的逆元素是倒数。
4.绝对值:-实数a的绝对值(记作,a,)是a到原点的距离,即如果a大于等于0,则,a,=a;如果a小于0,则,a,=-a。
-绝对值具有非负性、非零元素的绝对值大于零、绝对值的乘积等于绝对值的乘积等性质。
5.数轴:-数轴是一种直线,用于表示实数。
-实数可以在数轴上表示为点,点a的坐标就是实数a。
-数轴上距离原点等于a的点对应的实数就是a的绝对值。
6.有理数的运算:-有理数的加、减、乘、除运算仍然是有理数,除法需要注意除数不能为0。
-有理数的加法和乘法满足交换律、结合律和分配律。
7.无理数的运算:-无理数和无理数相加、相减,结果仍然是无理数。
-无理数和有理数相加、相减,结果仍然是无理数,除非有理数是0。
-无理数间的乘法和除法运算的结果可能是有理数,也可能是无理数。
初三数学第一轮总复习第一讲实数的概念及实数的运算(一):【知识梳理】 1.实数的有关概念(1)有理数: 和 统称为有理数。
(2)无理数: 小数叫做无理数。
(3)实数: 和 统称为实数。
(4)实数和 的点一一对应。
(5) 实数的分类①按定义分: ②按符号分:实数()()0()()()()⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩; 实数()()()0()()()⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩(6)相反数:只有 不同的两个数互为相反数。
若a 、b 互为相反数,则 。
(7)数轴:规定了 、 和 的直线叫做数轴。
(8)倒数:乘积 的两个数互为倒数。
若a (a≠0)的倒数为1a. 。
(9)绝对值:=a2.科学记数法、近似数和有效数字(1)科学记数法:把一个数记成±a×10n的形式(其中1≤a<10,n 是整数) (2)近似数是指根据精确度取其接近准确数的值。
取近似数的原则是“四舍五入”。
(3)有效数字:从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字。
3.实数的运算顺序:在同一个算式里,先 、 ,然后 ,最后 .有括号 时,先算 里面,再算括号外。
同级运算从左到右,按顺序进行。
4.实数的大小比较5.零指数幂和负指数幂:当a ≠0时a 0=____;当a ≠0时且n 为整数时,a -n=(a1)n6.三个重要的非负数: 二:【经典考题剖析】 例1 ①a 的相反数是-15,则a 是_______。
(3-2)的倒数是_______,相反数是______. ②.数a ,b 在数轴上的位置如图所示: 化简2()()||a ab a b a b -+--.a b③去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约______________________.例2 下列实数227、sin60°、3π、)0、3.14159、 -3、(-2( )个A .1B .2C .3D .4例3 计算:(1)(3-1)0+113-⎛⎫ ⎪⎝⎭-0.1259×89-)5(-2; (2) (1) 30cos )31(31-+--(304sin 45(3)4︒+-π+- (4)120114520104-⎛⎫-++︒+ ⎪⎝⎭三:【课后训练】1、一个数的倒数的相反数是115 ,则这个数是()A .65B .56C .-65D .-562、一个数的绝对值等于这个数的相反数,这样的数是( ) A .非负数 B .非正数 C .负数 D .正数3. 有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( ) A .8人B .9人C .10人D .11人4. 若a 的相反数是最大的负整数,b 是绝对值最小的数,则a +b=___________.5.已知x y y x -=-,4,3x y ==,则()3x y +=6.光年是天文学中的距离单位,1光年大约是9500000000000km ,用科学计数法表 示 (保留三个有效数字)7. . 已知(x-2)2=0,求xyz 的值8. 回答下列问题:①数轴上表示2和5的两点之间的距离是_____,数轴上表示-2和-5的两点之间的距离是____,数轴上表示1和-3的两点之间的距离是______.②数轴上表示x 和-1的两点A 和B 之间的距离是________,若|AB|=2,那么x=_________. ③当代数式|x+1|+|x -2| 取最小值时,相应的x 的取值范围是_________. 9.已知:2+23=22×23,3+38=32×38,4+2444,1515=⨯ 255552424+=⨯,…,若10+b a =102×b a符合前面式子的规律,则a+b=________.10.近似数0.030万精确到 位,有 个有效数字,用科学记数法表示为 万 11. 下列说法中,正确的是( )A .|m|与—m 互为相反数B 11互为倒数C .1998.8用科学计数法表示为1.9988×102D .0.4949用四舍五入法保留两个有效数字的近似值为0.5012.在(0022sin 4500.2020020002273π⋅⋅⋅、、、、这七个数中,无理数有( )A .1个;B .2个;C .3个;D .4个 13下列命题中正确的是( )A .有理数是有限小数B .数轴上的点与有理数一一对应C .无限小数是无理数D .数轴上的点与实数一一对应13当0<x <1时,21,,x x x的大小顺序是( ) A .1x <x <2x ;B .1x <2x <x ;C .2x <x <1x ;D .x <2x <1x14.现规定一种新的运算“※”:a ※b=a b,如3※2=32=9,则12※3=( )A .18;B .8;C .16;D .3215.计算(1) -32÷(-3)2+|- 16|×(-( 2)3(2-3)×3278-(-2)0+tan600-│3-2│(3)220)145(sin --3tan300100221()(2001tan 30)(2)316--++-⋅(4)│-12│÷(-12+23-14-56)16.已知x 、y 是实数,2690,3,.y y axy x y a -+=-=若求实数的值17. 已知a 与 b 互为相反数,c 、d 互为倒数,x 的绝对值是2的相反数的负倒数,y 不能作除数,求20022001200012()2()a b cd y x+-++的值.18. 观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,……这些等式反映出自然数间的某种规律,设n 表示自然数,用关于n 的等式表示出来19*. 已知非负数a ,b ,c 满足条件a +b =7,c -a =5,设S =a +b +c 的最大值为m ,最小值为n ,则m -n = .20. a 、b 在数轴上的位置如图所示,且a>b ,化简a a b b a-+--21在数学活动中,小明为了求12+23411112222n+++的值(结果用n 表示),设计如图(1)所示的几何图形. (1)请你利用这个几何图形求12+23411112222n+++的值为_______.22.如图,在直角坐标系中,矩形ABCD 的边AD 在y 轴正半轴上,点A 、C 的坐标分别为(0,1)、(2,4).点P 从点A 出发,沿A →B →C 以每秒1个单位的速度运动,到点C 停止;点Q 在x 轴上,横坐标为点P 的横、纵坐标之和.抛物线c bx x y ++-=241经过A 、C 两点.过点P 作x 轴的垂线,垂足为M ,交抛物线于点R .设点P 的运动时间为t (秒),△PQR 的面积为S (平方单位). (1)求抛物线对应的函数关系式.(2分) (2)分别求t=1和t=4时,点Q 的坐标.(3分)(3)当0<t ≤5时,求S 与t 之间的函数关系式,并直接写出S 的最大值.(5分)0ba。
实数的计算知识点总结一、实数的四则运算实数的四则运算包括加法、减法、乘法和除法。
在进行实数的四则运算时,需要遵循基本的运算法则,包括交换律、结合律、分配律等。
具体来说,假设a、b、c为实数,则有以下计算规则:1. 实数的加法:a + b = b + a2. 实数的减法:a - b ≠ b - a3. 实数的乘法:a × b = b × a4. 实数的除法:a ÷ b ≠ b ÷ a在进行实数的四则运算时,需要先将实数转换为相同的形式,然后再按照各种运算法则进行计算。
例如,计算(-3) + 5,需要将-3转换为5的形式,得到(-3) + 5 = 5 + (-3) = 2。
二、实数的比较在实数的比较中,需要了解实数大小的比较规则,包括大于、小于、大于等于、小于等于等。
具体而言,假设a、b为实数,则有以下比较规则:1. 实数的大小比较:若a > b,则a称为大于b;若a < b,则a称为小于b;若a = b,则a 称为等于b。
2. 实数的大小顺序:对于任意两个实数a和b,它们之间具有大小顺序,即a > b、a = b 或a < b中的一种关系必定成立。
在实数的比较中,需要注意实数的符号、绝对值、小数点位数等因素,通过这些因素进行实数的大小比较。
例如,比较-3和5的大小关系时,由于5大于0且-3小于0,因此有-3 < 5。
三、实数的绝对值实数的绝对值是一个非负的数值,表示实数到原点的距离。
对于任意实数a,其绝对值记作|a|,具体定义为:1. 若a ≥ 0,则|a| = a;2. 若a < 0,则|a| = -a。
实数的绝对值可以理解为实数在数轴上的坐标到原点的距离,因此它是非负的。
在实数的计算中,经常需要对实数取绝对值,例如,计算|(-3)|,需将-3转换为3的形式,得到|(-3)| = 3。
四、实数的幂运算实数的幂运算是指对实数进行整数次幂的运算。
实数的运算知识点总结一、实数的四则运算实数的四则运算是基本的数学运算,包括加法、减法、乘法和除法。
在实数范围内,这些运算有着一些基本的性质和规律。
1. 加法实数的加法满足交换律、结合律和分配律。
即对于任意实数a、b、c,有:交换律:a + b = b + a结合律:(a + b) + c = a + (b + c)分配律:a × (b + c) = a × b + a × c2. 减法实数的减法可以看作是加法的逆运算。
即a - b可以等价于a + (-b),其中-a表示b的相反数。
减法满足减法性质:a - b = a + (-b)。
3. 乘法实数的乘法满足交换律、结合律和分配律。
即对于任意实数a、b、c,有:交换律:a × b = b × a结合律:(a × b) × c = a × (b × c)分配律:a × (b + c) = a × b + a × c此外,实数的乘法还满足乘法消去律:如果a×b=a×c且a≠0,则b=c。
即如果两个实数的乘积相等,那么它们的因数也是相等的。
4. 除法实数的除法是乘法的逆运算。
对于任意不等于0的实数a、b,有a ÷ b = a × (1/b),其中1/b表示b的倒数。
二、实数的绝对值在实数中,绝对值是一个非常重要的概念。
对于任意实数x,它的绝对值记作| x |,表示x 到原点的距离。
绝对值有着以下几个基本性质:1. | x | ≥ 02. | x | = 0 当且仅当 x = 03. | -x | = | x |,即绝对值的性质4. | xy | = | x | × | y |绝对值在实数的运算中有着重要的应用,它可以帮助我们简化运算,解决绝对值不等式,以及表示实数的大小关系等问题。
三、指数运算指数运算是实数运算中的重要内容,它包括幂运算、指数函数和对数函数等概念。
实数知识点归纳总结一、实数的分类实数可以分为有理数和无理数两类。
有理数是可以表示为分数形式的数,包括正整数、负整数、零、正分数和负分数。
无理数是无法用分数形式表示的数,如开根号或π。
有理数又可以分为整数和分数两类。
整数包括正整数、负整数和零,分数指的是整数之间的比值。
二、实数运算1.加法和减法实数的加法和减法满足交换律和结合律,即a+b=b+a,(a+b)+c=a+(b+c)。
加法的逆元是减法,即a+(-a)=0。
2.乘法和除法实数的乘法和除法满足交换律和结合律,即a*b=b*a,(a*b)*c=a*(b*c)。
乘法的逆元是除法,a/b * b/a = 1。
3.乘幂和开方实数的乘幂满足乘法的分配律,即(a*b)^n=a^n*b^n。
实数的开方是指找出一个数的n次方等于给定的数,如a^n=b,则a为b的n次方根。
4.比较大小实数的大小关系可以通过比较大小来确定,满足传递性和完全性。
传递性指的是如果a>b 且b>c,则a>c;完全性指的是对于任意实数a,b,要么a>b,要么a=b,要么a<b。
三、实数的性质1.有序性实数集合具有明确的大小关系,可以进行大小的比较。
任意两个实数a,b,存在且只存在下列三种关系之一:a>b,a=b,a<b。
2.稠密性实数集合中,任意两个不相等的数之间都有有理数,也有无理数。
在实数轴上,任意两个不相等的实数之间都存在无数个实数。
3.区间性实数轴上的一段连续的部分称为一个区间,包括开区间、闭区间、半开半闭区间等。
4.费马小定理p为素数,a为整数,则p不能整除a和p互质的一次方程ap-x=1有整数解x。
5.实数的稳定性实数的乘、除、取幂和开根号等有限次运算保持实数的性质。
6.实数的基数实数集合的基数是不可数的,比如自然数集合、有理数集合和无理数集合的基数都是不可数的。
四、实数的应用1.实数在几何中的应用实数可以用来表示点的坐标、线段的长度、角度的大小等。
实数知识点总结实数是指包括有理数和无理数的数的集合。
有理数是可以表示为两个整数的比的数,无理数是不能表示为两个整数的比的数。
实数具有以下性质和知识点:1. 实数的分类:- 有理数:可以表示为两个整数的比的数,如整数、分数等。
- 无理数:不能表示为两个整数的比的数,如根号2、圆周率π等。
2. 实数的运算:- 加法和减法:实数的加法和减法满足交换律、结合律和分配律。
- 乘法和除法:实数的乘法和除法满足交换律、结合律和分配律。
除数不能为0。
3. 实数的大小比较:- 实数的大小比较可以用小于号(<)、大于号(>)、小于等于号(≤)、大于等于号(≥)来表示。
- 实数的比较可以根据其对应的小数形式来进行。
4. 实数的绝对值:- 实数的绝对值表示实数到0的距离,用竖杠(|x|)来表示。
- 实数的绝对值满足非负性、正定性和三角不等式。
5. 实数的小数表示:- 实数可以通过小数的形式来表示。
- 小数可以分为有限小数和无限小数。
- 无限小数可以分为循环小数和非循环小数。
6. 实数的有理化:- 实数可以通过有理化的方法转化为有理数的形式。
- 有理化的方法有有理数的开方、通分等。
7. 实数的区间表示:- 实数可以用区间表示。
- 开区间表示为(a, b),表示实数大于a且小于b。
- 闭区间表示为[a, b],表示实数大于等于a且小于等于b。
8. 实数的数轴表示:- 实数可以用数轴表示。
- 数轴上的点与实数一一对应。
9. 实数的连续性:- 实数具有连续性。
- 对于任意两个实数a和b,存在一个实数c,使得a<c<b。
10. 实数的柯西收敛原理:- 实数具有柯西收敛原理。
- 一个实数列是收敛的当且仅当这个数列是柯西数列。
以上是关于实数的基本知识点的总结。
实数的概念与性质在数学的各个领域中都有广泛的应用,对于理解和应用数学知识都具有重要的作用。
实数的运算知识定位本讲,我们是对实数进行综合复习,其中包括实数定义、开方、计算、分数指数幂等。
将以前学的有理数扩大到了实数。
从数学上看,在实数范围内对任何数施行开方运算都可以畅通无阻。
这既满足了实际应用的需要,也解决了数学内部的矛盾。
而且,实数的运算使我们之后学习更深内容的基础,是初中数学的基本知识和基本技能的重要组成部分。
在中考时难度一般不是很大,但为了后续内容的学习,也不能仅仅了解一下,需要真正理解这部分内容。
知识梳理有理数和无理数统称实数。
也就是说,实数可分为有理数和无理数。
无理数:无限不循环小数叫做无理数。
有理数:有限小数或无限循环小数称为有理数。
有限小数:特征一个最简分数的分母只含有因数2或5。
无限小数分为无限循环小数和无限不循环小数无限循环小数(纯循环小数和混循环小数):知识梳理2:有理数的开方平方根:如果x 2 = a ( a≥0 ),那么x叫做a的平方根(或二次方根)。
数a的平方根记做a±,其中a(即a+)叫做a的算术平方根。
一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
知识梳理3:实数的运算实数的六种运算关系:加法与减法互为逆运算;乘法与除法互为逆运算;乘方与开方互为逆运算。
实数的运算顺序:先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
去括号的顺序是先去小括号,再去中括号,最后大括号。
同一级运算,如果没有括号,可按由左至右的顺序进行。
实数运算律:(1) 加法交换律:a + b = b + a(2) 加法结合律:( a + b ) + c = a + ( b + c ) (3) 乘法交换律:ab = ba(4) 乘法结合律:( ab )c = a ( bc ) (5) 乘法分配律:( a + b )c = ac + bc知识梳理4:分数指数幂(1)规定10=a ,n n a a 1=-(2)规定正数a 的正分数指数幂的意义为n m nm a a=(,,1)m n n >都为正整数)规定正数a 的负分数指数幂的意义为nm nm a a1=-(,,1)m n n >都为正整数)0的正分数指数幂等于0,0的负分数指数幂无意义.(3)引入了分数指数幂后,整数指数幂就推广到了有理数指数幂。
总结整理实数知识点一、实数的定义实数是可以用来表示实际物理量的数。
实数包括有理数和无理数两种类型。
有理数是可以表示为两个整数之比的数,而无理数是不能表示为有理数的数。
二、实数的性质1. 实数的大小比较实数有一个非常重要的性质,就是可以比较大小。
实数可以按照大小顺序进行比较,任意两个实数可以进行大小比较,可以判断哪一个大哪一个小。
2. 实数的运算实数可以进行加法、减法、乘法和除法运算。
实数的运算满足交换律、结合律和分配律等基本性质。
任意两个实数的和、差、积和商也是实数。
3. 实数的绝对值实数的绝对值是实数到零点的距离,可以表示为非负数。
任意实数的绝对值是其本身或者其相反数。
4. 实数的平方实数的平方是实数乘以自己,结果也是实数。
实数的平方一定大于等于零。
5. 实数的开方非负实数的开方是唯一确定的非负实数。
负实数的开方是虚数。
6. 实数的范围无限范围不可数的实数非常多,它们可以两两进行大小的比较,任意两个实数之间都存在无穷个实数。
但是,实数的范围是有限的,任意有限范围的实数之间不存在无穷个实数。
7. 实数的连续性实数是连续的,任意两个实数之间都存在无穷个实数,实数形成了一条连续的数轴。
三、实数的表示方式1. 实数的小数表示实数可以表示为小数,小数是实数的一种常见表示方式。
小数可以是有限小数,也可以是无限小数,有限小数可以用有限位数的小数点表示,而无限小数需要使用循环符号或者无限位数的小数点表示。
2. 实数的分数表示实数可以表示为分数,分数是实数的另一种常见表示方式。
分数是有理数的一种,可以表示为两个整数之比。
3. 实数的根式表示实数可以表示为根式,根式是无理数的一种。
无理数是不能表示为有理数的数,它们通常用根式表示,如开方的形式表示。
四、实数的应用实数是数学中的基本概念,任何其他数学分支都要用到实数的概念。
实数的应用非常广泛,可以用来表示实际物理量,如长度、面积、体积、速度、质量等等,还可以用来表示实际经济量,如货币、价格、利率、利润等等,还可以用来表示实际科学量,如时间、温度、压力、密度等等。
(完整版)实数知识点总结1. 实数的定义实数是包括有理数和无理数在内的数的集合。
实数集包含有理数集和无理数集。
2. 有理数的性质有理数是可以表示为两个整数的比值的数。
有理数的性质包括:- 有理数的四则运算性质:加法、减法、乘法和除法。
- 有理数的分数形式,即可以表示为两个整数的比值。
- 有理数可以表示为小数,且小数可以是有限的或无限循环的。
3. 无理数的性质无理数是不能表示为两个整数的比值的数。
无理数的性质包括:- 无理数不能表示为分数形式。
- 无理数的十进制表示是无限不循环的。
- 无理数可以用无限不循环的小数表示,但无法精确表示。
4. 实数的数轴表示实数可以在数轴上表示,数轴上的每个点都对应一个实数。
5. 实数的运算实数的运算包括加法、减法、乘法和除法。
实数的运算满足以下性质:- 交换律:a + b = b + a,a * b = b * a。
- 结合律:(a + b) + c = a + (b + c),(a * b) * c = a * (b * c)。
- 分配律:a * (b + c) = a * b + a * c。
6. 绝对值绝对值是一个数离0的距离,可以用来表示数的大小。
绝对值的性质包括:- 绝对值非负:|a| >= 0。
- 非零数的绝对值大于0:|a| > 0。
- 绝对值的加法:|a + b| <= |a| + |b|。
7. 实数的比较实数可以进行大小比较,实数的比较满足以下性质:- 反身性:a = a。
- 对称性:如果a > b,则b < a。
- 传递性:如果a > b,b > c,则a > c。
8. 实数的区间实数可以按照大小关系分为开区间、闭区间、半开半闭区间等。
区间的边界可以是实数也可以是无穷大。
9. 实数的近似值由于实数的无理数部分是无限不循环的,所以我们一般用近似值来表示实数。
10. 实数的应用实数在数学和科学中有广泛的应用,如在几何中表示线段长度、在物理中表示物体的质量等。
初中实数奥数知识归纳
初中实数奥数知识归纳
实数可以用通过收敛于一个唯一实数的十进制或二进制展开如{3, 3.1, 3.14, 3.141, 3.1415,…} 所定义的序列的方式而构造为有理数的补全。
实数可以不同方式从有理数构造出来。
这里给出其中一种,其他方法请详见实数的构造。
公理的方法设 R 是所有实数的集合,则:
集合 R 是一个域:可以作加、减、乘、除运算,且有如交换律,结合律等常见性质。
域 R 是个有序域,即存在全序关系≥ ,对所有实数 x, y 和 z:
若x ≥ y 则x + z ≥ y + z;
若x ≥ 0 且y ≥ 0 则xy ≥ 0。
集合 R 满足完备性,即任意 R 的有空子集S ( S∈R,S≠),若 S 在 R 内有上界,那么 S 在 R 内有上确界。
最后一条是区分实数和有理数的关键。
例如所有平方小于2 的.有理数的集合存在有理数上界,如 1.5;但是不存在有理数上确界(因为√2 不是有理数)。
实数通过上述性质唯一确定。
更准确的说,给定任意两个有序域R1 和 R2,存在从 R1 到 R2 的唯一的域同构,即代数学上两者可看作是相同的。
相关性质基本运算
实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。
实数加、减、乘、除(除数不为零)、平方后结果还是实数。
任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
初三奥数实数重点知识
初三奥数实数重点知识
导语:所有实数的集合则可称为实数系(real number system)或实数连续统。
以下是小编为大家精心整理的初三奥数实数重点知识,欢迎大家参考!
1.数的分类及概念
数系表:
说明:“分类”的原则:1)相称(不重、不漏)
2)有标准
2.非负数:正实数与零的统称。
(表为:x≥0)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1时,1/a<1;D.积为1。
4.相反数:①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)
②作用:A.直观地比较实数的.大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7.绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
九年级数学实数知识点总结实数是数学中非常重要的一个概念,它包括了所有有理数和无理数。
在九年级数学学习中,实数是其中的一个重要内容。
本文将对九年级数学中的实数知识点进行总结,以帮助同学们更好地掌握和理解这一知识。
一、实数的分类实数按照大小可以分为正实数、负实数和零。
正实数是大于零的实数,用正号“+”表示;负实数是小于零的实数,用负号“-”表示;零是既不大于零也不小于零的实数。
二、实数的运算1. 实数的加法和减法:实数的加法:同号相加,得到的结果的符号不变,异号相加,结果的符号取绝对值较大的数的符号。
实数的减法:减去一个数等于加上它的相反数。
2. 实数的乘法和除法:实数的乘法:同号相乘,结果为正,异号相乘,结果为负。
实数的除法:若除数不为零,则实数相除的结果仍然是实数。
3. 实数的乘方和开方:实数的乘方:对于实数a和自然数n,a的n次方表示将a乘以自己n次。
实数的开方:对于正实数a和自然数n,a的n次方根被称为a 的n次方根。
三、实数的性质1. 实数的传递性:对于实数a、b、c,如果a < b,b < c,则a < c。
2. 实数的相反数性质:对于任意实数a,-(-a) = a。
3. 实数的绝对值性质:对于任意实数a,|a|表示a的绝对值,|a| ≥ 0。
4. 实数的乘法逆元:对于任意非零实数a,存在倒数1/a使得a * (1/a) = 1。
5. 实数的零乘性:任意实数a乘以0,结果为0,即a * 0 = 0。
四、实数的大小关系实数的大小关系可以通过大小符号进行表示。
常用的有以下几个符号:1. 大于:表示为“>”。
2. 小于:表示为“<”。
3. 大于等于:表示为“≥”。
4. 小于等于:表示为“≤”。
五、实数的近似表示实数在实际应用中往往需要进行近似表示。
常用的近似表示方法有:1. 小数表示法:将实数表示为小数的形式,比如0.25、3.14159。
2. 百分数表示法:将实数表示为百分数的形式,比如25%、3.14%。
实数知识点总结范文一、实数的定义和性质1.实数的定义:实数即包括有理数和无理数在内的所有数的集合,用R表示。
实数是一种用来度量和计数的数。
2.实数的性质:-实数是有序的,即任意两个实数a和b,必满足a<b、a=b或a>b中的一个关系。
-实数具有传递性,即对于任何实数a、b和c,如果a<b且b<c,则有a<c。
-实数具有完备性,即实数集中的每个非空子集都有上界和下界。
二、实数的运算1.实数的加法:-加法交换律:对于任意实数a和b,有a+b=b+a。
-加法结合律:对于任意实数a、b和c,有(a+b)+c=a+(b+c)。
-加法零元:对于任意实数a,有a+0=a。
-加法反元:对于任意实数a,存在一个实数-b,使得a+(-b)=0。
2.实数的乘法:-乘法交换律:对于任意实数a和b,有a*b=b*a。
-乘法结合律:对于任意实数a、b和c,有(a*b)*c=a*(b*c)。
-乘法单位元:对于任意实数a,有a*1=a。
-乘法倒数:对于任意非零实数a,存在一个实数1/a,使得a*(1/a)=13.实数的指数运算:-正指数规则:对于任意正实数a和b,有a^b=a的b次幂。
-零指数规则:对于任意非零实数a,有a^0=1-负指数规则:对于任意非零实数a和负整数n,有a^(-n)=1/(a^n)。
-指数运算规则:对于任意正实数a和b,以及任意实数c,有(a*b)^c=a^c*b^c。
三、有理数和无理数1.有理数:有理数是可以表示为两个整数的比值形式的实数。
有理数包括正整数、负整数、分数和零。
有理数的性质包括有限性、循环性和无孤立点性。
2.无理数:无理数是不能表示为两个整数的比值形式的实数。
无理数可以是无限不循环的小数,例如π和e。
无理数的性质包括无限性和无孤立点性。
四、实数的表示形式1.小数形式:实数可以用小数形式表示,包括有限小数和无限循环小数。
2.分数形式:实数可以用分数形式表示,例如1/2、3/4等。
实数及其运算知识点总结一、实数的定义实数是所有可以在数轴上表示且能够对应一个唯一数点的数的集合。
在数轴上,实数用点来表示,数轴上的每一点都与某一个实数对应。
用集合的语言来说,实数是有理数和无理数的集合。
有理数是可以表示为两个整数的比值的数,而无理数是不能表示为两个整数的比值的数。
在数学中,一般使用符号R来表示所有实数构成的集合。
实数包括有理数和无理数两个不同的部分,有理数是可以写为分数形式或小数形式的数,无理数是不能写为分数形式或小数形式的数。
实数集R是有理数集Q和无理数集R-Q的并集。
二、有理数的性质1. 有理数的定义:有理数是可以表示为两个整数的比值的数。
有理数包括整数和分数两种形式。
2. 有理数的运算性质:有理数的加法、减法、乘法和除法满足交换律、结合律、分配律等基本性质。
3. 有理数的范围:有理数的范围在实数轴上是密集的,任意两个有理数之间都存在着无数个有理数。
4. 有理数的等价性:有理数的分数形式可能有不同的等价形式,但它们表示的是同一个数。
三、无理数的性质1. 无理数的定义:无理数是不能表示为两个整数的比值的数。
无理数无法用简单的分数形式表示,通常使用无限不循环小数或者根号形式表示。
2. 无理数的运算性质:无理数的加法、减法、乘法和除法也满足交换律、结合律、分配律等基本性质。
3. 无理数的范围:无理数在实数轴上的分布也是非常密集的,无理数与有理数之间也存在着无数个无理数。
4. 无理数的等价性:有些无理数之间是不能互相表示的,它们表示着不同的数。
四、实数的运算规则1. 实数的加法运算:实数的加法运算满足交换律和结合律,即对于任意的实数a、b、c,有a+b=b+a,(a+b)+c=a+(b+c)。
实数的加法满足零元素的存在,即对于任意的实数a,有a+0=a。
对于每一实数a,都有一个相反数-b,使得a+(-b)=0。
2. 实数的减法运算:实数的减法运算可以化为加法运算,即a-b=a+(-b),满足减法运算的性质。
实数相关的知识点总结一、实数的定义实数是代数数的一种,它包括有理数和无理数两部分。
有理数是可以用分数表示的实数,包括整数和分数。
整数包括正整数、负整数和零;分数是一个整数除以另一个整数得到的数。
无理数是不能用分数表示的实数,它包括无限不循环小数和根号形式的数。
二、实数的性质1. 实数的四则运算实数具有加、减、乘、除四种基本运算,它们满足交换律、结合律、分配律和分配律等基本性质。
2. 实数的大小比较实数可以进行大小的比较,如果a>b,则称a大于b;如果a<b,则称a小于b;如果a=b,则称a等于b。
实数的大小比较遵循不等关系的性质。
3. 实数的绝对值实数a的绝对值是指a到原点O的距离,记作|a|。
当a≥0时,|a|=a;当a<0时,|a|=-a。
4. 实数的乘方与开方实数的n次乘方是指将实数a连乘n次,记作a^n;实数的n次开方是指将实数a的n次方根号,记作a^(1/n)。
5. 实数的分数与百分数分数是指两个整数相除的结果,分数的大小可以通过分子与分母的大小来进行比较;百分数是指将一个数表示为百分数的形式,例如75%表示75/100。
三、实数的表示方式1. 实数的有理数表示有理数可以用分数的形式表示,例如-3/4、2/3等,也可以用小数的形式表示,例如-0.75、0.6666等。
2. 实数的无理数表示无理数通常用根号的形式表示,例如√2、√3等,也可以用小数的形式表示,但是无理数的小数表示是无限不循环小数。
3. 实数的坐标表示实数可以通过数轴上的点来进行表示,数轴上的原点O代表0,数轴上的其他点分别表示正数和负数。
四、实数的运算1. 实数的加法实数的加法是指两个实数相加的运算,满足交换律和结合律的性质。
2. 实数的减法实数的减法是指两个实数相减的运算,满足交换律和结合律的性质。
3. 实数的乘法实数的乘法是指两个实数相乘的运算,满足交换律和结合律的性质。
4. 实数的除法实数的除法是指一个实数除以另一个实数的运算,要求被除数不等于0,满足分配律和除不尽的性质。
九年级奥数实数的运算重点知识点总结
导读:本文九年级奥数实数的运算重点知识点总结,仅供参考,如果觉得很不错,欢迎点评和分享。
1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
可使用加法交换律、结合律。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。
(2)除以一个数等于乘以这个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。
无论何种运算,都要注意先定符号后运算。