七年级奥数实数概念综合知识2020
- 格式:docx
- 大小:37.63 KB
- 文档页数:2
七年级实数重点知识点实数是数学中重要的一个概念,也是数与数之间的关系的基石。
在七年级学习实数时,有许多重要的知识点需要掌握。
下面让我们一起来了解一下七年级实数的重点知识点。
一、实数的概念实数是指可以表示成有限小数、无限小数或分数的数,包括正数、负数和零。
例如,2、-3、0、0.5、-2.7、1/4等都是实数。
二、实数的大小关系实数的大小关系有四种情况:1.正数与正数之间的大小关系:数值越大,实数越大。
例如,2>1,所以2比1大。
2.负数与负数之间的大小关系:数值越小,实数越大。
例如,-3>-5,所以-3比-5大。
3.正数与负数之间的大小关系:正数比负数大。
例如,3>-2,所以3比-2大。
4.相等关系:相等的实数大小相同。
例如,3=3,所以3和3相等。
三、实数的运算实数的运算有四种:加法、减法、乘法和除法。
1.加法运算:且取它们的公共符号。
例如,2+3=5,-2+(-3)=-5。
当两个实数异号时,它们的和是它们的绝对值之差,并且取绝对值大的实数的符号。
例如,2+(-3)=-1,-2+3=1。
2.减法运算:减法运算可以转化为加法运算。
即,a-b=a+(-b)。
例如,2-3=2+(-3)=-1。
3.乘法运算:且取它们的公共符号。
例如,2×3=6,(-2)×(-3)=6。
当两个实数异号时,它们的积是它们的绝对值相乘取负数。
例如,2×(-3)=-6,(-2)×3=-6。
4.除法运算:当两个实数同号时,它们的商是这两个实数的绝对值之商,并且取它们的公共符号。
例如,6÷2=3,(-6)÷(-2)=3。
当两个实数异号时,它们的商是这两个实数的绝对值之商,并且取负数作为商的符号。
例如,6÷(-2)=-3,(-6)÷2=-3。
四、实数的绝对值和相反数1.实数的绝对值:实数的绝对值是这个实数到0的距离,它永远是非负数。
例如,|-2|=2,|5|=5。
综合实数知识点总结一、实数的定义实数是数学上最基本的数,包括有理数和无理数,任何一个不是虚数的数都是实数。
实数可以用数轴上的点来表示,数轴上的每一个点都对应一个实数,反之,每一个实数都可以对应数轴上的一个点。
实数包括正数、负数和零,可以表示为一个小数、一个分数、一个整数或者以无穷不循环小数的形式表示。
无理数是指不能被表示为两个整数之比的数,如π和根号2等。
有理数是指可以被表示为两个整数之比的数,包括正整数、负整数、零、分数等。
二、实数的性质1. 实数的加法性质- 交换律:a + b = b + a- 结合律:(a + b) + c = a + (b + c)- 存在加法单位元0:a + 0 = a- 存在加法逆元:a + (-a) = 02. 实数的乘法性质- 交换律:a * b = b * a- 结合律:(a * b) * c = a * (b * c)- 存在乘法单位元1:a * 1 = a- 存在乘法逆元:如果a ≠ 0,则存在a的乘法逆元1/a3. 实数的分配律:a * (b + c) = a * b + a * c4. 实数的比较性质:对于不相等的实数a和b- 反对称性:如果a > b,则b < a- 传递性:如果a > b,且b > c,则a > c- 密集性:在任意两个不相等的实数a和b之间,存在一个实数c,使得a < c < b5. 导数性质:对于可导的函数f(x),f'(x)=lim(h->0)[f(x+h)-f(x)]/h三、实数的运算1. 实数的加法和减法加法:a + b减法:a - b = a + (-b)2. 实数的乘法和除法乘法:a * b除法:a / b = a * (1 / b),其中b ≠ 03. 实数的指数运算幂运算:a^b,其中a是底数,b是指数4. 实数的根号运算开方运算:√a5. 实数的数学函数常见的数学函数包括四则运算、幂函数、指数函数、对数函数、三角函数、反三角函数等。
2020初中奥数实数重点知识点
四则运算封闭性
实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性,
即任意两个实数的和、差、积、商(除数不为零)仍然是实数。
实数集有序性
实数集是有序的,即任意两个实数a、b必定满足下列三个关系之一:ab.
实数的传递性
实数大小具有传递性,即若a>b,b>c,则有a>c.
实数的阿基米德性
实数具有阿基米德(Archimedes)性,即对任何a,b ∈R,若
b>a>0,则存有正整数n,使得na>b.
实数的稠密性
实数集R具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数.
实数性
如果在一条直线(通常为水平直线)上确定O作为原点,指定一个
方向为正方向(通常把指向右的方向规定为正方向),并规定一个单位
长度,则称此直线为数轴。
任一实数都对应与数轴上的一个点;反之,
数轴上的每一个点也都的表示一个实数。
于是,实数集R与数轴上的
点有着一一对应的关系。
完备性
作为度量空间或一致空间,实数集合是个完备空间,它有以下性质:
所有实数的柯西序列都有一个实数极限。
有理数集合就不是完备空间。
例如,(1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) 是有理数的柯西序列,但没有有理数极限。
实际上,它有个实数极限√2。
实数是有理数的完备化——这亦是构造实数集合的一种方法。
极限的存有是微积分的基础。
实数的完备性等价于欧几里德几何的直线没有“空隙”。
七年级数学实数知识点总结数学是一门非常重要的学科,也是每个人都不能忽略的学科。
在初中阶段,数学知识的学习显得尤为重要。
实数作为数学中的一个重要知识点,深深地吸引着我们的目光。
在这篇文章中,我将为大家总结一下我所掌握的七年级数学实数知识点,希望对广大同学的学习有所帮助。
一、实数的定义实数是数学中的一种数,包括有理数和无理数两种。
其中,有理数是可以写成一个整数和一个分数的形式,无理数不能写成这样的形式。
二、实数的分类实数可以分为正数、负数和零。
正数大于零,负数小于零,零等于零。
同时,正数和负数的绝对值相等。
三、实数的加减乘除实数的加减法和正常的数学运算一致,只不过符号需要进行判断。
同符号的两个数相加或相减,结果依然为同符号的数;异符号的两个数相加或相减,结果为绝对值大的那个符号,并加上绝对值小的那个数的负数。
实数的乘法同样相似,不过有些不同。
同符号相乘结果为正,异符号相乘结果为负。
至于实数的除法,需要注意分母不能为零。
四、数轴数轴是用来表示实数的一种方法。
其中,数轴上的每个点都对应一个实数,而且数轴上的两个点之间的距离等于这两个点所表示的实数之差的绝对值。
同时,负数向左,正数向右。
五、绝对值在数轴上,每个点都有对应的绝对值。
绝对值表示一个数到零点之间的距离。
同时,绝对值也可以表达为一个实数在数轴上的正方向和负方向的距离差。
例如,|-7|=7,|7|=7。
六、相反数与倒数相反数表示一个数的符号相反,倒数表示一个数的倒数。
例如,-5与5是相反数,1/5和5是倒数。
七、四个不等式四个不等式是数学中的四个经典公式。
它们分别是两个数的和大于这两个数的两倍,两个数的差小于它们的绝对值,两个正数的乘积与它们的和的大小关系以及两个数相乘等于零时,至少有一个数为零。
八、开方和平方开方表示找到一个正数的平方根,平方表示把一个数乘以它本身。
例如,5的平方是25,25的平方根是5。
总结实数是数学中非常重要的一个知识点。
在初中的学习中,我们需要掌握实数的定义、分类、加减乘除、数轴、绝对值、相反数与倒数、四个不等式、开方和平方等知识点,这些都是我们必须掌握的数学基础。
奥数七年级实数知识点总结奥数七年级实数知识点总结实数是数学中最基础且最重要的数系之一,广泛应用于各个领域。
在奥数七年级中,学生将接触到关于实数的一些基本概念和性质,例如有理数和无理数的区别、实数的大小比较以及实数的运算法则等等。
本文将对这些知识点进行总结,希望能够帮助同学们更好地理解和掌握实数的相关知识。
首先,我们来谈谈有理数和无理数的区别。
有理数是可以表示为两个整数的比值的数,包括整数、分数和小数。
例如,-2、0、1/2和0.3都是有理数。
而无理数是不能表示为两个整数的比值的数,通常以无限不循环小数的形式出现,例如π和根号2。
有理数和无理数一起构成了实数集合。
实数之间的大小比较是奥数中常见的问题。
在进行大小比较时,需要根据实数的正负和绝对值大小进行判断。
对于两个正数来说,它们的大小关系与它们的数值大小一致。
例如,3大于2,10大于1。
而对于两个负数来说,它们的大小关系则与它们的数值大小相反。
例如,-3小于-2,-10小于-1。
当一个正数和一个负数进行比较时,正数大于负数。
在研究绝对值大小时,可将实数的绝对值看作它们到零点的距离。
绝对值越小,实数越接近零点。
例如,|-3| = 3,|2| = 2。
因此,-3比2更接近零点,-3小于2。
实数的运算法则也是奥数中重要的一部分。
实数之间的加法、减法、乘法和除法都遵循一定的规律。
例如,对于任意的实数a、b和c来说,加法具有交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
减法可以转化为加法,即a - b = a + (-b)。
乘法具有交换律和结合律,即a × b= b × a,(a × b) × c = a × (b × c)。
除法可以转化为乘法,即a ÷ b = a × (1/b),其中b ≠ 0。
在进行实数乘法和除法运算时,需要注意负数的处理。
七年级实数相关知识点实数是数学中非常重要的一个概念,在七年级数学中也有着非常重要的地位。
本篇文章将带您了解七年级实数相关知识点,掌握实数的基础概念、性质及其在数学中的应用。
一、实数的基本概念实数是指可以表示成有限小数或无限循环小数的数,它包括有理数和无理数两部分。
其中有理数可以表示为两个整数之比,而无理数是不能被有理数表示的数。
实数是数学中最常用的数集,包含了所有我们熟知的数字,如自然数、整数、分数等。
二、实数的性质1. 实数具有封闭性,即两个实数进行基本运算(加、减、乘、除)的结果仍然是实数。
2. 实数具有可加性和可乘性,即它们满足加法和乘法的交换律、结合律和分配律。
3. 实数具有存在唯一逆元的性质,即任何实数都存在加法逆元和乘法逆元。
4. 实数具有实数序列的收敛性,即一个实数序列满足有界性和单调性,它就一定收敛于一个实数。
5. 实数与自然数、整数、有理数和无理数之间存在包含关系。
三、实数的应用实数不仅仅是数学中的基础概念,它也在其他领域中有着广泛的应用。
1. 在物理学中,实数代表实际存在的质量、长度、时间等物理量。
2. 在经济学中,实数被用来描述货币、价格等实际物品和劳务的数量。
3. 在工程学中,实数用来描述电路电荷、电压、电阻等的实际值。
4. 在计算机科学中,实数被广泛应用于机器学习、神经网络等人工智能领域中。
总结实数是数学中非常基础的概念,也是数学运算中不可或缺的一部分。
它的基本概念和性质需要我们掌握,并在实践中加以应用。
值得一提的是,实数在我们日常生活以及其他学科领域中也有着广泛的应用,我们需要认真学习并灵活运用。
实数综合知识点总结一、实数的基本概念1. 有理数有理数包括正整数、负整数、零及所有可以表示为分数形式的数,有理数的数轴上的表示为有限长的线段。
2. 无理数无理数是不能用有限小数表示、也无法写成两个整数的比值的数,如π和根号2等。
无理数在数轴上是分布得非常密集的,无理数和有理数混合在一起构成了实数。
3. 实数实数是有理数和无理数的总称,包括有理数和无理数的所有数。
实数的数轴是一条无限长的直线,数轴上每一个点都对应着一个实数。
实数是数学中最常用的一类数,也是数学研究的一个重要领域。
二、实数的性质1. 实数的基本性质实数满足封闭性、交换律、结合律、分配律、恒等律、互逆律和传递率等基本运算规律。
2. 实数的比较性质实数集中一个重要的性质就是可以进行大小的比较。
两个实数a和b之间有等号(a = b)、大于等于(a ≥ b)、小于等于(a ≤ b)、大于(a > b)、小于(a < b)五种比较关系。
3. 实数的稠密性实数的稠密性指实数在数轴上的分布非常密集,任意两个不相等的实数之间都存在着有理数和无理数。
这也是实数作为数学基础的一个重要性质。
三、实数的运算1. 加法和减法实数的加法和减法满足封闭性、交换律、结合律和等价律。
即对任意实数a、b、c,有a+b=b+a,(a+b)+c=a+(b+c),a+0=a,a+(-a)=0等运算法则。
2. 乘法和除法实数的乘法和除法也满足交换律、结合律、分配律和等价律等规律。
即对任意实数a、b、c,有a×b=b×a,(a×b)×c=a×(b×c),a×1=a,a×(1/a)=1等运算法则。
3. 整除和余数实数的整除和余数是整数除法的基本概念,对于任意实数a、b(a≠0),存在整数q和r,使得a=bq+r且0≤r<|b|成立。
四、实数的应用1. 代数中的应用在代数中,实数是方程和不等式解集的基础。
(完整版)实数知识点总结1. 实数的定义实数是包括有理数和无理数在内的数的集合。
实数集包含有理数集和无理数集。
2. 有理数的性质有理数是可以表示为两个整数的比值的数。
有理数的性质包括:- 有理数的四则运算性质:加法、减法、乘法和除法。
- 有理数的分数形式,即可以表示为两个整数的比值。
- 有理数可以表示为小数,且小数可以是有限的或无限循环的。
3. 无理数的性质无理数是不能表示为两个整数的比值的数。
无理数的性质包括:- 无理数不能表示为分数形式。
- 无理数的十进制表示是无限不循环的。
- 无理数可以用无限不循环的小数表示,但无法精确表示。
4. 实数的数轴表示实数可以在数轴上表示,数轴上的每个点都对应一个实数。
5. 实数的运算实数的运算包括加法、减法、乘法和除法。
实数的运算满足以下性质:- 交换律:a + b = b + a,a * b = b * a。
- 结合律:(a + b) + c = a + (b + c),(a * b) * c = a * (b * c)。
- 分配律:a * (b + c) = a * b + a * c。
6. 绝对值绝对值是一个数离0的距离,可以用来表示数的大小。
绝对值的性质包括:- 绝对值非负:|a| >= 0。
- 非零数的绝对值大于0:|a| > 0。
- 绝对值的加法:|a + b| <= |a| + |b|。
7. 实数的比较实数可以进行大小比较,实数的比较满足以下性质:- 反身性:a = a。
- 对称性:如果a > b,则b < a。
- 传递性:如果a > b,b > c,则a > c。
8. 实数的区间实数可以按照大小关系分为开区间、闭区间、半开半闭区间等。
区间的边界可以是实数也可以是无穷大。
9. 实数的近似值由于实数的无理数部分是无限不循环的,所以我们一般用近似值来表示实数。
10. 实数的应用实数在数学和科学中有广泛的应用,如在几何中表示线段长度、在物理中表示物体的质量等。
七年级实数知识点归纳整理一、实数的定义实数是可以用数轴上的点表示的数,包括有理数和无理数两部分。
有理数是可以写成两个整数之比的数,而无理数则不能用有限的小数或分数表示。
实数范围包括正数、负数和零。
二、实数的四则运算法则1.实数的加法和减法运算:实数加法运算遵循交换律、结合律和分配律,减法运算可以转化为加法运算。
2.实数的乘法和除法运算:实数乘法运算遵循交换律、结合律和分配律,除法运算可以转化为乘法运算。
三、实数的比较大小1.同号实数的比较大小:同号实数绝对值越大,数值越大。
2.异号实数的比较大小:如果两个实数各为正数或负数,则绝对值大的数较小,反之则绝对值小的数较小。
四、实数的绝对值实数a的绝对值表示为|a|,表示a到原点的距离。
当a为正数时,|a|=a,当a为负数时,|a|=-a。
五、开方运算1.正实数的开方:对一个正实数a开方,结果是一个正实数x,即x²=a。
2.负实数的开方:不存在实数的平方等于负数,但可以引入虚数单位i,表示√-1,即i²=-1。
因此,负实数的开方可以用虚数单位表示,如√-4=2i。
六、实数的进一法和舍一法1.进一法:如果一个数x的小数部分大于等于0.5,则x取整后加1,即进一法。
2.舍一法:如果一个数x的小数部分小于0.5,则x取整后不变,即舍一法。
七、实数的科学计数法科学计数法可以将一个实数表示成a×10ⁿ的形式,其中a是一个在1和10之间的数,n为整数。
例如,1234可以表示为1.234×10³。
八、实数的表示方式1.小数表示法:直接将实数表示为小数形式,如1.5、-0.75等。
2.分数表示法:将实数表示为两个整数的比,如¾、-2/3等。
3.百分数表示法:将实数乘以100,以百分号表示,如25%、-50%等。
九、实数的应用实数在日常生活和数学科学中有广泛的应用,如货币、温度、长度、面积、体积等均为实数,实数也是数学中许多重要概念的基础,如不等式、函数、导数等。
实数概念知识点总结一、实数的定义实数是指所有的有理数和无理数的总称。
有理数是指可以表示为两个整数之比的数,无理数是指不能表示为有理数的数。
实数包括了所有的有理数和无理数,是数轴上的所有点的集合。
实数的定义还可以从数轴的角度来理解。
数轴是一条无限长的直线,上面标记了所有的实数。
数轴上任意一点都对应着一个实数,数轴上的点是有序的,也就是说数轴上的点按大小顺序排列。
这种对应关系使得我们可以将实数看做是一个有序的集合。
二、实数的性质1.实数的代数性质实数满足加法、减法、乘法和除法运算。
对于任意的实数a、b和c,有以下代数性质成立:(1)交换律:a + b = b + a,ab = ba;(2)结合律:(a + b) + c = a + (b + c),(ab)c = a(bc);(3)分配律:a(b + c) = ab + ac;(4)单位元素:存在0和1,使得a + 0 = a,a · 1 = a;(5)加法逆元:对于任意的实数a,存在一个数-b,使得a + (-b) = 0;(6)乘法逆元:对于任意的非零实数a,存在一个数1/a,使得a · (1/a) = 1。
2.实数的大小比较实数具有大小的比较关系。
对于任意的实数a和b,有以下性质成立:(1)对于任意的实数a,有a > 0,a = 0或a < 0;(2)对于任意的实数a和b,有严格不等式a < b,a > b或者a = b。
3.实数的密度性质实数是一个稠密的集合,它意味着在数轴上,任意两个不相等的实数之间都存在着无限多个实数。
这一性质对于实数的连续性和无限性具有重要意义。
4.实数的有理数与无理数性质(1)有理数的性质:有理数是可以表示为两个整数之比的数,它们在数轴上是分散的、不连续的点。
有理数包括了整数和分数两种类型。
(2)无理数的性质:无理数是不能表示为有理数的数,它们在数轴上是一些孤立的、不连续的点。
一、实数的概念及性质1. 实数的定义:实数是指可以用在数轴上表示的数,包括有理数和无理数。
2. 实数的性质:实数具有以下性质:(1)实数集合是一个实数域,它包含了所有实数。
(2)实数是可比较的,即任意两个实数之间可以进行大小比较。
(3)实数是封闭的,对任意两个实数进行加减乘除得到的结果还是实数。
(4)实数满足传递性,即如果a>b,b>c,则a>c。
3. 实数的稠密性:实数的一个重要性质是稠密性,即在任意两个不相等的实数之间,都存在着无穷多个实数。
这意味着实数在数轴上是密密麻麻地分布着的,没有空隙。
4. 实数的有限性:实数作为一种数学对象,是有限的,也就是说,对于任意一个实数,它都可以用有限个操作从某个给定的实数得到。
5. 实数的无限性:实数也具有无限性,例如无理数的小数部分是无限不循环的,这使得实数具有无限性。
二、实数的运算1. 实数的加法:实数的加法满足结合律、交换律和分配律,即对于任意实数a、b、c,有a+(b+c)=(a+b)+c,a+b=b+a,a(b+c)=ab+ac。
2. 实数的减法:实数的减法可以看作加上一个相反数,即a-b=a+(-b)。
3. 实数的乘法:实数的乘法满足结合律、交换律和分配律,即对于任意实数a、b、c,有a(bc)=(ab)c,ab=ba,a(b+c)=ab+ac。
4. 实数的除法:实数的除法满足除法运算的性质,即分子与分母都不为零。
5. 实数的乘方:实数的乘方运算是幂运算的一种特殊形式,即对于实数a和自然数n,有a^n=a*a*...*a(共n个a)。
6. 实数的开方:实数的开方是乘方运算的逆运算,即给定一个实数a,求出另一个实数b,使得b^2=a。
7. 实数的绝对值:实数的绝对值是一个非负的实数,它表示了这个实数到原点的距离,通常用|a|表示。
8. 实数的倒数:对于一个非零实数a,它的倒数是1/a。
1. 实数的大小比较:实数之间可以进行大小比较,对于任意两个实数a和b,有以下比较关系:(1)a>b:表示a大于b。
第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
认识实数及其运算——初中数学知识点总结2023年的初中数学中,认识实数以及实数的运算是非常重要的一部分。
在这篇文章中,我将总结实数的基本概念和运算法则,希望能对大家的学习有所帮助。
一、实数的基本概念在数学中,实数是指包括有理数和无理数在内的所有实数的集合。
简单来说,实数就是包括整数、小数和分数(不是整数)在内的所有数的集合。
其中,有理数是可以表示为两个整数之比的数,例如:1/2、3/4、6/5等;而无理数则无法表示为两个整数之比,例如:根号2、圆周率π等。
在实数中,需要注意以下一些重要的概念:1. 实数轴实数轴是一个用于表示所有实数的直线,其中0点表示原点,向右表示正数,向左表示负数,实数轴上每个点都可以表示为一个实数,例如2、-3.5等。
2. 数轴上的点在实数轴上,每个点都可以表示为一个实数,例如2、-3.5等。
同时,还可以定义一个区间,表示区间内的所有点的范围。
例如,(2,5)表示大于2小于5的所有实数;[0,1]表示0到1之间的所有实数。
3. 绝对值绝对值是一个数到原点的距离,用符号“| |”表示,例如,|2|表示2到原点的距离为2,|-3.5|表示-3.5到原点的距离为3.5。
二、实数的运算法则在实数中,有加法、减法、乘法和除法四种基本运算法则,下面将分别介绍它们的规则:1. 加法加法是指将两个数相加,得出它们的和。
例如,2+3=5,-2+5=3等。
加法的规则如下:同号相加,绝对值相加后符号不变;异号相加,绝对值相减后取与被减数相同的符号。
例如,2+3=5,-2+5=3,-5+2=-3等。
2. 减法减法是指将一个数减去另一个数,得出它们的差。
例如,3-2=1,-5-2=-7等。
减法的规则如下:a-b等价于a+(-b);同号相减,绝对值相减后取与被减数相同的符号;异号相减,绝对值相加后取与被减数相反的符号。
例如,3-2=1,-5-2=-7,2-5=-3等。
3. 乘法乘法是指将两个数相乘,得出它们的积。
实数知识点总结归纳一、实数的概念实数是有理数和无理数的总称。
有理数包括整数和分数,整数又分为正整数、零和负整数;分数分为正分数和负分数。
无理数是无限不循环小数,如π、√2 等。
有理数和无理数的区别在于能否表示为两个整数的比值。
有理数可以表示为分数形式,而无理数则不能。
实数可以用数轴上的点来表示,数轴上的每一个点都对应一个实数,反之,每一个实数也都可以在数轴上找到对应的点。
二、实数的分类1、按定义分类(1)有理数:有限小数或无限循环小数。
(2)无理数:无限不循环小数。
2、按正负分类(1)正实数:包括正有理数和正无理数。
(2)零:既不是正数也不是负数。
(3)负实数:包括负有理数和负无理数。
三、实数的运算1、加法(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数同 0 相加,仍得这个数。
2、减法减去一个数,等于加上这个数的相反数。
3、乘法(1)两数相乘,同号得正,异号得负,并把绝对值相乘。
(2)任何数与 0 相乘都得 0。
4、除法(1)除以一个不为 0 的数,等于乘这个数的倒数。
(2)0 除以任何一个不为 0 的数都得 0。
5、乘方求 n 个相同因数的积的运算叫做乘方。
6、实数的运算顺序先算乘方、开方,再算乘除,最后算加减;如果有括号,先算括号里面的;同级运算从左到右依次进行。
四、实数的性质1、相反数只有符号不同的两个数叫做互为相反数。
实数 a 的相反数是 a,0的相反数是 0。
2、绝对值数轴上表示一个数的点与原点的距离叫做这个数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是 0。
3、倒数乘积为 1 的两个数互为倒数。
非零实数 a 的倒数是 1/a,0 没有倒数。
五、平方根与立方根1、平方根如果一个数的平方等于 a,那么这个数叫做 a 的平方根。
正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
实数的知识点全总结一、实数的定义实数是指包括有理数和无理数在内的所有实际存在的数。
有理数是可以表示为两个整数的比的数,而无理数是不能表示为两个整数的比的数。
例如,根号2就是一个无理数,它不能被表示为两个整数的比。
实数的定义是数学上一个很基础的定义,但是实数的性质和运算规则却有很多深刻的内容,需要深入研究和探讨。
二、实数的性质1. 实数的闭包性:任意两个实数相加、相减、相乘得到的仍然是一个实数,这就是实数的闭包性。
实数集合对于加法和乘法是封闭的,这也是实数集合与有理数集合的一个重要区别。
2. 实数的稠密性:实数集合是一个稠密集合,任意两个实数之间都存在有理数,也存在无理数。
这就意味着实数集合是一个非常密集的数学概念,包含了所有可能的数。
3. 实数的有序性:实数集合是一个有序集合,任意两个实数都可以进行比较大小。
这是实数集合与无理数集合的一个重要区别,也是实数集合在数学分析中应用广泛的一个性质。
4. 实数的无限性:实数集合是一个无限集合,它包括了所有可能的有理数和无理数。
实数集合的无限性是数学中一个非常重要的概念,它在分析、代数、几何等不同领域都有重要的应用。
5. 实数的稳定性:实数集合是一个稳定的数学概念,它对于加法、乘法、取绝对值等运算都是稳定的。
这也是实数集合与有理数集合的一个重要区别,有理数集合在进行除法运算时往往会出现不稳定的情况。
三、实数的运算规则1. 实数的加法:对于任意两个实数a和b,它们的和a+b也是一个实数。
加法满足交换律、结合律和分配律等运算规则。
2. 实数的减法:对于任意两个实数a和b,它们的差a-b也是一个实数。
减法是加法的逆运算,减法也满足交换律和结合律。
3. 实数的乘法:对于任意两个实数a和b,它们的积ab也是一个实数。
乘法满足交换律、结合律和分配律等运算规则。
4. 实数的除法:对于任意两个实数a和b,如果b不等于0,那么它们的商a/b也是一个实数。
实数的除法是乘法的逆运算,除法满足交换律和结合律。
奥数七年级实数知识点七年级的学生进入初中,开始学习更高深的数学知识。
其中一个重要的领域是实数。
实数是指所有的实数,包括有理数和无理数。
在这篇文章中,我们将深入探讨七年级学生所需了解的重要实数知识点。
一. 实数的概念实数是指可以用数轴上的点来表示的数,包括有理数和无理数。
数轴是一个直线,上面的点与实数一一对应。
有理数是可以表示成两个整数之比的数,而无理数则不能用有理数的形式表示,如根号2、根号3等。
二. 实数的范围实数包括从负无穷到正无穷的所有数。
在数轴上,正数位于原点的右侧,负数则位于原点的左侧。
而无理数则分布在整个数轴上。
三. 实数的比较对于有理数和无理数的比较,我们可以通过大小关系和绝对值来进行。
对于两个有理数,我们可以比较它们的大小。
对于两个无理数,我们需要使用近似值进行比较。
而对于有理数和无理数的比较,则需要将无理数近似成一个有理数,再比较大小。
四. 实数的表示实数可以用分数表示,也可以用小数表示。
对于有理数来说,可以用分数或小数表示。
而无理数则大多数用小数表示,因为无理数无法表示成分数的形式。
五. 实数的运算实数的运算同样也是非常重要的知识点。
实数的加、减、乘、除等运算都是基本的。
对于有理数的运算,可以使用通分或分母分解来进行。
对于无理数的运算,只能将其近似成小数,再进行运算。
六. 实数的绝对值实数的绝对值表示该数到原点的距离,因此它总是非负的。
对于正数,它的绝对值等于它本身。
而对于负数,则需要取负号,如|-3|= 3,|3|= 3。
七. 实数的平方实数的平方表示该数乘以自己的结果,即x²= x × x。
对于正数和负数来说,它们的平方都是非负数,如3²= 9,-3²= 9。
总结实数是高中数学中的重要知识点之一。
这篇文章介绍了实数的概念、范围、比较、表示、运算、绝对值、平方等知识点。
通过这些知识,七年级的学生可以更好地理解实数的概念和应用,为未来的数学学习打下坚实的基础。
七年级实数知识点讲解一、实数的概念和定义实数是指可以用有限小数或无限小数表示的数,包括有理数和无理数。
有理数是可以写成两个整数之比的数,无理数则不能。
实数是数学中最基本的概念之一,广泛应用于各种数学、科学和工程领域。
二、实数的分类实数可以按照它们是否能被写成两个整数之比来分类,能的是有理数,不能的是无理数。
有理数包括整数、分数和小数,例如1、-2/3和0.125。
无理数则包括无限不循环小数和无限循环小数,例如√2和π。
三、实数的运算实数有四种基本运算:加、减、乘、除。
其中加、减又称加法、减法,乘、除又称乘法、除法。
实数的加减法和乘除法遵循一定的运算规律,例如交换律、结合律、分配律等。
四、实数的比较实数之间可以进行大小比较。
对于两个实数a和b,如果a>b,那么a比b大;如果a<b,那么a比b小;如果a=b,那么a和b相等。
在比较实数大小时,需要考虑它们的符号、整数部分和小数部分以及是否是有理数还是无理数等因素。
五、实数的绝对值实数a的绝对值是一个非负数,记作|a|。
如果a>0,则|a|=a;如果a≤0,则|a|=-a。
实数的绝对值有以下几个性质:(1)|a|≥0,等号成立当且仅当a=0;(2)|a·b|=|a|·|b|;(3)|a+b|≤|a|+|b|;(4)|a-b|≤|a|+|b|。
六、实数的约束条件在一些实际问题中,实数会受到一定的约束条件,例如方程、不等式、等式等。
解这些问题时,需要寻找满足约束条件的实数解,并给出解的范围或特点。
七、实数的应用实数是数学中最基本的概念之一,广泛应用于各种数学、科学和工程领域。
在几何中,实数可以用来表示线段、面积、体积等物理量;在代数中,实数可以用来表示变量、方程、函数等;在统计学中,实数可以用来表示随机变量、概率等。
实数的应用非常广泛,是数学学科中必不可少的基础知识之一。
八、总结实数是数学中最基本的概念之一,包括有理数和无理数。
七年级实数知识点总结归纳实数是数学中一个重要的概念,它由有理数和无理数组成。
了解实数的概念和性质对于七年级的学生来说非常重要。
在本文中,我将对七年级的实数知识点进行总结归纳,以帮助同学们更好地理解和掌握这一知识。
一、实数的概念实数是包括有理数和无理数的一种数集。
有理数是可以表示为两个整数之比的数,可以是整数、分数或小数(有限小数或循环小数)。
无理数是不能表示为两个整数之比的数,它们的小数部分无限不循环。
实数集是一个无限连续的数轴。
二、有理数的性质1. 有理数可以表达为a/b的形式,其中a和b是整数,b不等于0。
2. 有理数的和、差、积、商仍然是有理数。
3. 有理数有顺序性,可以进行大小比较。
三、无理数的性质1. 无理数的小数部分无限不循环,不能表示为两个整数之比。
2. 无理数与有理数相加、相乘的结果是无理数。
3. 无理数有顺序性,可以进行大小比较。
四、实数的性质1. 实数集是一个无限连续的数轴,包括所有的有理数和无理数。
2. 实数具有完备性,即实数集中的每一个非空子集都有上确界和下确界。
3. 实数满足四则运算的基本性质,包括交换律、结合律、分配律等。
五、实数的运算1. 实数的加法和减法:对于任意的实数a、b和c,有加法交换律、加法结合律、减法的定义等运算规则。
2. 实数的乘法和除法:对于任意的实数a、b和c(c≠0),有乘法交换律、乘法结合律、除法的定义等运算规则。
六、实数的进一步应用实数的知识点不仅仅在数学中有应用,它还在物理、经济等领域中有广泛的应用。
例如,在物理学中,实数用于描述物体的质量、速度等;在经济学中,实数用于表示货币的价值、收入等。
七、实数的应用练习通过理论知识的学习之后,我们可以通过一些练习题来加深对实数的理解和掌握。
下面是一些实数的应用练习题:1. 比较以下两组数的大小:{-2, -1, 0, 1, 2} 和 {-2.5, -1.5, -0.5, 0.5,1.5}。
2. 计算以下两个实数的和:-7.2 和 8.35。
实数相关的知识点总结一、实数的定义实数是代数数的一种,它包括有理数和无理数两部分。
有理数是可以用分数表示的实数,包括整数和分数。
整数包括正整数、负整数和零;分数是一个整数除以另一个整数得到的数。
无理数是不能用分数表示的实数,它包括无限不循环小数和根号形式的数。
二、实数的性质1. 实数的四则运算实数具有加、减、乘、除四种基本运算,它们满足交换律、结合律、分配律和分配律等基本性质。
2. 实数的大小比较实数可以进行大小的比较,如果a>b,则称a大于b;如果a<b,则称a小于b;如果a=b,则称a等于b。
实数的大小比较遵循不等关系的性质。
3. 实数的绝对值实数a的绝对值是指a到原点O的距离,记作|a|。
当a≥0时,|a|=a;当a<0时,|a|=-a。
4. 实数的乘方与开方实数的n次乘方是指将实数a连乘n次,记作a^n;实数的n次开方是指将实数a的n次方根号,记作a^(1/n)。
5. 实数的分数与百分数分数是指两个整数相除的结果,分数的大小可以通过分子与分母的大小来进行比较;百分数是指将一个数表示为百分数的形式,例如75%表示75/100。
三、实数的表示方式1. 实数的有理数表示有理数可以用分数的形式表示,例如-3/4、2/3等,也可以用小数的形式表示,例如-0.75、0.6666等。
2. 实数的无理数表示无理数通常用根号的形式表示,例如√2、√3等,也可以用小数的形式表示,但是无理数的小数表示是无限不循环小数。
3. 实数的坐标表示实数可以通过数轴上的点来进行表示,数轴上的原点O代表0,数轴上的其他点分别表示正数和负数。
四、实数的运算1. 实数的加法实数的加法是指两个实数相加的运算,满足交换律和结合律的性质。
2. 实数的减法实数的减法是指两个实数相减的运算,满足交换律和结合律的性质。
3. 实数的乘法实数的乘法是指两个实数相乘的运算,满足交换律和结合律的性质。
4. 实数的除法实数的除法是指一个实数除以另一个实数的运算,要求被除数不等于0,满足分配律和除不尽的性质。
七年级奥数实数概念综合知识2020基本概念
实数能够分为有理数和无理数两类,或代数数和超越数两类,或正实数,负实数和零三类。
实数集合通常用字母 R 表示。
而R^n表示n 维实数空间。
实数是不可数的。
实数是实数理论的核心研究对象。
实数能够用来测量连续的量。
理论上,任何实数都能够用无限小数的方式表示,小数点的右边是一个无穷的数列(能够是循环的,也能够是非循环的)。
在实际使用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数,包括整数)。
在计算机领域,因为计算机只能存储有限的小数位数,实数经常用浮点数来表示。
1)相反数(只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数) 实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。
)
2)绝对值(在数轴上另一个数与a到原点0的距离分别相等) 实数a的绝对值是:|a|
①a为正数时,|a|=a(不变)
②a为0时, |a|=0
③a为负数时,|a|=-a(为a的相反数)
(任何数的绝对值都大于或等于0,因为距离没有负的。
)
3)倒数(两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0)
4)数轴(任何实数都可在数轴上表示。
)
定义:如果画一条直线,规定向右的方向为直线的正方向,在其上取原点O及单位长度OE,它就成为数轴线,或称数轴。
(1)数轴的三要素:原点、正方向和单位长度。
(2)数轴上的点与实数一一对应。
5)平方根(某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。
一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根。
)
6)立方根(如果一个数x的立方等于a,即x的三次方等于
a(x^3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根(cube root),也叫做三次方根)
分类
实数按性质分类是:正实数、负实数、0
实数按定义分类是:有理数、无理数
有理数的分类能够分为整数,分数
整数又可分为正整数,0,负整数
分数又可分为正分数,负分数
正有理数又可分为正整数,正分数
负有理数又可分为负整数,负分数
无理数可分为正无理数和负无理数。