数学建模试题(带答案)大全
- 格式:doc
- 大小:2.84 MB
- 文档页数:45
数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。
A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。
当矩形的面积最大时,求矩形的长和宽。
A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。
求该直线的方程。
A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。
A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。
假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。
求两辆车首次相遇的时间。
A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。
答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。
答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。
数学建模 试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。
2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。
3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。
二、模型求证题(共2小题,每小题10分,本大题共20分)1、 某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t 是一天内时刻变量,则f(t),g(t)在[a,b]是连续函数。
作辅助函数F(t)=f(t)-g(t),它也是连续的,则由f(a)=0,f(b)>0和g(a)>0,g(b)=0,可知F (a )<0, F(b)>0,由介值定理知存在t0属于(a,b)使F(t0)=0, 即f(t0)=g(t0) 。
2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分)解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,k=1,2,........,k x ,k y =0,1,2,3。
将二维向量k s =(k x ,k y )定义为状态。
安全渡河条件下的状态集合称为允许状态集合,记做S 。
大学数学模型试题及答案一、单项选择题(每题2分,共10分)1. 数学模型的一般步骤不包括以下哪一项?A. 模型准备B. 模型假设C. 模型求解D. 数据分析答案:D2. 在数学建模中,以下哪一项不是模型的分类?A. 确定性模型B. 随机性模型C. 动态模型D. 线性模型答案:D3. 数学模型的建立过程中,以下哪一项是不需要的?A. 收集数据B. 模型假设C. 模型求解D. 编写程序答案:D4. 在数学建模中,以下哪一项是模型验证的主要方法?A. 理论分析B. 实验验证C. 专家评估D. 以上都是答案:D5. 数学模型的最终目的是?A. 解决实际问题B. 获得数学结论C. 发表学术论文D. 展示数学技巧答案:A二、填空题(每题2分,共10分)1. 数学模型的三个基本要素包括______、______和______。
答案:假设、变量、关系2. 模型的分类中,根据模型的确定性与否,可以分为______模型和______模型。
答案:确定性、随机性3. 数学建模的一般步骤中,模型准备阶段包括______、______和______。
答案:明确问题、收集资料、提出假设4. 在数学模型的求解过程中,常用的数学方法包括______、______和______。
答案:代数方法、几何方法、微积分方法5. 数学模型的最终评价标准是______和______。
答案:实用性、准确性三、简答题(每题10分,共20分)1. 简述数学模型在解决实际问题中的作用。
答案:数学模型在解决实际问题中的作用主要体现在以下几个方面:首先,数学模型可以帮助我们理解复杂系统的行为和规律,通过建立数学模型,我们可以将实际问题抽象化,从而更容易地分析和解决问题。
其次,数学模型可以预测未来的发展和变化,通过模型的求解和分析,我们可以预测系统在未来某一时刻的状态,为决策提供依据。
最后,数学模型可以优化决策,通过模型的分析,我们可以找到最优的解决方案,提高决策的效率和效果。
数学建模模拟试题及答案一、填空题(每题 5 分,共 20 分)1.一个连通图能够一笔画出的充分必要条件是.2. 设银行的年利率为 0.2,则五年后的一百万元相当于现在的万元.3. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:(1) 参加展览会的人数n; (2)气温T 超过10o C;(3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为 .4. 如图一是一个邮路,邮递员从邮局 A 出发走遍所有 A长方形街路后再返回邮局 .若每个小长方形街路的边长横向均为 1km,纵向均为 2km,则他至少要走 km .二、分析判断题(每题 10 分,共 20 分)1. 有一大堆油腻的盘子和一盆热的洗涤剂水。
为尽量图一多洗干净盘子,有哪些因素应予以考虑?试至少列出四种。
2. 某种疾病每年新发生 1000 例,患者中有一半当年可治愈 .若 2000 年底时有1200 个病人,到 2005 年将会出现什么结果?有人说,无论多少年过去,患者人数只是趋向 2000 人,但不会达到 2000 人,试判断这个说法的正确性 .三、计算题(每题 20 分,共 40 分)1. 某工厂计划用两种原材料A, B 生产甲、乙两种产品,两种原材料的最高供应量依次为 22 和 20 个单位;每单位产品甲需用两种原材料依次为 1 、1 个单位,产值为 3 (百元);乙的需要量依次为 3、1 个单位,产值为 9 (百元);又根据市场预测,产品乙的市场需求量最多为 6 个单位,而甲、乙两种产品的需求比不超过 5: 2,试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由 .(2) 原材料的利用情况 .2. 两个水厂A1 , A2将自来水供应三个小区B1 , B2 , B3 , 每天各水厂的供应量与各小区的需求量以及各水厂调运到各小区的供水单价见下表 .试安排供水方案,使总供水费最小?四、 综合应用题(本题 20 分)某水库建有 10 个泄洪闸,现在水库的水位已经超过安全线,上游河水还在不断地流入 水库.为了防洪,须调节泄洪速度 .经测算,若打开一个泄洪闸, 30 个小时水位降至安全线, 若打开两个泄洪闸, 10 个小时水位降落至安全线 .现在,抗洪指挥部要求在 3 个小时内将水 位降至安全线以下,问至少要同时打开几个闸门?试组建数学模型给予解决 .注:本题要求按照五步建模法给出全过程 .小区 单价/元水厂A1A供应量 / t170B34B11 07 1B26数学建模 06 春试题模拟试题参考解答一、填空题(每题 5 分,共 20 分)1. 奇数顶点个数是 0 或 2;2. 约 40.1876 ;3. N = Kn(T10) / p, (T > 10 0 C), K 是比例常数; 4. 42.二、分析判断题(每题 10 分,共 20 分)1. 解: 问题与盘子、水和温度等因素直接相关,故有相关因素:盘子的油腻程度,盘子的温度,盘子的尺寸大小;洗涤剂水的温度、浓度; 刷洗地点 的温度等.注:列出的因素不足四个,每缺一个扣 2.5 分。
一、名词解释1.Table命令的使用格式;2.Solve命令的使用格式;3.Do命令的使用格式;4.Plot命令的使用格式;5.ListPlot命令的使用格式;6.Reduce命令的使用格式;7.Expand命令的使用格式;8.FindRoot命令的使用格式;9.Switch命令的使用格式;lO.ConstrainedMin命令的使用格式;11 .Factor命令的特点与几种使用格式。
12.Clear命令的特点与使用格式二、计算题1. 1959年8月4日是星期几,这一天与2001年12月4日之间共有多少天?2.求我国北京市的地理经纬度。
3.北美地区有几个国家?写出它们的名字。
4.求解递归关系式a” = 3% _2a”_2,ao =1,4 = 2。
5.求斐波那契(Fibonacci)数列Fibonacci[n]从n=l至【Jn = 50的值。
6.分别以0.1、0.01、0.001为误差上限,将J方化成近似分数。
7 .求下列矩阵的特征值与对应的特征向量:13•求解方程7% -和"—张+ 1X 14.求1+ 28+38+...+n 8的简洁表达式。
15.求Pell 方程.r 2 -234y 2 -1的最小正整数解。
16.将16进制的数字20转化为10进制的数字。
17.求下列矩阵的行列逆矩阵与转置矩‘1 2 3、A= 2 3 1、3 1 2,8.求多项式 f=( X1 + X2 +X3 + X4 + X5严中 Xi 3 x 23 X35 X42 X55 的系数。
9•求208素因子分解。
10. 用Lindo 求解下列整数线性规划问题。
max / = 20 兀 1 +10%兀1 +兀2 +兀3 = 30y, + y 2 + = 2020x l +10% = 30X 2 + 20y 2 = 25 x 3 + 15y 3s.tA 20兀i +10% <20*30 + 10*2030兀2+20y2 <30*30 + 20*20 25兀3+15儿 <25*30 + 15*20 x t , y j > 0,integers11. 求中国香港的地理经纬度。
高中数学建模试题及答案一、单项选择题(每题3分,共30分)1. 数学建模的一般步骤不包括以下哪一项?A. 问题提出B. 模型假设C. 模型求解D. 数据收集答案:D2. 在数学建模中,模型的验证通常不包括以下哪一项?A. 模型的逻辑性检验B. 模型的适用性检验C. 模型的稳定性检验D. 模型的美观性检验答案:D3. 以下哪一项不是数学建模中常用的方法?A. 微分方程B. 线性规划C. 概率论D. 文学创作答案:D4. 在数学建模中,以下哪一项不是模型的要素?A. 模型的假设B. 模型的变量C. 模型的参数D. 模型的结论答案:D5. 数学建模中,以下哪一项不是模型的分类?A. 确定性模型B. 随机性模型C. 静态模型D. 动态模型答案:C6. 在数学建模中,以下哪一项不是模型的构建过程?A. 模型的假设B. 模型的建立C. 模型的求解D. 模型的发表答案:D7. 数学建模中,以下哪一项不是模型的分析方法?A. 数值分析B. 符号计算C. 图形分析D. 文字描述答案:D8. 在数学建模中,以下哪一项不是模型的优化方法?A. 线性规划B. 非线性规划C. 动态规划D. 统计分析答案:D9. 数学建模中,以下哪一项不是模型的应用领域?A. 工程技术B. 经济管理C. 生物医学D. 音乐艺术答案:D10. 在数学建模中,以下哪一项不是模型的评估标准?A. 模型的准确性B. 模型的简洁性C. 模型的可解释性D. 模型的复杂性答案:D二、填空题(每题4分,共20分)1. 数学建模的一般步骤包括:问题提出、模型假设、模型建立、模型求解、模型分析、模型验证和______。
答案:模型报告2. 在数学建模中,模型的假设应该满足______、______和______。
答案:科学性、合理性、可行性3. 数学建模中,模型的求解方法包括解析方法和______。
答案:数值方法4. 数学建模中,模型的分析方法包括______、______和______。
数模期末考试试题及答案一、单项选择题(每题3分,共30分)1. 数学建模中,以下哪项不是模型的基本组成部分?A. 假设B. 模型C. 符号D. 结果答案:D2. 在数学建模中,以下哪项不是模型的类型?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:D3. 数学建模中,以下哪项不是模型的建立步骤?A. 模型准备B. 模型假设C. 模型求解D. 模型验证答案:D4. 数学建模中,以下哪项不是模型的验证方法?A. 残差分析B. 敏感性分析C. 模型拟合D. 模型优化答案:D5. 在数学建模中,以下哪项不是模型的分析方法?A. 数值分析B. 图形分析C. 符号分析D. 以上都是答案:C6. 数学建模中,以下哪项不是模型的应用领域?A. 工程领域B. 经济领域C. 社会科学领域D. 艺术领域答案:D7. 在数学建模中,以下哪项不是模型的优化方法?A. 线性规划B. 非线性规划C. 动态规划D. 概率论答案:D8. 数学建模中,以下哪项不是模型的预测方法?A. 时间序列分析B. 回归分析C. 马尔可夫链D. 微分方程答案:D9. 在数学建模中,以下哪项不是模型的稳定性分析方法?A. 李雅普诺夫稳定性理论B. 奈奎斯特稳定性准则C. 劳斯-赫尔维茨稳定性准则D. 傅里叶变换答案:D10. 数学建模中,以下哪项不是模型的误差分析方法?A. 误差传播B. 误差估计C. 误差校正D. 误差消除答案:D二、填空题(每题4分,共20分)1. 数学建模的一般步骤包括:____、____、____、____、____。
答案:模型准备、模型假设、模型求解、模型验证、模型分析2. 确定性模型是指模型的输出与输入之间具有____的关系。
答案:确定性3. 在数学建模中,模型的敏感性分析用于研究模型输出对模型参数的____。
答案:敏感性4. 数学建模中,模型的稳定性分析是研究模型在受到____时,其输出是否能够保持稳定。
数学模型考试题及答案一、选择题1. 以下哪个选项是线性方程的一般形式?A. ax + by = cB. ax^2 + by^2 = cC. ax^3 + by^3 = cD. ax + by + cz = d答案:A2. 矩阵的行列式表示为:A. det(A)B. rank(A)C. trace(A)D. transpose(A)答案:A3. 以下哪个函数是周期函数?A. f(x) = x^2B. f(x) = sin(x)C. f(x) = e^xD. f(x) = ln(x)答案:B二、填空题1. 微分方程 y'' + 2y' + y = 0 的通解是 y = ________。
答案:C1e^(-t) + C2te^(-t)2. 矩阵 A = [1 2; 3 4] 的逆矩阵是 ________。
答案:[-2 1; 1.5 -0.5]3. 函数 f(x) = x^3 - 3x 在区间 [0, 2] 上的极值点是 ________。
答案:1三、计算题1. 计算定积分∫ from 0 to π of sin(x) dx。
答案:22. 求解微分方程 y' + 2y = e^(-2x) 的通解。
答案:y = -1/2e^(-2x) + C*e^(2x)3. 证明函数 f(x) = x^2 在区间 (-∞, +∞) 上是凸函数。
答案:f''(x) = 2 > 0,因此 f(x) 在整个实数域上是凸函数。
四、证明题1. 证明函数 f(x) = x^3 在区间 (-∞, +∞) 上是严格递增的。
答案:f'(x) = 3x^2 ≥ 0 对所有x ∈ (-∞, +∞) 成立,且仅在 x = 0 时取等号。
因此,f(x) 在整个实数域上是严格递增的。
2. 证明对于任意正整数 n,n^2 - n 总是偶数。
答案:n^2 - n = n(n - 1)。
由于 n 和 n - 1 必定有一个是偶数,因此它们的乘积 n(n - 1) 必定是偶数。
数学模型试题参考答案一、填空题1.物质模型(形象模型)和理想模型(抽象模型)2.机理分析和测试分析3.人口增长率.4.阻滞增长模型.5.MATLAB 和MATHEMATICA .二、问答题1.对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到一个数学结构.2.模型准备,模型假设,模型构成,模型求解,模型分析,模型检验,模型应用.3.逼真性与可行性,渐进性,强健性,可转移性,非预制性,条理性,技艺性,局限性.4.原型是指人们在现实世界里关心、研究或者从事生产、管理的实际对象.模型是指为了特定目的将原型的某一部分信息简缩、提炼而构成的原型替代物.三、建模题1.模型构成记第k 次渡河前此案的商人数为k x ,随从人数为k y ,,,2,1 =k 3,2,1,0,=k k y x .将二维向量),(k k k y x s =定义为状态,安全渡河条件下的状态集合称为允许状态集合,记作S . {}2,1;3,2,1,0,3;3,2,1,0,0|),(=======y x y x y x y x S ,不难验证,S 对此岸和彼岸都是安全的.记第k 次渡船上商人数为k u ,随从数为k v .将二维向量),(k k k v u d =定义为决策,允许决策集合记作D ,由小船的容量可知{}2,1,0,,21|),(=≤+≤=v u v u v u D .因为k 为奇数时船从此岸驶向彼岸,k 为偶数时船从彼岸驶向此岸,所以状态k s 随决策k d 变化的规律为k k k k d s s )1(1-+=+上式称为状态转移率.这样,制定安全渡河方案归结为如下的多步决策模型:求决策D d k ∈),2,1(n k =,使状态S s k ∈按照状态转移率,由初始状态)3,3(1=s 经有限步n 到达状态)0,0(1=+n s .2.模型假设1. 椅子四条腿一样长,椅脚与地面接触处可视为一个点,四脚的连线呈正方形.2. 地面高度是连续变化的,沿任何方向都不会出现间断,即地面可视为数学上的连续曲面.3. 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子在任何位置上至少有三只脚同时着地.模型构成首先要用变量表示椅子的位置.用旋转角度这一变量表示椅子的位置.对角线AC 与x 轴重合,椅子绕中心点O 旋转角度θ后,正方形ABCD 转至D C B A '''',所以对角线AC 与x 轴的夹角θ表示了椅子的位置.虽然椅子有四只脚,因而有四个距离,但是由于正方形的对称性,只要设两个距离函数就行了.记A ,C 两脚与地面距离之和为)(θf ,B ,D 两脚与地面距离之和为)(θg )0)(),((≥θθg f 由假设2,f 和g 都是连续函数.由假设3,椅子在任何位置至少有三只脚着地,所以对于任意的)(θf 和)(θg 中至少有一个为零.当0=θ时不妨设0)(=θg ,0)(>θf .这样,改变椅子的位置使四只脚同时着地,就归纳为证明如下的数学命题:已知)(θf 和)(θg 是θ的连续函数,对任意θ,0)()(=⋅θθg f ,且0)0(=g ,0)0(>f ,证明存在0θ,使0)()(00==θθg f .将椅子旋转90度,对角线AC 与BD 互换,由0)0(=g 和0)0(>f 可知0)2/(>πg 和0)2/(=πf .令)()()(θθθg f h -=,则0)0(>h 和0)2/(<πh .由f 和g 的连续性知h 也是连续函数.根据连续函数的基本性质,必存在0θ)2/0(0πθ<<使0)(0=θh ,即)()(00θθg f =,因为0)()(00=⋅θθg f ,所以0)()(00==θθg f .用数学解释了这个现象.。
数学建模模拟试题及答案一、填空题(每题5分,共20分) 1. 若,,x z z y ∝∝则y 与x 的函数关系是.2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 .3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型.二、分析判断题(每小题15分,满分30分)1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种.2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是),m l /m g (100/56 又过两个小时,含量降为),m l /m g (100/40试判断,当事故发生时,司机是否违反了酒精含量的规定(不超过80/100)m l /m g (.(提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ∆+内酒精浓度的改变量为t t kC t C t t C ∆−=−∆+)()()(其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分)1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.2. 三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖.各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表.试安排调运方案,使总费用最小?数学建模模拟试题(一)参考答案一、填空题(每题5分,共20分) 1. k kx y ,=是比例常数; 2. )()(2211t n p m t n p m +<+; 3. 增长率是常数还是人口的递减函数; 4. 类比.二、分析判断题(每小题15分,满分30分)1. 问题涉及到时间、地点和人员三大因素,故应该考虑到的因素至少有以下几个: (1)教师:是否连续上课,对时间的要求,对多媒体的要求和课程种类的限制等; (2)学生:是否连续上课,专业课课时与公共基础课是否冲突,选修人数等; (3)教室:教室的数量,教室的容纳量,是否具备必要的多媒体等条件; (每个因素3分)2. 设)(t C 为t 时刻血液中酒精的浓度,则浓度递减率的模型应为,/kC C −=其通解是,e)0()(ktC t C −=而)0(C 就是所求量.由题设可知,40)5(,56)3(==C C 故有56e )0(3=−k C 和 ,40e )0(5=−k C由此解得.94e 56)0(17.040/56e 32≈=⇒≈⇒=k k C k可见在事故发生时,司机血液中酒精的浓度已经超出了规定. 三、计算题(每题25分,满分50分) 1. 设21,x x 表示甲、乙两种产品的产量,则有 原材料限制条件: ,902321≤+x x,303221≤+x x ,805821≤+x x目标函数满足 ,680580max 21x x z += 合在一起便是所求线性规划模型:,680580max 21x x z +=⎪⎪⎩⎪⎪⎨⎧=≥≤+≤+≤+.2,1,0,8058,3032,9023212121j x x x x x x x j (1)使用图解法易得其最优生产方案只有一组(这是因为所有约束条件所在直线的斜率与目标函数直线的斜率均不相等),从而最优方案没有可选择余地.计算知:最优解为,)740,745(T*=X 目标值为753300max =z (万元).(2)利用图解法求解中只用到了后两个约束条件,故羊毛有剩余量,将解代入可检验而知羊毛有7259单位的剩余量. 2. 本问题是一个产销平衡的运输问题,可以利用表上作业法直接求解, 首先确定初始方案:其次对方案进行最优性检验:λ11 = 10-4+6-7=5 > 0, λ12 = 6-4+6-5=3 > 0, λ31 = 8-7+5-3=3 > 0,λ33 = 9-3+5-6=5 > 0,故上述方案已是最优方案,即总运费最低的调运方案为:21503310223021160231701,,,,B A B A B A B A B A ⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯ 总费用为2460150310630516071704=⨯+⨯+⨯+⨯+⨯(百元).。