上海兰生复旦数学三角形填空选择单元测试卷 (word版,含解析)
- 格式:doc
- 大小:524.00 KB
- 文档页数:13
上海民办兰生复旦中学数学分式填空选择综合测试卷(word 含答案)一、八年级数学分式填空题(难)1.下列结论:①不论a 为何值时21a a +都有意义;②1a =-时,分式211a a +-的值为0;③若211x x +-的值为负,则x 的取值范围是1x <;④若112x x x x ++÷+有意义,则x 的取值范围是x ≠﹣2且x ≠0.其中正确的是________ 【答案】①③ 【解析】 【分析】根据分式有意义的条件对各式进行逐一分析即可. 【详解】①正确.∵a 不论为何值不论a 2+2>0,∴不论a 为何值21aa +都有意义; ②错误.∵当a =﹣1时,a 2﹣1=1﹣1=0,此时分式无意义,∴此结论错误;③正确.∵若211x x +-的值为负,即x ﹣1<0,即x <1,∴此结论正确;④错误,根据分式成立的意义及除数不能为0的条件可知,若112x x x x++÷+有意义,则x 的取值范围是即20010x x x x⎧⎪+≠⎪≠⎨⎪+⎪≠⎩,x ≠﹣2,x ≠0且x ≠﹣1,故此结论错误.故答案为:①③. 【点睛】本题考查的是分式有意义的条件,解答此题要注意④中除数不能为0,否则会造成误解.2.已知a 1=1tt+,a 2=111a -,a 3=211a -,…,a n +1=11n a - (n 为正整数,且t≠0,1),则a 2018=______(用含有t 的式子表示). 【答案】1+t 【解析】分析:把a 1代入确定出a 2,把a 2代入确定出a 3,依此类推,得到一般性规律,即可确定出a 2018的值.详解:根据题意得:a 1=1t t+,a 2=1111tt t=+-+,a 3=411111111ta t t t t=-==--++,…,2018÷3=672…2,∴a 2018的值为1+t . 故答案为:1+t .点睛:本题考查了分式的混合运算,弄清题中的规律是解答本题的关键.3.对于x >0,规定()1xf x x =+,例如122112(2),12132312f f ⎛⎫==== ⎪+⎝⎭+,那么12019f ⎛⎫ ⎪⎝⎭1120182017f f ⎛⎫⎛⎫++⋯ ⎪ ⎪⎝⎭⎝⎭1(1)(2)(2019)2f f f f ⎛⎫++++⋯+ ⎪⎝⎭=_________ 【答案】201812【解析】 【分析】 根据f (x )求出f (1x ),进而得到f (x )+f (1x)=1,原式结合后,计算即可求出值. 【详解】解:∵x >0,规定()1xf x x =+, ∴111111x f x x x⎛⎫== ⎪+⎝⎭+,即1111()1,(1)1112x x f x f f x x x x +⎛⎫+=+=== ⎪+++⎝⎭,则原式=1111(2019)(2018)(2)(1)20182019201822f f f f ff f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫++++⋯+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦,故答案为:201812.【点睛】此题考查了分式的加减法,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.4.若以x 为未知数的方程()22111232a ax x x x +-=---+无解,则a =______. 【答案】1-或32-或2-. 【解析】 【分析】首先解方程求得x 的值,方程无解,即所截方程的解是方程的增根,应等于1或2,据此即可求解a 的值. 【详解】去分母得()()()2121x a x a -+-=+, 整理得()134a x a +=+,①当1a =-时,方程①无解,此时原分式方程无解; 当1a ≠-时,原方程有增根为1x =或2x =. 当增根为1x =时,3411a a +=+,解得32a =-; 当增根为2x =时,3421a a +=+,解得2a =-. 综上所述,1a =-或32a =-或2a =-. 【点睛】本题主要考查了方程增根产生的条件,如果方程有增根,则增根一定是能使方程的分母等于0的值.5.如果实数x 、y 满足方程组30233x y x y +=⎧⎨+=⎩,求代数式(xy x y ++2)÷1x y +.【答案】1 【解析】 解:原式=222()xy x y x y x y ++⋅++=xy +2x +2y ,方程组:30233x y x y +=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩,当x =3,y =﹣1时,原式=﹣3+6﹣2=1.故答案为1.点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.6.化简22(3)()x y x x y y y x -++-=_________________. 【答案】x yx y-+ 【解析】 【分析】先将分母展开,然后合并,再对分子、分母因式分解,最后约分即可. 【详解】解:22(3)()x y x x y y y x -++-=22223x x y xy y x y -+-+ =22222-++x y x xy y=()()()2x y x y x y +-+ =x yx y-+ 【点睛】本题考查了多项式乘法和运用公式法进行因式分解,其中运用公式法进行因式分解是解答本题的关键.7.若32a b =,则a ba-的值为____________ 【答案】12- 【解析】 【分析】 利用32a b =,在a ba-中,将b 用a 表示,约掉a 得到结果. 【详解】 ∵32a b =,∴3=2a b 代入a b a-得: 3122aa a -=- 故答案为:12- 【点睛】本题考查分式的运算,解题关键是运用已知字母间的关系,将分式中的字母简化,以至可约分求得.8.关于x 的方程12ax x +-=−1的解是正数,则a 的取值范围是________.【答案】a>-1且a≠-0.5 【解析】112+=--ax x 方程两侧同时乘以最简公分母(x -2),得 ()12ax x +=--, 整理,得 ()11a x +=,①(1) 当a =-1时,方程①为01x ⋅=,此方程无解. (2) 当a ≠-1时,解方程①,得11x a =+. ∵原分式方程有解, ∴11x a =+不为增根, ∴当11x a =+时,最简公分母x -2≠0, ∴1201a -≠+, ∴12a ≠-. ∵原分式方程的解为正数, ∴101x a =>+, ∴1a >-.综上所述,a 的取值范围应该为1a >-且12a ≠-,即a >-1且a ≠-0.5. 故本题应填写:a >-1且a ≠-0.5. 点睛:本题考查了分式方程的解的相关知识. 本题的难点在于准确且全面地理解分式方程的解为正数这一条件. 一方面,既然分式方程所转化成的整式方程只有一个解,那么这个解就不应该是增根;另一方面,当分式方程的解为正数时该整式方程的解也应该为正数. 另外,在去分母后,由于未知数x 的系数中含有未知参数a ,所以不能直接进行“系数化为1”的步骤,应该对参数a 的值进行讨论.9.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元. 【答案】28 【解析】设这种电子产品的标价为x 元, 由题意得:0.9x −21=21×20%, 解得:x=28,所以这种电子产品的标价为28元. 故答案为28.10.若a 2+5ab ﹣b 2=0,则的值为__.【答案】5 【解析】试题分析:先根据题意得出b 2﹣a 2=5ab ,再由分式的减法法则把原式进行化简﹣===5.故答案为:5.点睛:本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.二、八年级数学分式解答题压轴题(难)11.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵2()20a b a ab b -=-+≥,∴2a b ab +≥,当且仅当a b =时取等号.请利用上述结论解决以下问题:(1)当0x >时,1x x +的最小值为_______;当0x <时,1x x+的最大值为__________.(2)当0x >时,求2316x x y x++=的最小值.(3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2,-2;(2)11;(3)25 【解析】 【分析】(1)当x >0时,按照公式ab a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x>0,则也可以按照公式ab a=b 时取等号)来计算; (2)将2316x x y x++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可. 【详解】解:(1)当x >0时,12x x +≥= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝⎭∵12x x--≥= ∴12x x ⎛⎫---≤- ⎪⎝⎭∴当0x >时,1x x +的最小值为2;当0x <时,1x x+的最大值为-2; (2)由2316163x x y x x x++==++∵x >0,∴163311y x x =++≥= 当16x x=时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ∴x :9=4:S △AOD ∴:S △AOD =36x∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25. 【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.12.某快递公司有甲、乙、丙三个机器人分配快件,甲单独完成需要x 小时,乙单独完成需要y 小时,丙单独完成需要z 小时.(1)求甲单独完成的时间是乙丙合作完成时间的几倍?(2)若甲单独完成的时间是乙丙合作完成时间的a 倍,乙单独完成的时间是甲丙合作完成时间的b 倍,丙单独完成的时间是甲乙合作完成时间的c 倍,求111111a b c +++++的值.【答案】(1)甲单独完成的时间是乙丙合作完成时间的xy xzyz+倍;(2)1【解析】分析:(1)先求出乙丙合作完成时间,再用甲单独完成的时间除以乙丙合作完成时间即可求解;(2)根据“甲单独作完成的天数为乙丙合作完成天数的a 倍”,可得x =11ayz+,运用比例的基本性质、等式的性质及分式的基本性质可得11a +=yz xy yz xz ++;同理,根据“乙单独作完成的天数为甲、丙合作完成天数的b 倍”,可得11b +=xz xy yz xz ++;根据“丙单独作完成的天数为甲、乙合作完成天数的c 倍”,可得11c +=xy xy yz xz++,将它们分别代入所求代数式,即可得出结果. 详解:(1)x ÷[1÷(1y +1z)] =x ÷[1÷y zyz+] =x ÷yzy z+ =xy xzyz+. 答:甲单独完成的时间是乙丙合作完成时间的xy xzyz+倍; (2)由题意得x =11ayz +①,y =11bx z+②,z =11cx y +③.由①得a =x y +x z ,∴a +1=x y +x z +1,∴11a +=11x x y z++=yz xy yz xz ++;同理,由②得11b +=xz xy yz xz ++; 由③得11c +=xy xy yz xz++;∴111111a b c +++++=yz xy yz xz +++xz xy yz xz +++xy xy yz xz ++=xy yz xz xy yz xz ++++=1. 点睛:本题主要考查分式方程在工程问题中的应用及代数式求值.工程问题的基本关系式为:工作总量=工作效率×工作时间.注意两人合作的工作效率等于两人单独作的工作效率之和.本题难点在于将列出的方程变形,用含有x 、y 、z 的代数式分别表示11a +、11b +、11c +的值.13.某商场在一楼与二楼之间装有一部自动扶梯,以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶).如果二人都做匀速运动,且男孩每分钟走动的级数是女孩的两倍.又已知男孩走了27级到达顶部,女孩走了18级到达顶部(二人每步都只跨1级).(1)扶梯在外面的部分有多少级.(2)如果扶梯附近有一从二楼下到一楼的楼梯,台阶级数与扶梯级数相等,这两人各自到扶梯顶部后按原速度走下楼梯,到一楼后再乘坐扶梯(不考虑扶梯与楼梯间的距离).则男孩第一次追上女孩时,他走了多少台阶? 【答案】(1)楼梯有54级(2) 198级 【解析】 【试题分析】(1)设女孩速度为x 级/分,电梯速度为y 级/分,楼梯(扶梯)为s 级,则男孩速度为2x 级/分, 根据时间相等列方程,有:2727,21818.s x y s xy -⎧=⎪⎪⎨-⎪=⎪⎩ ①两式相除,得327418s s -=-,解方程得54s =即可. 因此楼梯有54级.(2)设男孩第一次追上女孩时,走过扶梯m 次,走过楼梯n 次,则这时女孩走过扶梯()1m -次,走过楼梯()1n -次.将54s = 代入方程组①,得2y x =,即男孩乘扶梯上楼的速度为4x 级/分,女孩乘扶梯上楼的速度为3x 级/分.于是有()()5415415454.423m n m n x x x x--+=+ 从而114231m n m n --+=+,即616n m +=. 无论男孩第一次追上女孩是在扶梯上还是在下楼时,,m n 中必有一个为正整数,且01m n ≤-≤,经试验知只有13,26m n ==符合要求.这时,男孩第一次追上女孩所走过的级数是:132********⨯+⨯=(级).【试题解析】(1)设女孩速度为x 级/分,电梯速度为y 级/分,楼梯(扶梯)为s 级,则男孩速度为2x 级/分,依题意有2727,21818.s x y s xy -⎧=⎪⎪⎨-⎪=⎪⎩ ① 把方程组①中的两式相除,得327418s s -=-,解得54s =. 因此楼梯有54级.(2)设男孩第一次追上女孩时,走过扶梯m 次,走过楼梯n 次,则这时女孩走过扶梯()1m -次,走过楼梯()1n -次.将54s = 代入方程组①,得2y x =,即男孩乘扶梯上楼的速度为4x 级/分,女孩乘扶梯上楼的速度为3x 级/分.于是有()()5415415454.423m n m n x x x x--+=+ 从而114231m n m n --+=+,即616n m +=. 无论男孩第一次追上女孩是在扶梯上还是在下楼时,,m n 中必有一个为正整数,且01m n ≤-≤,经试验知只有13,26m n ==符合要求.这时,男孩第一次追上女孩所走过的级数是:132********⨯+⨯=(级).14.为了践行“绿色低碳出行,减少雾霾”的使命,小红上班的交通方式由驾车改为骑自行车,小红家距单位的路程是20千米,在相同的路线上,小红驾车的速度是骑自行车速度的4倍,小红每天骑自行车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小红骑自行车的速度.【答案】小红骑自行车的速度是每小时20千米. 【解析】 【分析】设骑自行车的速度为x 千米/时,则驾车的速度为4x 千米/时.依据“小王每天骑自行车上班比驾车上班要早出发45分钟”列出方程并解答. 【详解】解:设小红骑自行车的速度是每小时x 千米,则驾车的速度是每小时4x 千米.根据题意得:202045460x x =+解得x=20经检验x=20是分式方程的解,并符合实际意义答:小红骑自行车的速度是每小时20千米.【点睛】本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.15.某商家用1200元购进了一批T恤,上市后很快售完,商家又用2800元购进了第二批这种T恤,所购数量是第一批购进量的2倍,但单价贵了5元.(1)该商家购进的第一批T恤是多少件?(2)若两批T恤按相同的标价销售,最后剩下20件按八折优惠卖出,如果希望两批T恤全部售完的利润率不低于16%(不考虑其它因素),那么每件T恤的标价至少是多少元?【答案】(1)商家购进的第一批恤是40件;(2)每件恤的标价至少40元.【解析】【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了5元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【详解】(1)解:设购进的第一批恤是x件.由题意,得1200280052x x=-解得x=40.经检验,x=40是所列方程的解.所以商家购进的第一批恤是40件.(2)设每件的标价是y元由题意,(40+40×2-20)y+0.8×20y≥(1200+2800)(1+16%)解得y≥40.即每件恤的标价至少40元.【点睛】本题考查的知识点是分式方程的应用和一元一次不等式的应用,解题关键是弄清题意并找出题中的数量关系并列出方程.。
上海复旦大学第二附属中学数学轴对称填空选择单元测试卷(含答案解析)一、八年级数学全等三角形填空题(难)1.将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DM、DN 分别交AB、AC于点E、F.则下列四个结论:①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四边形AEDF=14BC2.其中正确结论是_____(填序号).【答案】①②【解析】分析:根据等腰直角三角形的性质可得AD=CD=BD,∠CAD=∠B=45°,故①正确;根据同角的余角相等求出∠CDF=∠ADE,然后利用“ASA”证明△ADE≌△CDF,判断出②,根据全等三角形的对应边相等,可得DE=DF=AF=AE,利用三角形的任意两边之和大于第三边,可得BE+CF>EF,判断出③,根据全等三角形的面积相等,可得S△ADF=S△BDE,从而求出四边形AEDF的面积,判断出④.详解:∵∠B=45°,AB=AC∴点D为BC的中点,∴AD=CD=BD故①正确;由AD⊥BC,∠BAD=45°可得∠EAD=∠C∵∠MDN是直角∴∠ADF+∠ADE=∠CDF+∠ADF=∠ADC=90°∴∠ADE=∠CDF∴△ADE≌△CDF(ASA)故②正确;∴DE=DF,AE=CF,∴AF=BE∴BE+AE=AF+AE∴AE+AF>EF故③不正确;由△ADE≌△CDF可得S△ADF=S△BDE∴S 四边形AEDF =S △ACD =12×AD×CD=12×12BC×12BC=18BC 2, 故④不正确.故答案为①②. 点睛:此题主要查了等腰三角形的性质和全等三角形的判定与性质,以及三角形的三边关系,关键是灵活利用等腰直角三角形的边角关系和三线合一的性质.2.如图,△ABC 的三边AB 、BC 、CA 的长分别为30、40、15,点P 是三条角平分线的交点,将△ABC 分成三个三角形,则APB S ∆︰BPC S ∆︰CPA S ∆等于____.【答案】6:8:3【解析】【分析】由角平分线性质可知,点P 到三角形三边的距离相等,即三个三角形的AB 、BC 、CA 边上的高相等,利用面积公式即可求解.【详解】解:过点P 作PD ⊥BC 于D ,PE ⊥CA 于E ,PF ⊥AB 于F∵P 是三条角平分线的交点∴PD=PE=PF∵AB=30,BC=40,CA=15∴APB S ∆︰BPC S ∆︰CPA S ∆=30∶40∶15=6∶8∶3故答案为6∶8∶3.【点睛】本题主要考查了角平分线的性质和三角形面积的求法. 角平分线上的点到两边的距离相等. 难度不大,作辅助线是关键.3.如图,△ABC 是等边三角形,AE =CD ,AD 、BE 相交于点P ,BQ ⊥DA 于Q ,PQ =3,EP =1,则DA 的长是________.【答案】7【解析】试题解析:∵△ABC 为等边三角形,∴AB=CA ,∠BAE=∠ACD=60°;又∵AE=CD ,在△ABE 和△CAD 中,AB CA BAE ACD AE CD ⎧⎪∠∠⎨⎪⎩=== ∴△ABE ≌△CAD ;∴BE=AD ,∠CAD=∠ABE ;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ ⊥AD ,∴∠AQB=90°,则∠PBQ=90°-60°=30°;∵PQ=3,∴在Rt △BPQ 中,BP=2PQ=6;又∵PE=1,∴AD=BE=BP+PE=7.故答案为7.4.如图,△ABC 中,AC =BC =5,∠ACB =80°,O 为△ABC 中一点,∠OAB =10°,∠OBA =30°,则线段AO 的长是_____.【答案】5【解析】【分析】作∠CAO 的平分线AD ,交BO 的延长线于点D ,连接CD ,由等边对等角得到∠CAB =∠CBA =50°,再推出∠DAB =∠DBA ,得到AD =BD ,然后可证△ACD ≌△BCD ,最后证△ACD ≌△AOD ,即可得AO =AC =5.【详解】解:如图,作∠CAO 的平分线AD ,交BO 的延长线于点D ,连接CD ,∵AC =BC =5,∴∠CAB =∠CBA =50°,∵∠OAB =10°,∴∠CAD =∠OAD =1(CAB OAB)2∠-∠=()150102︒︒-=20°, ∵∠DAB =∠OAD+∠OAB =20°+10°=30°,∴∠DAB =30°=∠DBA ,∴AD =BD ,∠ADB =120°,在△ACD 与△BCD 中AC BC AD BD CD CD =⎧⎪=⎨⎪=⎩∴△ACD ≌△BCD (SSS )∴∠CDA =∠CDB ,∴∠CDA =∠CDB =()1360ADB 2︒-∠=()13601202︒︒-=120°, 在△ACD 与△AOD 中CDA ADO 120AD ADCAD OAD ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩∴△ACD ≌△AOD (ASA )∴AO =AC=5,故答案为5.【点睛】本题考查全等三角形的判定和性质,作辅助线构造全等三角形是解决本题的关键.5.已知在△ABC 中,两边AB 、AC 的中垂线,分别交BC 于E 、G .若BC =12,EG =2,则△AEG 的周长是________.【答案】16或12.【解析】【分析】根据线段垂直平分线性质得出AE =BE ,CG =AG ,分两种情况讨论:①DE 和FG 的交点在△ABC 内,②DE 和FG 的交点在△ABC 外.【详解】∵DE,FG分别是△ABC的AB,AC边的垂直平分线,∴AE=BE,CG=AG.分两种情况讨论:①当DE和FG的交点在△ABC内时,如图1.∵BC=12,GE=2,∴AE+AG=BE+CG=12+2=14,△AGE的周长是AG+AE+EG=14+2=16.②当DE和FG的交点在△ABC外时,如图2,△AGE的周长是AG+AE+EG= BE+CG+EG=BC=12.故答案为:16或12.【点睛】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.6.AD,BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,BC=a,CD=b,则AD的长为______.【答案】AD的长为a-b或b-a或a+b或12a或b.【解析】【分析】分别讨论△ABC为锐角三角形时、∠A、∠B、∠C分别为钝角时和∠A为直角时五种情况,利用AAS证明△BOD≌△ACD,可得BD=AD,根据线段的和差关系即可得答案.【详解】①如图,当△ABC为锐角三角形时,∵AD、BE为△ABC的两条高,∴∠CAD+∠AOE=90°,∠CBE+∠BOD=90°,∵∠BOD=∠AOE,∴∠CAD=∠OBD,又∵∠ODB=∠ADC=90°,OB=AC,∴△BOD≌△ACD,∴AD=BD,∵BC=a,CD=b,∴AD=BD=BC-CD=a-b.②如图,当∠B为钝角时,∵∠C+∠CAD=90°,∠O+∠CAD=90°,∴∠C=∠O,又∵∠ADC=∠ODB=90°,OB=AC,∴△BOD≌△ACD,∴BD=AD,∴AD=CD-BC=b-a.③如图,当∠A为钝角时,同理可证:△BOD≌△ACD,∴AD=BC-CD=a-b.④如图,当∠C为钝角时,同理可证:△BOD≌△ACD,∴AD=BD=BC+CD=a+b.⑤当∠B为直角时,点O、D、B重合,OB=0,不符合题意,当∠C为直角时,点O、C、D、E重合,CD=0,不符合题意,如图,当∠A为直角时,点A、E、O重合,∵OB=AC,∠CAB=90°,∴△ABC是等腰直角三角形,∵AD⊥BC,∴AD是Rt△ABC斜边中线,∴AD=AD=12BC=12a=b.综上所述:AD的长为a-b或b-a或a+b或12a或b.故答案为:a-b或b-a或a+b或12a或b【点睛】本题主要考查全等三角形的判定与性质,全等三角形的判定方法有:SSS、AAS、ASA、SAS、HL等,注意:SAS时,角必须是两边的夹角,SSA和AAA不能判定两个三角形全等.灵活运用分类讨论的思想是解题关键.7.如图,三角形△ABO中,∠OAB=∠AOB=15°,点B在x轴的正半轴,坐标为B(6,0).OC平分∠AOB,点M在OC的延长线上,点N为边OA上的点,则MA+MN的最小值是______.【答案】3【解析】【分析】在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.易证△N’OM≌△NOM,可得MN’=MN,则MA+MN的最小值即为MA+MN’的最小值,由于A点固定,故当N’点与D点重合时,MA+MN’的值最小,即MA+MN的值最小.【详解】解:在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.∵ON’=ON,∠N’OM=∠NOM,OM=OM,∴△N’OM≌△NOM,∴MN’=MN,∴MA+MN=MA+MN’,∵A点固定,∴MA+MN’的最小值为当N’与D点重合时的MA+MN’值,∴MA+MN’的最小值为AD,∵∠OAB=∠AOB=15°,OB=6,∴∠ABD=30°,AB=6,∴AD=0.5×6=3,∴MA+MN的最小值为3,故答案为3.【点睛】理解A点是固定点,而M和N均为动点,然后运用三点共线及点到直线的最短距离概念进行解答是本题的关键.8.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC; ②∠BCE+∠BCD=180°;③AF2=EC2﹣EF2; ④BA+BC=2BF.其中正确的是_____.【答案】①②③④.【解析】【分析】根据已知条件易证△ABD ≌△EBC ,可判定①正确;根据等腰三角形的性质、对顶角相等、结合全等三角形的性质及平角的定义即可判定②正确;证明AD=AE=EC ,再利用勾股定理即可判定③正确;过E 作EG ⊥BC 于G 点,证明Rt △BEG ≌Rt △BEF 及Rt △CEG ≌Rt △AFE ,根据全等三角形的性质可得AF=CG ,所以BA+BC=BF+FA+BG ﹣CG=BF+BG=2BF ,即可判定④正确.【详解】①∵BD 为△ABC 的角平分线,∴∠ABD=∠CBD ,在△ABD 和△EBC 中,BD BC ABD CBD BE BA =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△EBC (SAS ),∴①正确;②∵BD 为△ABC 的角平分线,BD=BC ,BE=BA ,∴∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA , ∴∠DCE=∠DAE ,∴△ACE 为等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,∵EF ⊥AB ,∴AF 2=EC 2﹣EF 2;∴③正确;④如图,过E 作EG ⊥BC 于G 点,∵E 是BD 上的点,∴EF=EG ,在Rt △BEG 和Rt △BEF 中,BE BE EF EG =⎧⎨=⎩, ∴Rt △BEG ≌Rt △BEF (HL ),∴BG=BF ,在Rt △CEG 和Rt △AFE 中,EF FG AE CE =⎧⎨=⎩, ∴Rt △CEG ≌Rt △AFE (HL ),∴AF=CG ,∴BA+BC=BF+FA+BG ﹣CG=BF+BG=2BF ,∴④正确.故答案为:①②③④.【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.9.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,P 、Q 是边AC 、BC 上的两个动点, PD ⊥AB 于点D , QE ⊥AB 于点E .设点P 、Q 运动的时间是t 秒(t >0).若点P 从C 点出发沿CA 以每秒3个单位的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回到点C 停止运动;点Q 从点B 出发沿BC 以每秒1个单位的速度向点C 匀速运动,到达点C 后停止运动 ,当t= 时,△APD 和△QBE 全等.【答案】2或4.【解析】试题分析:①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,当△ADP≌△QBE时,则AP=BQ,即8﹣3t=t,解得:t=2;②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,当△ADP≌△QBE时,则AP=BQ,即3t﹣8=t,解得:t=4;综上所述:当t=2s或4s时,△ADP≌△QBE.考点:1.全等三角形的判定;2.动点型;3.分类讨论.10.如图,AB=BC且AB⊥BC,点P为线段BC上一点,PA⊥PD且PA=PD,若∠A=22°,则∠D的度数为_________.【答案】23°【解析】解:过D作DE⊥PC于E.∵PA⊥PD,∴∠APB+∠DPE=90°.∵AB⊥BC,∴∠A+∠APB=90°,∴∠A=∠DPE=22°.在△ABP和△PED中,∵∠A =∠DPE,∠B=∠E=90°,PA=PD,∴△ABP≌△PED,∴AB=PE,BP=DE.∵AB=BC,∴BC=PE,∴BP=CE.∵BP=DE,∴CE=DE,∴∠DCE=45°,∴∠PDC=∠DCE-∠DPC=45°-22°=2 3°.故答案为:23°.二、八年级数学全等三角形选择题(难)11.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC 分别交于点G,F,H为CG的中点,连结DE、EH、DH、FH.下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若23AEAB=,则313DHCEDHSS=.其中结论正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】分析:①根据题意可知∠ACD=45°,则GF=FC,则EG=EF-GF=CD-FC=DF;②由SAS证明△EHF≌△DHC即可;③根据△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=180°;④若AEAB=23,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,26x,CD=6x,则S△DHC=12×HM×CD=3x2,S△EDH=12×DH2=13x2.详解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF−GF,DF=CD−FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=12∠GFC=45°=∠HCD,在△EHF和△DHC中,EF=CD;∠EFH=∠DCH;FH=CH,∴△EHF≌△DHC(SAS),故②正确;③∵△EHF≌△DHC(已证),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF−∠HDC=∠AEF+∠ADF=180°,故③正确;④∵AEAB=23,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,EG=DF;∠EGH=∠HFD;GH=FH,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,如图,过H点作HM⊥CD于M,设HM=x,则DM=5x,DH=26x,CD=6x,则S△DHC=12×HM×CD=3x2,S△EDH=12×DH2=13x2,∴3S△EDH=13S△DHC,故④正确;故选D.点睛:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解题关键在于根据题意熟练的运用相关性质.12.如图,已知等腰Rt△ABC和等腰Rt△ADE,AB=AC=4,∠BAC=∠EAD=90°,D是射线BC 上任意一点,连接EC.下列结论:①△AEC△ADB;②EC⊥BC ;③以A、C、D、E为顶点的四边形面积为8;④当BD=时,四边形AECB的周长为10524++;⑤当BD=32B时,ED=5AB;其中正确的有()A.5个 B.4个 C.3 个 D.2个【答案】B【解析】解:∵∠BAC=∠EAD=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△AEC≌△ADB,故①正确;∵△AEC≌△ADB,∴∠ACE=∠ABD=45°,∵∠ACB=45°,∴J IAO ECB=90°,∴EC⊥BC,故②正确;∵四边形ADCE的面积=△ADC的面积+△ACE的面积=△ADC的面积+△ABD的面积=△ABC 的面积=4×4÷2=8.故③正确;∵BD =2,∴EC =2,DC =BC -BD =422-=32,∴DE 2=DC 2+EC 2,=()()22322+=20,∴DE =25,∴AD =AE =252=10.∴AECB 的周长=AB +DC +CE +AE =442210+++=45210++,故④正确;当BD =32BC 时,CD =12BC ,∴DE =221322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=10BC =5AB .故⑤错误. 故选B .点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.13.在△ABC 中,∠C=90°,D 为AB 的中点,ED ⊥AB,∠DAE=∠CAE ,则 ∠CAB =( )A .30°B .60°C .80 °D .50°【答案】B【解析】 试题解析:∵D 为AB 的中点,ED ⊥AB ,∴DE 为线段AB 的垂直平分线,∴AE =BE ,∴∠DAE =∠DBE ,∴∠DAE =∠DBE =∠CAE ,在Rt △ABC 中,∵∠CAB +∠DBE =90°,∴∠CAE +∠DAE +∠DBE =90°,∴3∠DBE =90°,∴∠DBE =30°,∴∠CAB =90°-∠DBE =90°-30°=60°.故选B .14.已知OD 平分∠MON,点A 、B 、C 分别在OM 、OD 、ON 上(点A 、B 、C 都不与点O 重合),且AB=BC, 则∠OAB 与∠BCO 的数量关系为( )A .∠OAB+∠BCO=180°B .∠OAB=∠BCOC .∠OAB+∠BCO=180°或∠OAB=∠BCOD .无法确定 【答案】C【解析】根据题意画图,可知当C 处在C 1的位置时,两三角形全等,可知∠OAB=∠BCO ;当点C 处在C2的位置时,根据等腰三角形的性质和三角形的外角的性质,∠OAB+∠BCO=180°.故选C.15.如图,BD是∠ABC的角平分线,AD⊥AB,AD=3,BC=5,则△BCD的面积为()A.7.5 B.8 C.10D.15【答案】A【解析】作DE⊥BC于E,根据角平分线的性质,由BD是∠ABC的角平分线,AD⊥AB,DE⊥BC,求出DE=DA=3,根据三角形面积公式计算S△BCD=12×BC×DE=7.5,故选:A.16.如图,∠C=∠D=90°,若添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等,则以下给出的条件适合的是( )A.AC=AD B.AB=AB C.∠ABC=∠ABD D.∠BAC=∠BAD 【答案】A【解析】根据题意可知∠C=∠D=90°,AB=AB,然后由AC=AD,可根据HL判定两直角三角形全等,故符合条件;而B答案只知道一边一角,不能够判定两三角形全等,故不正确;C答案符合AAS,证明两三角形全等,故不正确;D答案是符合AAS,能证明两三角形全等,故不正确.故选A.17.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】可延长DE至F,使EF=BC,利用SAS可证明△ABC≌△AEF,连AC,AD,AF,再利用SSS证明△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求解即可.【详解】延长DE至F,使EF=BC,连AC,AD,AF,在△ABC与△AEF中,=90AB AEABC AEFBC EF⎧⎪∠∠⎨⎪⎩===,∴△ABC≌△AEF(SAS),∴AC=AF,∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,∴CD=EF+DE=DF ,在△ACD 与△AFD 中,AC AF CD DF AD AD ⎧⎪⎨⎪⎩=== , ∴△ACD ≌△AFD (SSS ),∴五边形ABCDE 的面积是:S=2S △ADF =2×12•DF•AE=2×12×2×2=4. 故选C.【点睛】本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE 的面积转化为两个△ADF 的面积是解决问题的关键.18.如图,△ABC 的两条外角平分线AP 、CP 相交于点P ,PH ⊥AC 于H ;如果∠ABC=60º,则下列结论:①∠ABP=30º;②∠APC=60º;③PB=2PH ;④∠APH=∠BPC ;其中正确的结论个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】 作PM ⊥BC 于M ,PN ⊥BA 于N .根据角平分线的性质定理可证得PN=PM ,再根据角平分线的判定定理可得PB 平分∠ABC ,即可判定①;证明△PAN ≌△PAH ,△PCM ≌△PCH ,根据全等三角形的性质可得∠APN=∠APH ,∠CPM=∠CPH ,由此即可判定②;在Rt △PBN 中,∠PBN=30°,根据30°角直角三角形的性质即可判定③;由∠BPN=∠CPA=60°即可判定④.【详解】如图,作PM ⊥BC 于M ,PN ⊥BA 于N .∵∠PAH=∠PAN ,PN ⊥AD ,PH ⊥AC ,∴PN=PH ,同理PM=PH ,∴PN=PM ,∴PB 平分∠ABC ,∴∠ABP=12∠ABC=30°,故①正确, ∵在Rt △PAH 和Rt △PAN 中, PA PA PN PH =⎧⎨=⎩, ∴△PAN ≌△PAH ,同理可证,△PCM ≌△PCH ,∴∠APN=∠APH ,∠CPM=∠CPH ,∵∠MPN=180°-∠ABC=120°,∴∠APC=12∠MPN=60°,故②正确, 在Rt △PBN 中,∵∠PBN=30°, ∴PB=2PN=2PH ,故③正确,∵∠BPN=∠CPA=60°,∴∠CPB=∠APN=∠APH ,故④正确.综上,正确的结论为①②③④.故选D.【点睛】本题考查了角平分线的性质定理及判定定理、全等三角形的判定与性质及30°角直角三角形的性质,熟练运用相关知识是解决问题的关键.19.如图,在△ABC 和△DCB 中,AB=DC ,AC 与BD 相交于点E ,若不再添加任何字母与辅助线,要使△ABC ≌△DCB ,则还需增加的一个条件是( )A .AC=BDB .AC=BC C .BE=CED .AE=DE【答案】A【解析】 由AB=DC ,BC 是公共边,即可得要证△ABC≌△DCB,可利用SSS ,即再增加AC=DB 即可. 故选A.点睛:此题主要考查了全等三角形的判定,解题时利用全等三角形的判定:SSS ,SAS ,ASA ,AAS ,HL ,确定条件即可,此题为开放题,只要答案符合判定定理即可.20.如图,把ΔABC 剪成三部分,边AB ,BC ,AC 放在同一直线上,点O 都落在直线MN 上,直线MN ∥AB .在ΔABC 中,若∠AOB =125°,则∠ACB 的度数为( )A .70°B .65°C .60°D .85°【答案】A【解析】【分析】利用平行线间的距离处处相等,可知点O 到BC 、AC 、AB 的距离相等,得出O 为三条角平分线的交点,根据三角形内角和定理和角平分线的定义即可得出结论.【详解】如图1,过点O 作OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F .∵MN ∥AB ,∴OD =OE =OF (平行线间的距离处处相等).如图2:过点O 作OD '⊥BC 于D ',作OE '⊥AC 于E ',作OF '⊥AB 于F '.由题意可知:OD =OD ',OE =OE ',OF =OF ',∴OD '=OE '=OF ',∴图2中的点O 是三角形三个内角的平分线的交点.∵∠AOB =125°,∴∠OAB +∠OBA =180°-125°=55°,∴∠CAB +∠CBA =2×55°=110°,∴∠ACB =180°-110°=70°.故选A .【点睛】本题考查了三角形的内心,平行线间的距离处处相等,角平分线定义,解答本题的关键是判断出OD =OE =OF .21.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',连接AO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60°得到:②点O 与O '的距离为4;③150AOB ∠=︒;④S 四边形643AOBO ;⑤9634AOC AOB S S +=△△ )A .①②③④B .①②③⑤C .①②④⑤D .①②③④⑤【答案】D【解析】【分析】 证明△BO ′A ≌△BOC ,又∠OBO ′=60°,所以△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;由△OBO ′是等边三角形,可知结论②正确;在△AOO ′中,三边长为3,4,5,这是一组勾股数,故△AOO ′是直角三角形;进而求得∠AOB =150°,故结论③正确;643AOO OBO AOBO S S S '∆'∆'=+=+四边形④正确;如图②,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.利用旋转变换构造等边三角形与直角三角形,将S △AOC +S △AOB 转化为S △COO ″+S △AOO ″,计算可得结论⑤正确.【详解】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB =O ′B ,AB =BC ,∴△BO ′A ≌△BOC ,又∵∠OBO ′=60°,∴△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;如图①,连接OO ′,∵OB =O ′B ,且∠OBO ′=60°,∴△OBO ′是等边三角形,∴OO ′=OB =4.故结论②正确;∵△BO ′A ≌△BOC ,∴O ′A =5.在△AOO ′中,三边长为3,4,5,这是一组勾股数,∴△AOO ′是直角三角形,∠AOO ′=90°,∴∠AOB =∠AOO ′+∠BOO ′=90°+60°=150°,故结论③正确;2313446432AOO OBO AOBO S S S '∆'∆'=+=⨯⨯=+四边形 故结论④正确;如图②所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点. 易知△AOO ″是边长为3的等边三角形,△COO ″是边长为3、4、5的直角三角形,则23193436324AOC AOB COO AOO AOCO S S S S S ∆∆∆''∆''''+==+=⨯⨯+⨯=+四边形, 故结论⑤正确.综上所述,正确的结论为:①②③④⑤.故选:D .【点睛】本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB 向不同方向旋转,体现了结论①﹣结论④解题思路的拓展应用.22.如图,Rt △ACB 中,∠ACB=90°,△ABC 的角平分线AD 、BE 相交于点P ,过P 作PF ⊥AD 交BC 的延长线于点F ,交AC 于点H ,则下列结论:①∠APB=135°;②BF=BA ;③PH=PD ;④连接CP ,CP 平分∠ACB ,其中正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】D【解析】 分析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.详解:在△ABC 中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE 分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP,∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD,∴PH=PD,故③正确.∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确.故选D.点睛:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.23.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,∠EAF=12∠BAD,若DF=1,BE=5,则线段EF的长为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】在BE上截取BG=DF,先证△ADF≌△ABG,再证△AEG≌△AEF即可解答.【详解】在BE上截取BG=DF,∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,∴∠B=∠ADF,在△ADF与△ABG中AB ADB ADFBG DF=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△ABG(SAS),∴AG=AF,∠FAD=∠GAB,∵∠EAF=12∠BAD,∴∠FAE=∠GAE,在△AEG与△AEF中AG AFFAE GAEAE AE=⎧⎪∠=∠⎨⎪=⎩,∴△AEG≌△AEF(SAS)∴EF=EG=BE﹣BG=BE﹣DF=4.故选:B.【点睛】考查了全等三角形的判定与性质,证明三角形全等是解决问题的关键.24.如图(1),已知AB AC=,D为BAC∠的角平分线上一点,连接BD,CD;如图(2),已知AB AC=,D,E为BAC∠的角平分线上两点,连接BD,CD,BE,CE;如图(3),已知AB AC=,D,E,F为BAC∠的角平分线上三点,连接BD,CD,BE,CE,BF,CF;……,依此规律,第6个图形中有全等三角形的对数是()A .21B .11C .6D .42【答案】A【解析】【分析】 根据条件可得图1中△ABD ≌△ACD 有1对三角形全等;图2中可证出△ABD ≌△ACD ,△BDE ≌△CDE ,△ABE ≌△ACE 有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第6个图形中全等三角形的对数.【详解】解:∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD .在△ABD 与△ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD .∴图1中有1对三角形全等;同理图2中,△ABE ≌△ACE ,∴BE=EC ,∵△ABD ≌△ACD .∴BD=CD ,又DE=DE ,∴△BDE ≌△CDE ,∴图2中有3对三角形全等,3=1+2;同理:图3中有6对三角形全等,6=1+2+3;∴第6个图形中有全等三角形的对数是1+2+3+4+5+6=21.故选:A .【点睛】此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.25.如图,AOB ∆的外角,CAB DBA ∠∠的平分线,AP BP 相交于点P ,PE OC ⊥于E ,PF OD ⊥于F ,下列结论:(1)PE PF =;(2)点P 在COD ∠的平分线上;(3)90APB O ∠=︒-∠,其中正确的有 ( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】 过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE PG PF ==,可判断(1)(2)正确;由12APB EPF ∠=∠,180EPF O ∠+∠=︒,得到1902APB O ∠=︒-∠,可判断(3)错误;即可得到答案.【详解】解:过点P 作PG ⊥AB ,如图:∵AP 平分∠CAB ,BP 平分∠DBA ,PE OC ⊥,PF OD ⊥,PG ⊥AB ,∴PE PG PF ==;故(1)正确;∴点P 在COD ∠的平分线上;故(2)正确;∵12APB APG BPG EPF ∠=∠+∠=∠, 又180EPF O ∠+∠=︒, ∴11(180)9022APB O O ∠=⨯︒-∠=︒-∠;故(3)错误; ∴正确的选项有2个;故选:C .【点睛】 本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.26.如图,△ABC 是等边三角形,AQ =PQ ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,PR =PS .下列结论:①点P 在∠A 的角平分线上;②AS =AR ;③QP ∥AR ;④△BRP ≌△QSP .其中,正确的有( )A.1个 B.2个 C.3个 D.4个【答案】D【解析】∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.点睛:本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.27.如图,AO OM,OA=8,点B为射线OM上的一个动点,分别以OB、AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,PB的长度是 ( )A.3.6 B.4 C.4.8 D.PB的长度随B点的运动而变化【答案】B【解析】【分析】作辅助线,首先证明△ABO≌△BEN,得到BO=ME;进而证明△BPF≌△MPE,即可解决问题.【详解】如图,过点E作EN⊥BM,垂足为点N,∵∠AOB=∠ABE=∠BNE=90°,∴∠ABO+∠BAO=∠ABO+∠NBE=90°,∴∠BAO=∠NBE ,∵△ABE 、△BFO 均为等腰直角三角形,∴AB=BE ,BF=BO ;在△ABO 与△BEN 中,BAO NBE AOB BNE AB BE ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABO ≌△BEN (AAS ),∴BO=NE ,BN=AO ;∵BO=BF ,∴BF=NE ,在△BPF 与△NPE 中,FBP ENP FPB EPN BF NE ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△BPF ≌△NPE (AAS ),∴BP=NP=12BN ;而BN=AO , ∴BP=12AO=12×8=4, 故选B .【点睛】本题考查了三角形内角和定理,全等三角形的性质和判定的应用,解题的关键是作辅助线,构造全等三角形,灵活运用有关定理来分析或解答.28.如图,在△ABC 中,D 、E 分别是AC 、AB 上的点,BD 与CE 相交于点O ,给出四个条件:①OB=OC ;②∠EBO=∠DCO ;③∠BEO=∠CDO ;④BE=CD .上述四个条件中,选择两个可以判定△ABC 是等腰三角形的方法有( )A .2种B .3种C .4种D .6种【答案】C【解析】【分析】①②:求出OBC=∠OCB,推出∠ACB=∠ABC即可的等腰三角形;①③:证△EBO≌△DCO,得出∠EBO=∠DCO,求出∠ACB=∠ABC即可;②④:证△EBO≌△DCO,推出OB=OC,求出∠ABC=∠ACB即可;③④:证△EBO≌△DCO,推出∠EBO=∠DCO,OB=OC,求出∠OBC=∠OCB,推出∠ACB=∠ABC即可.【详解】解:有①②,①③,②④,③④,共4种,①②,理由是:∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形;①③,理由是:∵在△EBO和△DCO中BEO CDOEOB DOC OB OC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EBO≌△DCO,∴∠EBO=∠DCO,∵∠OBC=∠OCB(已证),∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,即AB=AC,∴△ABC是等腰三角形;②④,理由是:∵在△EBO和△DCO中BEO CDOEOB DOC BE CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EBO≌△DCO,∴OB=OC,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,即AB=AC,∴△ABC是等腰三角形;③④,理由是:∵在△EBO和△DCO中BEO CDOEOB DOCBE CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EBO≌△DCO,∴∠EBO=∠DCO,OB=OC,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,即AB=AC,∴△ABC是等腰三角形;故选C.29.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是( )A.②③B.③④C.②③④D.①②③④【答案】C【解析】【分析】分别在以上四种情况下以P为圆心,PQ的长度为半径画弧,观察弧与直线AM的交点即为Q点,作出PAQ∆后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,所以PAQ ∆不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,但是此时两个三角形全等,所以形状相同,所以PAQ ∆唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以④正确.综上:②③④正确.故选C .【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q 是关键.30.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.【详解】∵∠BCA=∠DCE=60°,∴∠BCA+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,又∵AC=BC,CE=CD,∴△BCD≌△ACE,∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,∴∠BAE=120°,∴∠EAD=60°,②正确,∵∠BCD=90°,∠BCA=60°,∴∠ACD=∠ADC=30°,∴AC=AD,∵CE=DE,∴CE2+AD2=AC2+DE2,④正确,当D点在BA延长线上时,∠BDE-∠BDC=60°,∵∠AEC=∠BDC,∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,∴∠BDE-∠BDC=∠BDC+∠AED∴∠BDE-∠AED=2∠BDC,如图,当点D在AB上时,∵△BCD≌△∠ACE,∴∠CAE=∠CBD=60°,∴∠DAE=∠BAC+∠CAE=120°,∴∠BDE-∠AED=∠DAE=120°,③错误故正确的结论有①②④,故选C.【点睛】此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握。
一、选择题1.随着人们物质生活的提高,玩手机成为一种生活中不可缺少的东西,手机很方便携带,但唯一的缺点就是没有固定的支点,为了解决这一问题,某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的哪一个性质( )A .三角形两边之和大于第三边B .三角形具有稳定性C .三角形的内角和是180D .直角三角形两个锐角互余2.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .63.若一个多边形的每个内角都等于160°,则这个多边形的边数是( )A .18B .19C .20D .214.用下列长度的三根木棒首尾相接,能做成三角形框架的是( )A .2,2,4B .3,4,5C .1,2,3D .2,3,6 5.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒6.若一个三角形的三个内角的度数之比为11:13:24,那么这个三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 7.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( )A .15B .20C .30D .408.如果一个三角形的两边长分别为4和7,则第三边的长可能是( )A .3B .4C .11D .129.正十边形每个外角等于( )A .36°B .72°C .108°D .150° 10.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( ) A .a b = B .120a b =+C .180b a =+︒D .360b a =+︒ 11.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .4012.如图,在ABC 中,48BAC ∠=︒,点 I 是ABC ∠、ACB ∠的平分线的交点.点D 是ABC ∠、 ACB ∠的两条外角平分线的交点,点E 是内角ABC ∠、外角ACG ∠的平分线的交点,则下列结论 不正确...的是( )A .180BDC BIC ∠+∠=︒B .85ICE ∠=︒C .24E ∠=︒D .90DBE ∠=︒二、填空题13.如图,BF 平分∠ABD ,CE 平分∠ACD ,BF 与CE 交于G ,若130,90BDC BGC ∠=︒∠=︒,则∠A 的度数为_________.14.如图,BD 是ABC 的中线,点E 、F 分别为BD 、CE 的中点,若AEF 的面积为23cm ,则ABC 的面积是______2cm .15.如图,则A B C D E ∠+∠+∠+∠+∠的度数为________.16.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.17.如果三角形两条边分别为3和5,则周长L 的取值范围是________18.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.19.如图:70B ∠=︒,60A ∠=︒,将ABC 沿一条直线MN 折叠,使点C 落到1C 位置,则12∠-∠=______.20.把一副直角三角板按如图所示的方式摆放在一起,其中90C =∠,90F ∠=,30D ∠=,45A ∠=,则12∠+∠等于___________度.三、解答题21.如图,已知在ABC 中,CE 是外角ACD ∠的平分线,BE 是ABC ∠的平分线.(1)求证:2A E ∠=∠.(2)若A ABC ∠=∠,求证://AB CE .22.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长. 23.如果一个多边形的内角和是它的外角和的4倍,求这个多边形的对角线总数. 24.已知,a ,b ,c 为ABC 的三边,化简|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|. 25.如图1,已知ACD ∠是ABC 的一个外角,我们容易证明ACD A B ∠=∠+∠,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,DBC ∠与ECB ∠分别为ABC 的两个外角,则DBC ECB ∠+∠_______180A ∠+︒(横线上填“>”、“<”或“=”).初步应用:(2)如图3,在ABC 纸片中剪去CED ,得到四边形ABDE ,1135∠=︒,则2C ∠-∠=_______.(3)解决问题:如图4,在ABC 中,BP 、CP 分别平分外角DBC ∠、ECB ∠,P ∠与A ∠有何数量关系?请尝试证明.(4)如图5,在四边形ABCD 中,BP 、CP 分别平分外角EBC ∠、FCB ∠,请利用上面的结论直接写出P ∠与A ∠、D ∠的数量关系.26.阅读材料在平面中,我们把大于180︒且小于360︒的角称为优角.如果两个角相加等于360︒,那么称这两个角互为组角,简称互组.(1)若1∠,2∠互为组角,且1135∠=︒,则2∠=______.习惯上,我们把有一个内角大于180︒的四边形俗称为镖形.(2)如图,在镖形ABCD 中,优角BCD ∠与钝角BCD ∠互为组角,试探索内角A ∠,B ,D ∠与钝角BCD ∠之间的数量关系,并至少用两种以上的方法说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据三角形的稳定性可以解决.【详解】因为三角形具有稳定性,手机支架与桌面形成了一个三角形,所以是利用了三角形的稳定性.故选:B .【点睛】本题考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.2.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x ,∵三角形两边的长分别是1和4,∴4-1<x <4+1,即3<x <5.故选:B .【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.3.A解析:A【分析】设多边形的边数为n ,然后根据多边形的内角和公式(n−2)•180°列方程求解即可.【详解】设多边形的边数为n ,由题意得,(n−2)•180=160•n ,解得:n =18,故选:A .【点睛】本题考查了多边形内角和公式,熟记多边形的内角和公式是解题的关键.4.B解析:B【分析】根据构成三角形的条件,分别进行判断,即可得到答案.【详解】解:A 、224+=,不能构成三角形,故A 错误;B 、345+>,能构成三角形,故B 正确;C 、123+=,不能构成三角形,故C 错误;D 、236+<,不能构成三角形,故D 错误;故选:B .【点睛】本题考查了构成三角形的条件,解题的关键是掌握构成三角形的条件进行判断. 5.C解析:C【分析】根据三角形内角和180︒求出∠BAC ,再由AD 是ABC ∆的角平分线求得∠DAC ,最后利用直角三角形的两个锐角互余求出∠ADE ,问题得到解决.【详解】解:∵40,60B C ︒︒∠=∠=,∴BAC=180B-C=80∠︒-∠∠︒,∵AD 是ABC ∆的角平分线, ∴1DAC=BAC=402∠∠︒, ∵DE AC ⊥,∴90DAC=50ADE ∠=︒-∠︒,故选:C .【点睛】本题考查了三角形的内角和定理,三角形的角平分线定义,直角三角形的两个锐角互余,正确理解三角形中角之间的关系是解本题的关键.6.B解析:B【分析】根据角的度数之比,求得最大角的度数,根据最大角的性质判断即可.【详解】∵三个内角的度数之比为11:13:24,∴最大角的度数为°24180111324⨯++=90°, ∴三角形是直角三角形,故选B.【点睛】 本题考查了三角形按角的分类,根据度数之比求得最大角的度数是解题的关键. 7.A解析:A【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列出方程求解即可.【详解】解:∵∠C 的外角=∠A+∠B ,∴x+40=2x+10+x ,解得x=15.故选:A .【点睛】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.8.B解析:B【分析】根据三角形的三边关系定理可得7-4<x <7+4,计算出不等式的解集,再确定x 的值即可.【详解】设第三边长为x ,则7-4<x <7+4,3<x <11,∴A 、C 、D 选项不符合题意.故选:B .【点睛】考查了三角形的三边关系,解题关键是掌握第三边的范围:大于已知的两边的差,而小于两边的和.9.A解析:A【分析】根据正十边形的外角和等于360︒,每一个外角等于多边形的外角和除以边数,即可得解.【详解】3601036︒÷=︒,∴正五边形的每个外角等于36︒,故选:A .【点睛】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形以上三者之间的关系是解题的关键.10.A解析:A【分析】根据多边形的内角和定理与多边形外角和即可得出结论.【详解】解:∵四边形的内角和等于a ,∴a=(4-2)•180°=360°.∵五边形的外角和等于b ,∴b=360°,∴a=b .故选:A .【点睛】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键. 11.D解析:D【分析】由折叠的性质可求得'B AB D ∠=∠,利用三角形内角和及外角的性质列方程求解.【详解】解:由题意可得'B AB D ∠=∠∵80,BAC ∠=︒∴∠B+∠C=100°又∵'='=20B AB D C B DC C ∠=∠+∠+∠∠,∴∠C+20°+∠C=100°解得:∠C=40°故选:D .【点睛】本题考查三角形内角和及外角的性质,找准角之间的等量关系列出方程正确计算是解题关键.12.B解析:B【分析】根据题意,结合三角形内角和定理、角平分线的性质,三角形外角的性质分别求解即可得出结论.【详解】解:由题意可得:在四边形BDCI 中,1180902IBD IBC CBD ∠=∠+∠=⨯︒=︒,90ICD ∠=︒, 可得180BDC BIC ∠+∠=︒,故A 选项不符合题意, 90ICE ∠=︒,故B 选项符合题意,48BAC ∠=︒,在三角形ICE 中, EIC ∠=18048662IBC ICB ︒-︒∠+∠==︒,90ICE ∠=︒, 906624E ∠=︒-︒=∴︒ ,故C 选项不符合题意,90DBE ∠=︒,故D 选项不符合题意,故选:B.【点睛】本题考查了三角形内角和定理、角平分线的性质和三角形外角的性质,结合图形熟练运用定理和性质进行求解是解题的关键.二、填空题13.50°【分析】连接BC 根据三角形内角和定理可求得∠DBC +∠DCB 的度数再利用三角形内角和定理及角平分线的定义可求得∠ABC +∠ACB 的度数即可求得∠A 的度数【详解】解:连接BC ∵∠BDC =130°解析:50°【分析】连接BC ,根据三角形内角和定理可求得∠DBC +∠DCB 的度数,再利用三角形内角和定理及角平分线的定义可求得∠ABC +∠ACB 的度数,即可求得∠A 的度数.【详解】解:连接BC ,∵∠BDC =130°,∴∠DBC +∠DCB =180°−∠BDC =50°,∵∠BGC =90°,∴∠GBC +∠GCB =180°−∠BGC =90°,∴∠GBD +∠GCD =(∠GBC +∠GCB )−(∠DBC +∠DCB )=40°,∵BF 平分∠ABD ,CE 平分∠ACD ,∴∠ABD +∠ACD =2∠GBD +2∠GCD =80°,∴∠ABC +∠ACB =(∠ABD +∠ACD )+(∠DBC +∠DCB )=130°,∴∠A =180°−(∠ABC +∠ACB )=180°−130°=50°.故答案为:50°.【点睛】本题主要考查了与角平分线有关的三角形内角和问题,根据题意作出辅助线,构造出三角形是解答此题的关键.14.12【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可【详解】∵F 是CE 的中点∴∵E 是BD 的中点∴∴∴△ABC 的面积=故答案为:12【点睛】本题考查了三角形的面积主要利用了三角形的中线 解析:12【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵ F 是CE 的中点,23AEF S cm ∆=∴ 226ACE AEF S S cm ∆∆== ,∵ E 是BD 的中点,∴ ADE ABE S S ∆∆= ,CDE BCE S S ∆∆= , ∴12ACE ABC S S ∆∆= , ∴△ABC 的面积=212cm .故答案为:12.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.15.180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2再通过三角形的内角和定理即可求解【详解】解:如图∵∠1是△CDF 外角∴∠C+∠D=∠1∵∠2是三角形BFG 外角∴∠B+∠1=∠2∴∠解析:180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2,再通过三角形的内角和定理即可求解【详解】解:如图,∵∠1是△CDF 外角,∴∠C+∠D=∠1,∵∠2是三角形BFG 外角,∴∠B+∠1=∠2,∴∠B+∠C+∠D=∠2,∴=2180A B C D E A E ∠+∠+∠+∠+∠∠+∠+∠=︒.故答案为:180°【点睛】本题考查了三角形的外角定理、内角和定理,通过三角形的外角定理将∠B+∠C+∠D 转化为∠2是解题关键.16.④【分析】四边形的内角和是根据四边形内角的性质选出正确选项【详解】解:①错误如果四个角都是锐角那么内角和就会小于;②错误可以是四个直角;③错误可以是四个直角;④正确故选:④【点睛】本题考查四边形内角解析:④【分析】四边形的内角和是360︒,根据四边形内角的性质选出正确选项.【详解】解:①错误,如果四个角都是锐角,那么内角和就会小于360︒;②错误,可以是四个直角;③错误,可以是四个直角;④正确.故选:④.【点睛】本题考查四边形内角的性质,解题的关键是掌握四边形内角的性质.17.10<L<16【分析】根据三角形的三边关系确定第三边的取值范围再根据不等式的性质求出答案【详解】设第三边长为x∵有两条边分别为3和5∴5-3<x<5+3解得2<x<8∴2+3+5<x+3+5<8+3解析:10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2+3+5<x+3+5<8+3+5,∵周长L=x+3+5,∴10<L<16,故答案为: 10<L<16.【点睛】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.18.6【分析】根据DE分别是三角形的中点得出G是三角形的重心再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3再根据AD是△ABC 的中线可得S△ABC=2S△ABD进而得到答案【详解析:6【分析】根据D,E分别是三角形的中点,得出G是三角形的重心,再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3,再根据AD是△ABC的中线可得S△ABC=2S△ABD进而得到答案.【详解】解:∵△ABC的两条中线AD、BE相交于点G,∴2GD=AG,∵S△ABG=2,∴S△ABD=3,∵AD是△ABC的中线,∴S△ABC=2S△ABD=6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.19.100°【分析】由三角形内角和定理可求得∠C的度数又由折叠的性质求得∠C1的度数然后由三角形外角的性质求得答案【详解】解:如图∵∠B=70°∠A=60°∴∠C=180°﹣∠B﹣∠C=50°由折叠可知解析:100°【分析】由三角形内角和定理,可求得∠C的度数,又由折叠的性质,求得∠C1的度数,然后由三角形外角的性质,求得答案.【详解】解:如图,∵∠B=70°,∠A=60°,∴∠C=180°﹣∠B﹣∠C=50°,由折叠可知:∠C1=∠C=50°,∵∠3=∠2+∠C1∠1=∠3+∠C,∴∠1=∠2+∠C1+∠C,∴∠1﹣∠2=2∠C =100°.故答案为:100°.【点睛】此题考查了折叠的性质、三角形内角和定理以及三角形外角等于和它不相邻的两个内角和的性质.此题难度适中,注意折叠中的对应关系,注意掌握转化思想的应用.20.210【分析】由题意得:∠1=∠D+∠DGA∠2=∠F+∠FHB然后由对顶角相等的性质得∠1=∠D+CGH∠2=∠F+∠CHG最后由直角三角形两锐角互余的性质可以算出∠1+∠2的值【详解】解:如图给解析:210【分析】由题意得:∠1=∠D+∠DGA,∠2=∠F+∠FHB,然后由对顶角相等的性质得∠1=∠D+CGH,∠2=∠F+∠CHG,最后由直角三角形两锐角互余的性质可以算出∠1+∠2的值.【详解】解:如图,给两三角板的两个交点标上G、H符号,则∠1=∠D+∠DGA=∠D+CGH ,∠2=∠F+∠FHB=∠F+∠CHG ,∴∠1+∠2=∠D+CGH+∠F+∠CHG=∠D+∠F+(CGH+∠CHG )=30°+90°+90°=210°,故答案为210 .【点睛】本题考查直角三角形的应用,灵活运用直角三角形两锐角互余、三角形的外角性质和对顶角相等的定理求解是解题关键.三、解答题21.(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线的性质和三角形的外角性质即可求证;(2)由∠A=2∠E ,∠A=∠ABC ,∠ABC=2∠ABE 得∠ABE=∠E ,从而AB ∥CE .【详解】证明:(1)∵ACD ∠是ABC 的一个外角,2∠是BCE 的一个外角,∴ACD ABC A ∠=∠+∠,21E ∠=∠+∠,∴A ACD ABC ∠=∠-∠,21E ∠=∠-∠.∵CE 是外角ACD ∠的平分线,BE 是ABC ∠的平分线,∴22ACD ∠=∠,21ABC ∠=∠,∴2221A ∠=∠-∠2(21)=∠-∠2E =∠.(2)由(1)可知2A E ∠=∠.∵A ABC ∠=∠,2ABC ABE ∠=∠,∴22E ABE ∠=∠,即E ABE ∠=∠,∴//AB CE .【点睛】本题考查了三角形的综合问题,涉及平行线的判定,三角形的外角性质,角平分线的性质,灵活运用所学知识是解题的关键.22.周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】 解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.23.35条【分析】一个多边形的内角和等于外角和的4倍而任何多边形的外角和是360°,因而多边形的内角和等于1440°.n 边形的内角和可以表示成(n-2)•180°,设这个正多边形的边数是n ,就得到方程,从而求出边数,即可求出答案.【详解】解:设这是一个n 边形,依题意得:(n-2).180°=4×360°,解得n=10故这个多边形的总条数为()10103352⨯-=(条)答:对角线的总数为35条.【点睛】本题主要考查多边形内角与外角的知识点,此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程求解即可.24.﹣2a+4b ﹣2c【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负值,然后去绝对值进行计算即可.【详解】解:∵a ,b ,c 为ABC 的三边,∴a+b >c ,b+c >a ,a+c >b∴|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|=|a-(b+c)|-2|b-(c+a)|+ |a+b ﹣c|=﹣[a ﹣(b+c )]+2[b ﹣(c+a )]+(a+b ﹣c )=-a+(b+c)+2b-2(c+a)+a+b-c=﹣a+b+c+2b ﹣2c ﹣2a+a+b ﹣c=﹣2a+4b ﹣2c .【点睛】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理. 25.(1)= (2) 45° (3)1902P A ∠=︒-∠;证明见解析 (4)1118022P A D ∠=︒-∠-∠ 【分析】(1)根据三角形外角的性质得:∠DBC =∠A +∠ACB ,∠ECB =∠A +∠ABC ,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1−∠C =180°,将∠1=135°代入可得结论; (3)根据角平分线的定义得:∠CBP =12∠DBC ,∠BCP =12∠ECB ,根据三角形内角和可得:∠P 的式子,代入(1)中得的结论:∠DBC +∠ECB =180°+∠A ,可得:∠P =90°−12∠A ; (4)根据平角的定义得:∠EBC =180°−∠1,∠FCB =180°−∠2,由角平分线得:∠3=12∠EBC =90°−12∠1,∠4=12∠FCB =90°−12∠2,相加可得:∠3+∠4=180°−12(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【详解】(1)∠DBC +∠ECB−∠A =180°,理由是:∵∠DBC =∠A +∠ACB ,∠ECB =∠A +∠ABC ,∴∠DBC +∠ECB =2∠A +∠ACB +∠ABC =180°+∠A ,∴∠DBC +∠ECB =∠A +180°,故答案为:=;(2)∠2−∠C =45°.理由是:∵∠2+∠1−∠C =180°,∠1=135°,∴∠2−∠C +135°=180°,∴∠2−∠C =45°.故答案为:45°;(3)∠P =90°−12∠A , 理由是:∵BP 平分∠DBC ,CP 平分∠ECB ,∴∠CBP =12∠DBC ,∠BCP =12∠ECB , ∵△BPC 中,∠P =180°−∠CB P−∠BCP =180°−12(∠DBC +∠ECB ),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°−12(180°+∠A)=90°−12∠A;(4)∠P=180°−12(∠A+∠D).理由是:如图:∵∠EBC=180°−∠1,∠FCB=180°−∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°−12∠1,∠4=12∠FCB=90°−12∠2,∴∠3+∠4=180°−12(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°−(∠A+∠D),又∵△PBC中,∠P=180°−(∠3+∠4)=12(∠1+∠2),∴∠P=12×[360°−(∠A+∠D)]=180°−12(∠A+∠D).【点睛】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.26.(1)225°;(2)钝角∠BCD=∠A+∠B+∠D,理由见解析.【分析】(1)根据互为组角的定义可知∠2=360°-∠1,代入数据计算即可;(2)理由①:根据四边形内角和定理可得∠A+∠B+优角∠BCD+∠D=360°,根据周角的定义可得优角∠BCD+钝角∠BCD=360°´,再利用等式的性质得出钝角∠BCD=∠A+∠B+∠D;理由②:连接AC并延长,根据三角形外角的性质即可得出结论.【详解】解:(1)∵∠1、∠2互为组角,且∠1=135°,∴∠2=360°-∠1=225°,故答案为:225°;(2)钝角∠BCD=∠A+∠B+∠D.理由如下:理由①:∵在四边形ABCD中,∠A+∠B+优角∠BCD+∠D=360°,又∵优角∠BCD+钝角∠BCD=360°´,∴钝角∠BCD=∠A+∠B+∠D;理由②:如下图,连接AC并延长,∵∠BAC+∠B=∠BCE,∠DAC+∠D=∠DCE(三角形外角的性质),∴钝角∠BCD=∠BCE+∠DCE=∠BAC+∠B+∠DAC+∠D=∠A+∠B+∠D.【点睛】本题考查三角形的外角,四边形内角和.能正确作出辅助线,将四边形分成两个三角形是理由②的关键.。
一、选择题1.如图,在等边△ABC 中,点O 在边AB 上,⊙O 过点B 且分别与边AB 、BC 相交于点D 、E ,F 是AC 上的点,判断下列说法错误的是( )A .若EF ⊥AC ,则EF 是⊙O 的切线B .若EF 是⊙O 的切线,则EF ⊥ACC .若BE =EC ,则AC 是⊙O 的切线D .若32BE EC =,则AC 是⊙O 的切线 2.如图,在O 中,E 是直径AB 延长线上一点,CE 切O 于点E ,若2CE BE =,则E ∠的余弦值为( )A .35B .45C .34D .433.已知二次函数y =ax 2+6ax +c (a <0),设抛物线与x 轴的交点为A (﹣7,0)和B ,与y 轴的交点为C ,若∠ACO =∠CBO ,则tan ∠CAB 的值为( )A 14B 2C 7D 7 4.在Rt △ABC 中,∠ACB =90°,AB 5tan ∠B =2,则AC 的长为 ( ) A .1 B .2 C 5D .55.如图,在矩形ABCD 中,AB =6,BC =2,点E 是边BC 上一动点,B 关于AE 的对称点为B ′,过B ′作B ′F ⊥DC 于F ,连接DB ′,若△DB ′F 为等腰直角三角形,则BE 的长是( )A .6B .3C .32D .62﹣6 6.在ABC 中,(2sinA-1)2+1cos 2B -=0,则ABC 是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .无法确定 7.如图,在Rt △ABC 中,∠B=90°,AB=5,BC=12,将△ABC 绕点A 逆时针旋转得到△ADE ,使得点D 落在AC 上,则tan ∠ECD 的值为( )A .23B .32C .25D .3558.在Rt △ABC 中,∠C =90°,如果∠A =α,BC =a ,那么AC 等于( )A .a•tanαB .a•cotαC .a•sinαD .a•cosα 9.如图,在Rt ABC ∆中,90ACB ∠=︒,22AC BC ==,CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC ⊥于点E ,作PF BC ⊥于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .10.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°()()12323232323AC CD -====-++-.类比这种方法,计算tan22.5°的值为( )A .21+B .2﹣1C .2D .1211.如图,在△ABC 中,∠ACB =60°,∠CAB =45°,BC =4,点D 为AB 边上一个动点,连接CD ,以DA 、DC 为一组邻边作平行四边形ADCE ,则对角线DE 的最小值是( )A 26B .3C .4D .312.如图所示,矩形ABCD 的边长AB =2,BC =3△ADE 为正三角形.若半径为R 的圆能够覆盖五边形ABCDE (即五边形ABCDE 的每个顶点都在圆内或圆上),则R 的最小值是( )A .23B .4C .2.8D .2.5二、填空题13.如图,ABC 内接于O ,AB AC =,直径AD 交BC 于点E ,若1DE =,2cos 3BAC ∠=,则弦BC 的长为______.14.如图,正方形ABCD 绕点B 逆时针旋转30°后得到正方形BEFG ,EF 与AD 相交于点H ,延长DA 交GF 于点K .若正方形ABCD 边长为3,则AH=__.15.如图,在2×2的网格中,以顶点O 为圆心,以2个单位长度为半径作圆弧,交图中格线于点A ,则tan ∠ABO 的值为_____.16.如图,我市在建高铁的某段路基横断面为梯形ABCD ,DC ∥AB ,BC 长为6米,坡角β为45°,AD 的坡角α为30°,则AD 的长为 ________ 米 (结果保留根号)17.已知在矩形ABCD 中,AC =12,∠ACB =15°,那么顶点D 到AC 的距离为_____. 18.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,F 为DA 上一点,连接BF ,E 为BF 中点,CD=6,sin ∠ADB=1010,若△AEF 的周长为18,则S △BOE =_____.19.如图,∠EFG =90°,EF =10,OG =17,cos ∠FGO =0.6,则点F 的坐标是_______.20.锐角α和锐角β互余,记f =sinα+sinβ,则f 的取值范围为_____.参考答案三、解答题21.如图,一艘轮船以18海里/小时的速度由南向北航行,在A 处测得小岛P 在北偏西15︒的方向上,2小时后,轮船在B 处测得小岛P 在北偏西30方向上,在小岛P 周围20海里内有暗礁,若轮船继续向前航行,有无触礁的危险?22.已知O 的半径为2r ,弦23AB =B 是CD 的中点,AB 与CD 交于点E .(1)求圆心O 到弦AB 的距离.(2)求AEC ∠的度数.23.材料:如图①,AB 和BC 是O 的两条弦(即折线ABC 是圆的一条折弦),,BC AB >点M 是弧ABC 的中点,则从点M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD AB BD =+(1)如图②,已知等边ABC ∆内接于,12,O AB D =为弧AC 上--点,45,ABD AE BD ︒∠=⊥于点E ,求BDC ∆的周长(2)求证:CD AB BD =+.24.如图,已知⊙O 的直径 AB 与弦 CD 互相垂直,垂足为点 E.⊙O 的切线 BF 与弦 AC 的延长线相交于点 F,且AC=8,tan∠BDC=34.(1)求⊙O 的半径长;(2)求线段 CF 长.25.如图,在Rt△ABC中,∠C=90°,BC=3,AC=33,若以点C为圆心,CB长为径的圆与AB交于点D,(1)求AD的长.(2)求弧BD的长.26.(1)sin6045260 cos30tan tan︒-︒+︒︒.(2)tan45cos6030sin60tan︒-︒⨯︒︒.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】A、连接OE,根据同圆的半径相等得到OB=OE,根据等边三角形的性质得到∠BOE=∠BAC,求得OE∥AC,于是得到A选项正确;B、由于EF是⊙O的切线,得到OE⊥EF,根据平行线的性质得到B选项正确;C、根据等边三角形的性质和圆的性质得到AO=OB,过O作OH⊥AC于H,根据三角函数得到OH=32AO≠OB,于是得到C选项错误;D、根据等边三角形的性质和等量代换即可得到D选项正确.【详解】A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确,不符合题意.B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确,不符合题意.C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=3AO≠OB,∴C选项错误,符合题意.D 、如C 中的图,∵BE =32EC , ∴CE =23BE , ∵AB =BC ,BO =BE , ∴AO =CE =23OB , ∴OH =3AO =OB , ∴AC 是⊙O 的切线,∴D 选项正确.故选:C .【点睛】本题为圆的综合题,掌握切线的判定和性质、平行线的判定和性质以及勾股定理是解答本题的关键.2.B解析:B【分析】连接OC ,则∠OCE=90°,设OC=OB=x ,22CE BE k ==,根据勾股定理即可列出方程222(2)()x k x k +=+,解得32x k =,再根据余弦的定义即可求得答案. 【详解】解:如图,连接OC ,∵CE 切O 于点E ,∴∠OCE=90°,设OC=OB=x ,22CE BE k ==,∵在Rt OCE △中,222OC CE OE +=,∴222(2)()x k x k +=+,解得32x k =, ∴52OE OB BE k =+=,∴24 cos552CE kEOE k===,故选:B.【点睛】本题考查了切线的性质、勾股定理以及锐角三角函数,熟练掌握切线的性质以及勾股定理是解决本题的关键.3.D解析:D【分析】根据根和系数的关系,求出点B(1,0),利用tan∠ACO=tan∠CBO,求出OC=7±,进而求解.【详解】解:如图所示,∵A(﹣7,0),则OA=7,设点B的横坐标为b,根据根和系数的关系,则﹣7+b=﹣6aa=﹣6,解得b=1,∴点B(1,0),则OB=1,∵∠ACO=∠CBO,∴tan∠ACO=tan∠CBO,∴AO OCOC OB=,即71OCOC=,解得OC=7tan∠CAB=OCOA=77,故选:D.【点睛】本题考查的是抛物线与x轴的交点、三角函数公式,利用根和系数的关系求出点B的坐标,是解题的关键.4.B解析:B【分析】根据正切的定义得到BC=12AC ,根据勾股定理列式计算即可. 【详解】 在Rt △ABC 中,∠ACB=90°,tan ∠B=2, ∴AC BC=2, ∴BC=12AC ,由勾股定理得,AB 2=AC 2+BC 22=AC 2+(12AC )2, 解得,AC=2,故选B .【点睛】本题考查的是锐角三角函数的定义、勾股定理,掌握锐角A 的对边a 与邻边b 的比叫做∠A 的正切是解题的关键.5.D解析:D【分析】根据 B 关于 AE 的对称点为 B′,可得2AB AD '=,1AB D ∴等腰直角三角形,可得D B E '、、三点共线,可求出BE 的长.【详解】解:6,2AB AB AB AD AD ==='∴=', 又△DB′F 为等腰直角三角形,045FDB ∴∠=,又在矩形 ABCD ,090ADF ∠=,045ADB ∴='∠,又2AB AD '= AB D ∴'等腰直角三角形, 090AB D ∴='∠,090AB E ∠=',D BE ∴'、、三点共线,在等腰直角△RCE ,CE=CD=6,∴BE=BC-CE=6,故选D..【点睛】本题考查三角形的性质及解直角三角形,找出D B E '、、三点共线是解题关键. 6.C解析:C【分析】根据非负数的性质可得sinA 和cosB 的值,进而可得∠A 和∠B 的度数,即可知△ABC 的形状.【详解】解:∵(2sinA-1)2=0, ∴2sinA-1=0,cosB-12=0, ∴sinA=12,cosB=12, ∴∠A=30°,∠B=60°,∴∠C=180°-∠A-∠B=90°,故△ABC 为直角三角形.故选C .【点睛】本题主要考查了非负数的性质和特殊角的三角函数值,根据两个非负数的和为零,则这两个数都为零求出sinA 和cosB 的值是解决此题的关键.7.B解析:B【分析】在Rt ABC ∆中,由勾股定理可得13AC =.根据旋转性质可得13AE =,5AD =,12DE =,所以8CD =.在Rt CED ∆中根据tan DE ECD DC ∠=,可求解. 【详解】解:∵在Rt ABC ∆中,AB=5,BC=12,∴由勾股定理可得13AC =,根据旋转性质可得13AE =,5AD =,12DE =,8CD ∴=,在Rt CED ∆中,123tan 82DE ECD DC ∠===, 故选:B .【点睛】本题主要考查了旋转的性质以及解直角三角形,利用勾股定理求出所求三角函数值的直角三角形的对应边长度,根据线段比就可解决问题. 8.B解析:B【分析】画出图形,根据锐角三角函数的定义求出即可.【详解】如图,∠C =90°,∠A =α,BC =a ,∵cotαAC BC =, ∴AC =BC•cotα=a•cotα,故选:B .【点睛】 本题考查了锐角三角函数的定义的应用,在直角三角形中,锐角的正弦是角的对边与斜边的比;余弦是角的邻边与斜边的比;正切是对边与邻边的比;余切是邻边与对边的比;熟练掌握三角函数的定义是解题关键.9.A解析:A【分析】分两段来分析:①点P 从点A 出发运动到点D 时,写出此段的函数解析式,则可排除C 和D ;②P 点过了D 点向C 点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案. 【详解】解:∵90ACB ∠=︒,22AC BC ==,∴45A ∠=︒,4AB =,又∵CD AB ⊥,∴2AD BD CD ===,45ACD BCD ∠=∠=︒,∵PE AC ⊥,PF BC ⊥,∴四边形CEPF 是矩形,I .当P 在线段AD 上时,即02x <≤时,如解图1∴2sin AE PE AP A x ===, ∴222CE x =, ∴四边形CEPF 的面积为2221222222y x x x x ⎛⎫==-+ ⎪ ⎪⎝⎭,此阶段函数图象是抛物线,开口方向向下,故选项CD 错误;II .当P 在线段CD 上时,即24x <≤时,如解图2:依题意得:4CP x =-,∵45ACD BCD ∠=∠=︒,PE AC ⊥,∴sin CE PE CP ECP ==⨯∠,∴()()24sin 4542CE PE x x ==-︒=-, ∴四边形CEPF 的面积为()222144822x x x y ⎡⎤-=-+⎢⎥⎣⎦=,此阶段函数图象是抛物线,开口方向向上,故选项B 错误;故选:A .【点睛】本题考查了动点问题的函数图象,分段写出函数的解析式并数形结合进行分析是解题的关键.10.B解析:B【分析】作Rt △ABC ,使∠C =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,根据构造的直角三角形,设AC =x ,再用x 表示出CD ,即可求出tan22.5°的值.【详解】解:作Rt △ABC ,使∠C =90°,∠ABC =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,设AC =x ,则:BC =x ,AB =2x ,CD =()1+2x , ()22.5==211+2AC C tan ta D x n D =∠=-︒故选:B.【点睛】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形. 11.A解析:A【分析】设DE交AC于O,作BF⊥AC于F,由直角三角形的性质得出CF=12BC=2,AF=BF=3CF=23,求出AC=CF+AF=2+23,由平行四边形性质得出AO=CO=12AC=1+3,DO=EO,当OD⊥AB时,DO的值最小,即DE的值最小,则△AOD是等腰直角三角形,即可得出结果.【详解】解:设DE交AC于O,作BF⊥AC于F,如图所示:则∠BFC=∠BFA=90°,∵∠ACB=60°,∠CAB=45°,∴∠CBF=30°,∠ABF=45°=∠CAB,∴CF=12BC=2,AF=BF3=3∴AC=CF+AF=3∵四边形ADCE是平行四边形,∴AO=CO=12AC=3DO=EO,∴当OD⊥AB时,DO的值最小,即DE的值最小,则△AOD是等腰直角三角形,∴OD2AO62+∴DE=2OD26故选:A.【点睛】本题主要考查解直角三角形,平行四边形的性质,掌握平行四边形的性质和特殊角的三角函数值是解题的关键.12.C解析:C【分析】连接AC 、BE 、CE ,取BC 的中点F ,连接EF ,根据勾股定理可得AC ,根据直角三角形的边角关系可得∠ACB =30°,∠CAD =30°,再根据正三角形的性质可得:∠EAD =∠EDA =60°,AE =AD =DE =△EAC 是直角三角形,由勾股定理可得EC 的长.判断△EAB ≌△EDC ,根据全等三角形的性质可得EB =EC ,继而根据题意可判断能够覆盖五边形ABCDE 的最小圆的圆心在线段EF 上,且此圆只要覆盖住△EBC 必能覆盖五边形ABCDE ,从而此圆的圆心到△BCE 的三个顶点距离相等.根据等腰三角形的判定和性质可得F 是BC 中点,BF =CF EF ⊥BC ,由勾股定理可得EF 的长,继而列出关于R 的一元二次方程,解方程即可解答.【详解】如图所示,连接AC 、BE 、CE ,取BC 的中点F ,连接EF ,∵四边形ABCD 是矩形,∴∠ABC =∠DAB =∠BCD =∠ADC =90°,AD ∥BC ,AD =BC =AB =CD =2∵BC =AB =2由勾股定理可得:AC 4∴sin ∠ACB =24AB AC ==12,sin ∠CAD =24CD AC ==12∴∠ACB =30°,∠CAD =30°∵△ADE 是正三角形 ∴∠EAD =∠EDA =60°,AE =AD =DE =∴∠EAC =∠EAD +∠CAD =90°,∴△EAC 是直角三角形,由勾股定理可得:EC∵∠EAB =∠EAD +∠BAD =150°∠EDC =∠EDA +∠ADC =150°∴∠EAB =∠EDC∵EA =ED ,AB =DC∴△EAB ≌△EDC∴EB =EC =即△EBC 是等腰三角形∵五边形ABCDE 是轴对称图形,其对称轴是直线EF ,∴能够覆盖五边形ABCDE 的最小圆的圆心在线段EF 上,且此圆只要覆盖住△EBC 必能覆盖五边形ABCDE .从而此圆的圆心到△BCE 的三个顶点距离相等.设此圆圆心为O ,则OE =OB =OC =R ,∵F 是BC 中点∴BF =CF =3,EF ⊥BC在Rt △BEF 中,由勾股定理可得:EF =22EB BF -=()()22273-=5 ∴OF =EF -OE =5-R在Rt △OBF 中,222BF OF OB 即()()22235R R +-= 解得:R =2.8∴能够覆盖五边形ABCDE 的最小圆的半径为2.8.故选C .【点睛】本题考查勾股定理的应用、全等三角形的判定及其性质、等腰三角形的判定及其性质、直角三角形的边角关系.解题的关键是理解圆内接五边形的特点,并且灵活运用所学知识.二、填空题13.【分析】连接OBOC 由题意易得AE ⊥BC 则有BE=EC ∠BOD=∠BAC 设OB=3rOE=2r 然后根据勾股定理可求解【详解】解:连接OBOC 如图所示:∵内接于AD 过圆心O ∴AE ⊥BC ∴BE=EC ∴∠解析:5【分析】连接OB 、OC ,由题意易得AE ⊥BC ,则有BE=EC ,∠BOD=∠BAC ,设OB=3r ,OE=2r ,然后根据勾股定理可求解.【详解】解:连接OB 、OC ,如图所示:∵ABC 内接于O ,AB AC =,AD 过圆心O ,∴AE ⊥BC ,∴BE=EC ,BD DC =,∴∠BAD=∠CAD ,∵∠BOD=2∠BAD ,∴∠BAC=∠BOD , ∵2cos 3BAC ∠=, ∴2cos 3BOD ∠=, ∵DE=1,∴设OB=3r ,OE=2r ,则有: 321r r =+,解得:1r =,∴3,2OB OE ==,∴在Rt △BEO 中,225BE OB OE -=, ∴25BC = 故答案为5【点睛】本题主要考查垂径定理、三角形内接圆的性质及圆周角定理,熟练掌握垂径定理、三角形内接圆的性质及圆周角定理是解题的关键.14.1【分析】连接BH 证明Rt △ABH ≌△Rt △EBH (HL )得出∠ABH=30°在Rt △ABH 中解直角三角形即可【详解】解:连接BH 如图所示:∵四边形ABCD 和四边形BEFG 是正方形∴∠BAH=∠AB解析:1【分析】连接BH ,证明Rt △ABH ≌△Rt △EBH (HL ),得出∠ABH =30°,在Rt △ABH 中解直角三角形即可.【详解】解:连接BH ,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,∵BH=BH,AB=EB,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=12∠ABE=30°,∴AH=AB•tan∠ABH=33⨯=1,故答案为:1.【点睛】本题考查了旋转的性质、正方形的性质、全等三角形的判定与性质、解直角三角形.能正确作出辅助线得出Rt△ABH≌△Rt△EBH,从而求得∠ABH =30°是解题关键.15.2+【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC==BC=OB﹣OC=2﹣在Rt△ABC中根据tan∠ABO=可得答案【详解】如图连接OA过点A作AC⊥OB于点解析:2+3.【分析】连接OA,过点A作AC⊥OB于点C,由题意知AC=1、OA=OB=2,从而得出OC=22OA AC-=3、BC=OB﹣OC=2﹣3,在Rt△ABC中,根据tan∠ABO=ACBC可得答案.【详解】如图,连接OA,过点A作AC⊥OB于点C,则AC=1,OA=OB=2,∵在Rt△AOC中,222221OA AC-=-3∴BC=OB ﹣OC=2﹣3, ∴在Rt △ABC 中,tan ∠ABO=23AC BC =-=2+3. 故答案是:2+3.【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO 为内角的直角三角形是解题的关键. 16.【分析】过C 作CE ⊥AB 于EDF ⊥AB 于F 分别在Rt △CEB 与Rt △DFA 中使用三角函数即可求解【详解】解:过C 作CE ⊥AB 于EDF ⊥AB 于F 可得矩形CEFD 和Rt △CEB 与Rt △DFA ∵BC=6∴解析:62【分析】过C 作CE ⊥AB 于E ,DF ⊥AB 于F ,分别在Rt △CEB 与Rt △DFA 中使用三角函数即可求解.【详解】解:过C 作CE ⊥AB 于E ,DF ⊥AB 于F ,可得矩形CEFD 和Rt △CEB 与Rt △DFA , ∵BC=6,∴CE=2sin 456322BC ︒=⨯=, ∴DF=CE=32,∴62sin 30DF AD ==︒, 故答案为:62.【点睛】此题考查了解直角三角形的应用-坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.17.3【分析】先利用三角函数的值分别求出AB 及BC 然后利用三角形ADC 面积的两种表示形式可求出DE 的长【详解】如图过点D 作DE ⊥AC 于点E 在这里先推导出sin15°的值:如图设中D 是AC 上一点则设则由题解析:3【分析】先利用三角函数的值分别求出AB 及BC ,然后利用三角形ADC 面积的两种表示形式可求出DE 的长.【详解】如图,过点D 作DE ⊥AC 于点E ,在这里先推导出sin15°的值:如图,设Rt ABC 中,A 15,C 90∠=︒∠=︒,D 是AC 上一点,BDC 30∠=︒,则ABD 15∠=︒,AD BD =,设BC x =,则AD BD 2x ==,DC 3x =,AC (32)x =+2222[(32)](62)AB AB BC x x ∴=+=+⨯+=+,BC 62sin15sin A AB (62)x -∴︒====+由题意得:AB =AC sin ∠ACB =6﹣2,BC =62,S △ADC =12AD •DC =12AC •DE =9, ∴DE =3.故答案为:3.【点睛】此题考查的是矩形的性质,解答本题的关键是根据∠ACB 的度数求出AB 及AC 的长,这要求我们熟练掌握三角函数值的求解方法.18.【分析】根据题意求出AD=18设AF=则BF=在Rt △ABF 中利用勾股定理可求得求出DF=10可求出S △BDF 由三角形中位线定理可求出答案【详解】∵四边形ABCD 是矩形∴AB=CD=6∠BAD=90解析:152【分析】根据题意求出AD=18,设AF=a ,则BF=18a -,在Rt △ABF 中,利用勾股定理可求得8a =,求出DF=10,可求出S △BDF ,由三角形中位线定理可求出答案.【详解】∵四边形ABCD 是矩形,∴AB=CD=6,∠BAD=90°,OB=OD ,∵sin ∠10,∴610AB BD BD ==, ∴BD =∴18DA ===,∵E 为BF 中点,∴AE=BE=EF ,∵△AEF 的周长为18,∴AE+EF+AF=BE+EF+AF=BF+AF=18,设AF=a ,则BF=18a -,在Rt △ABF 中,AB 2+AF 2=BF 2,∴62+a 2=(18a -)2,解得:8a =,∴DF=18-8=10.∵E 为BF 中点,O 为BD 的中点, ∴OE ∥DF ,OE=12DF , ∴△BOE ∽△BDF , ∴BOE BDF 14SS =, ∵BDF 12S =DF•AB=12×6×10=30, ∴S △BOE =BDF 111530442S =⨯=. 故答案为:152. 【点睛】 本题考查了矩形的性质,勾股定理,锐角三角函数,相似三角形的判定与性质,中位线定理,三角形的面积等知识,熟练掌握几何基本图形的性质是解题的关键.19.【分析】先过点F 作直线交轴于点过点作于点证明根据cos ∠FGO=06以及勾股定理即可得到答案【详解】过点F 作直线交轴于点过点作于点如图:∴(两直线平行内错角相等)又∵∠EFG=90°∴∠AFE+∠H解析:(8,12)【分析】先过点F 作直线//FA OG 交y 轴于点A ,过点G 作GH FA ⊥于点H ,证明FGO ∠HFG FEA =∠=∠,根据cos ∠FGO =0.6以及勾股定理即可得到答案.【详解】过点F 作直线//FA OG 交y 轴于点A ,过点G 作GH FA ⊥于点H ,如图:∴FGO HFG ∠=∠(两直线平行,内错角相等),又∵∠EFG =90°,∴∠AFE+∠HEG =90°,又∵∠AFE+∠FEA =90°,∴HFG FEA ∠=∠,∴FGO HFG FEA ∠=∠=∠,在Rt AEF ∆中,10EF =,则10cos 100.66AE FEA =⋅∠=⨯= ∴221068AF =-=(勾股定理),∴1789FH =-=,在Rt FGH ∆中,90.615FG =÷=, ∴2215912HG =-=(勾股定理),∴(8,12)F ,故答案为:(8,12).【点睛】本题主要考查了平行的性质(两直线平行,内错角相等)、勾股定理的应用以及三角函数,熟练掌握各知识点并灵活运用是解题的关键.20.1<f≤【分析】根据锐角三角函数的定义即可求出答案【详解】∵α+β=90°∴sinβ=sin (90°−α)=cosα∴f =sin α+cosα=sin (α+45°)∵α是锐角∴<sin (α+45°)≤解析:1<2【分析】根据锐角三角函数的定义即可求出答案.【详解】∵α+β=90°,∴sinβ=sin (90°−α)=cosα,∴f =sinα+cosα2sin (α+45°)∵α是锐角, ∴22<sin (α+45°)≤1, ∴1<2,故答案为:1<f≤2.【点睛】本题考查锐角三角函数,解题的关键是正确理解锐角三角函数的定义,本题属于中等题型.三、解答题21.有危险,理由见解析【分析】有危险,理由为:过P 作PD 垂直与AB ,交AB 延长线于点D ,如图所示,由∠PBD 为三角形PAB 的外角,利用外角的性质得到∠PBD =∠A +∠APB ,由∠PBD 及∠A 的度数求出∠BPA 的度数,得到∠BPA =∠A ,利用等角对等边得到PB =AB ,由2小时走的路程为15海里/时×2,得到PB 为30海里,在直角三角形PBD 中,利用30°角所对的直角边等于斜边的一半得到PB =2PD ,由PB 的长求出PD 的长,由PD 的长与20比较大小,即可对轮船不改变方向仍继续向前航行,有无触礁的危险作出判断.【详解】解:有危险,理由如下:过P 点作PD AB ⊥,交AB 延长线与点D ,如图所示:由题意可知:15A ∠=︒,30PBD ∠=︒,15BPA PBD A ∴∠=∠-∠=︒,即BPA A ∴∠=∠18236PB AB ∴==⨯=(海里)在Rt BPD ∆中,30PBD ∠=︒,36PB =(海里)1182PD PB ∴==海里20<海里, 则轮船不改变方向仍继续向前航行,有触礁的危险.【点睛】此题考查了等腰三角形的判定与性质,三角形的外角性质,以及含30°直角三角形的性质,其中轮船有没有危险由PD 的长与20比较大小决定.22.(1)1;(2)60°【分析】(1)过点O 作OF ⊥AB ,垂足为点F ,连接OB ,交CD 于点H ,根据垂径定理可得BF =AF =3,再利用勾股定理即可求得答案;(2)由1sin 2OF OBF OB ∠==可得∠OBF =30°,再由点B 是CD 的中点可得OB ⊥CD ,进而即可求得AEC ∠的度数.【详解】解:(1)过点O 作OF ⊥AB ,垂足为点F ,连接OB ,交CD 于点H ,∵OF ⊥AB ,23AB =∴BF =AF 3 在Rt OBF 中,22OF OB BF -222(3)1=-=,∴圆心O 到弦AB 的距离为1;(2)∵在Rt OBF 中,1sin 2OF OBF OB ∠==, ∴∠OBF =30°,∵点B 是CD 的中点,∴OB ⊥CD ,∴∠CHB =90°,∴∠AEC =∠BEH =90°-∠OBF =60°,∴AEC ∠的度数为60°.【点睛】本题考查了垂径定理的应用及推论,勾股定理,锐角三角函数的应用,熟练掌握垂径定理的应用及推论是解决本题的关键.23.(1)△BDC 的周长为12212;(2)证明见解析【分析】(1)由题意,A 为弧BDC 的中点,所以AE 把折弦CDB 平分,所以△BDC 的周长等于BC+2BE ,由已知算出BE 即可得到解答;(2)在CB 上截取CG=AB ,连接MA ,MB ,MC 和MG ,首先证明△MBA ≌△MGC (SAS ),进而得出MB=MG ,再利用等腰三角形的性质得出BD=GD ,即可得出答案.【详解】(1)解:∵AE ⊥BD ,∠ABD=45°,∴△AEB 是等腰直角三角形,∴6222BE ===, 又∵△ABC 是等边三角形,∴AB=AC ,∴A 为弧BDC 的中点,∴AE 平分折弦CDB ,即BE=ED+DC ,∴BD+DC=2BE=122;∴△BDC 的周长=BD+CD+BC=12212+;(2)证明:如图,在CB 上截取CG=AB ,连接MA ,MB ,MC 和MG ,∵M 是弧ABC 的中点,∴MA=MC .在△MBA 和△MGC 中,BA GC A C MA MC =⎧⎪∠=∠⎨⎪=⎩,∴△MBA ≌△MGC (SAS ),∴MB=MG ,又∵MD ⊥BC ,∴BD=GD ,∴DC=GC+GD=AB+BD .【点睛】本题考查圆的综合运用,综合并灵活运用圆弧和弦的关系、三角形全等的判定和性质、等腰三角形的性质、直角三角形的性质等知识是解题关键.24.(1)5;(2)92 【分析】(1)过O 作OH 垂直于AC ,利用垂径定理得到H 为AC 中点,求出AH 的长为4,根据同弧所对的圆周角相等得到tanA =tan ∠BDC ,求出OH 的长,利用勾股定理即可求出圆的半径OA 的长;(2)由AB 垂直于CD 得到E 为CD 的中点,得到EC =ED ,在直角三角形AEC 中,由AC 的长以及tanA 的值求出CE 与AE 的长,由FB 为圆的切线得到AB 垂直于BF ,得到CE 与FB 平行,由平行得比例列出关系式求出AF 的长,根据AF−AC 即可求出CF 的长.【详解】(1)作OH AC ⊥于H ,则142AH AC ==,在Rt AOH ∆中,344AH tanA tan BDC ==∠=,, 3OH ∴=,∴半径225OA AH OH =+=;(2)AB CD ⊥,E ∴为CD 的中点,即CE DE =, 在Rt AEC ∆中,384AC tanA ==,,设3CE k =,则4AE k =, 根据勾股定理得:222AC CE AE =+,即2291664k k +=,解得85k =则2432,55CE DE AE ===, BF 为圆O 的切线,FB AB ∴⊥,又AE CD ⊥,//CD FB ∴,AC AE AF AB ∴=,即328510AF =, 解得:252AF =, 则92CF AF AC =-=. 【点睛】此题考查了切线的性质,垂径定理,锐角三角函数定义,勾股定理,以及平行线的性质,熟练掌握切线的性质是解本题的关键.25.(1)3;(2)3π【分析】(1)在Rt ABC 中,根据三角函数求出BAC ∠的度数,再求出AB 的长,连接CD ,得到BCD △是等边三角形,可以得到BD 的长,最后求出AD 的长;(2)利用弧长公式求出弧BD 的长.【详解】解:(1)如图,连接CD ,在Rt ABC 中,3BC =,AC 33=,则3tan 3BC BAC AC ∠==, ∴30BAC ∠=︒,∴60ABC ∠=︒, 361sin 2BC AB BAC ===∠, ∵CD CB =, ∴BCD △是等边三角形,∴3BD BC CD ===,∴633AD AB BD =-=-=;(2)∵60BCD ∠=︒,3BC =, ∴26033180BD ππ⨯==. 【点睛】本题考查圆的基本性质和弧长公式,以及锐角三角函数,解题的关键是掌握这些几何的性质定理和公式.26.(1)32)13. 【分析】(1)首先求出特殊角的三角函数值,然后根据实数加减混合运算法则计算即可;(2)首先求出特殊角的三角函数值,然后化简,然后根据实数加减混合运算法则计算即可.【详解】(1)sin 6045260cos30tan tan ︒-︒+︒︒=321233-+33(2)tan45cos6030 sin60tan︒-︒⨯︒︒=11-3==13.【点睛】本题考查了特殊锐角三角函数值的混合运算,关键是记忆30 º、45 º和60º的三角函数值.。
上海民办复旦万科实验学校数学三角形填空选择单元测试卷附答案一、八年级数学三角形填空题(难)1.已知如图,BQ平分∠ABP,CQ平分∠ACP,∠BAC=α,∠BPC=β,则∠BQC=_________.(用α,β表示)【答案】12(α+β).【解析】【分析】连接BC,根据角平分线的性质得到∠3=12∠ABP,∠4=12∠ACP,根据三角形的内角和得到∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,求出∠3+∠4=12(β-α),根据三角形的内角和即可得到结论.【详解】解:连接BC,∵BQ平分∠ABP,CQ平分∠ACP,∴∠3=12∠ABP,∠4=12∠ACP,∵∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,∴∠3+∠4=12(β-α),∵∠BQC=180°-(∠1+∠2)-(∠3+∠4)=180°-(180°-β)-12(β-α),即:∠BQC=12(α+β).故答案为:12(α+β).【点睛】本题考查了三角形的内角和,角平分线的定义,连接BC构造三角形是解题的关键.2.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.【答案】(2m ) (1024m ) 【解析】【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A 1=∠A 1CE-∠A 1BC=12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:()2m ;()1024m . 【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.3.如图,BE 平分∠ABC,CE 平分外角∠ACD,若∠A=42°,则∠E=_____°.【答案】21°【解析】根据三角形的外角性质以及角平分线的定义可得.解:由题意得:∠E =∠ECD −∠EBC =12∠ACD −12∠ABC =12∠A =21°. 故答案为21°.4.如图,有一块直角三角板XYZ放置在△ABC上,三角板XYZ的两条直角边XY、XZ改变位置,但始终满足经过B、C两点.如果△ABC中,∠A=52°,则∠ABX+∠ACX=_________________.【答案】38°【解析】∠A=52°,∴∠ABC+∠ACB=128°,∠XBC+∠XCB=90°,∴∠ABX+∠ACX=128°-90°=38°.5.如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______°.【答案】65【解析】如图,∵AE平分∠DAC,CE平分∠ACF,∴∠1=12∠DAC,∠2=12∠ACF,∴∠1+∠2=12(∠DAC+∠ACF),又∵∠DAC+∠ACF=(180°-∠BAC)+(180°-∠ACB)=360°-(∠BAC+∠ACB),且∠BAC+∠ACB=180°-∠ABC=180°-50°=130°,∴∠1+∠2=12(360°-130°)=115°,∴在△ACE中,∠E=180°-(∠1+∠2)=180°-115°=65°.6.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.【答案】30°【解析】【分析】设较小的锐角是x ,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x ,则另一个锐角是2x ,由题意得,x +2x =90°,解得x =30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.7.已知ABC 中,90A ∠=,角平分线BE 、CF 交于点O ,则BOC ∠= ______ . 【答案】135【解析】解:∵∠A =90°,∴∠ABC +∠ACB =90°,∵角平分线BE 、CF 交于点O ,∴∠OBC +∠OCB =45°,∴∠BOC =180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.8.如图,已知AB ∥DE ,∠ABC=80°,∠CDE=140°,则∠BCD=_____.【答案】40°试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°.故答案为:40°.9.等腰三角形一边长是10cm ,一边长是6cm ,则它的周长是_____cm 或_____cm .【答案】22cm, 26cm【解析】【分析】题目给出等腰三角形有两条边长为10cm 和6cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)当腰是6cm 时,周长=6+6+10=22cm ;(2)当腰长为10cm 时,周长=10+10+6=26cm ,所以其周长是22cm 或26cm .故答案为:22,26.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内时,∠A 与∠1+∠2之间有始终不变的关系是__________.【答案】2∠A =∠1+∠2【解析】【分析】根据∠1与∠AED 的2倍和∠2与∠ADE 的2倍都组成平角,结合△AED 的内角和为180°可【详解】∵△ABC纸片沿DE折叠,∴∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠AED=12(180°−∠1),∠ADE=12(180°−∠2),∴∠AED+∠ADE=12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2)∴△ADE中,∠A=180°−(∠AED+∠ADE)=180°−[180°−12(∠1+∠2)]=12(∠1+∠2),即2∠A=∠1+∠2.故答案为:2∠A=∠1+∠2.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°及图形翻折变换的性质是解答此题的关键.二、八年级数学三角形选择题(难)11.已知△ABC,(1)如图①,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+12∠A;(2)如图②,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;(3)如图③,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-12∠A.上述说法正确的个数是()A.0个B.1个C.2个D.3个【答案】C【解析】【分析】根据三角形的内角和外角之间的关系计算.【详解】解:(1)∵若P点是∠ABC和∠ACB的角平分线的交点,∴∠ABP=∠PBC,∠ACP=∠PCB∵∠A=180°-∠ABC-∠ACB=180°-2(∠PBC+∠PCB)∠P=180°-(∠PBC+∠PCB)∴∠P=90°+12∠A;故(1)的结论正确;(2)∵∠A=∠ACB-∠ABC=2∠PCE-2∠PBC=2(∠PCE-∠PBC)∠P=∠PCE-∠PBC∴2∠P=∠A故(2)的结论是错误.(3)∠P=180°-(∠PBC+∠PCB)=180°-12(∠FBC+∠ECB)=180°-12(∠A+∠ACB+∠A+∠ABC)=180°-12(∠A+180°)=90°-12∠A.故(3)的结论正确.正确的为:(1)(3).故选:C【点睛】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到三角形的内角和是180°这一隐含的条件.12.图1是二环三角形,S=∠A1+∠A2+…+∠A6=360,图2是二环四边形,S=∠A1+∠A2+…+∠A8=720,图3是二环五边形,S=∠A1+∠A2+…+∠A10=1080…聪明的同学,请你直接写出二环十边形,S=_____________度()A.1440 B.1800 C.2880 D.3600【答案】C【解析】【分析】本题只看图觉得很复杂,但从数据入手,就简单了,从图2开始,每个图都比前一个图多360度.抓住这点就很容易解决问题了.解:依题意可知,二环三角形,S=360度;二环四边形,S=720=360×2=360×(4﹣2)度;二环五边形,S=1080=360×3=360×(5﹣2)度;…∴二环十边形,S=360×(10﹣2)=2880度.故选:C.【点睛】本题考查了多边形的内角和,本题可直接根据S的度数来找出规律,然后根据规律表示出二环十边形的度数.13.在多边形内角和公式的探究过程中,主要运用的数学思想是()A.化归思想B.分类讨论C.方程思想D.数形结合思想【答案】A【解析】【分析】根据多边形内角和定理:(n-2)·180(n≥3)且n为整数)的推导过程即可解答.【详解】解:多边形内角和定理:(n-2)·180(n≥3)且n为整数),该公式推导的基本方法是从n 边形的一个顶点出发引出(n-3)条对角线,将n边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n边形的内角和,体现了化归思想.故答案为A.【点睛】本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键.14.如图,∠ABC =∠ACB ,BD 、CD 分别平分△ABC 的内角∠ABC 、外角∠ACP ,BE平分外角∠MBC 交 DC 的延长线于点 E ,以下结论:①∠BDE =12∠BAC ;② DB⊥BE ;③∠BDC +∠ACB= 90︒;④∠BAC + 2∠BEC = 180︒ .其中正确的结论有()A.1 个B.2 个C.3 个D.4 个【答案】D【解析】【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角的性质、判断即可.① ∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,∴∠ACP=2∠DCP,∠ABC=2∠DBC,又∵∠ACP=∠BAC+∠ABC,∠DCP=∠DBC+∠BDC,∴∠BAC=2∠BDE,∴∠BDE =12∠BAC∴①正确;②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥DB,故②正确,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确,④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确,即正确的有4个,故选D【点睛】此题考查三角形的外角性质,平行线的判定与性质,三角形内角和定理,解题关键在于掌握各性质定理15.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.1320【答案】B【解析】【分析】连接CP.设△CPE的面积是x,△CDP的面积是y.根据BD:DC=2:1,E为AC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得y=43x,再根据△ABC的面积是3即可求得x、y的值,从而求解.【详解】连接CP,设△CPE的面积是x,△CDP的面积是y.∵BD:DC=2:1,E为AC的中点,∴△BDP的面积是2y,△APE的面积是x,∵BD:DC=2:1∴△ABD的面积是4x+2y∴△ABP的面积是4x.∴4x+x=2y+x+y,解得y=43x.又∵△ABC的面积为3∴4x+x=32,x=310.则四边形PDCE 的面积为x+y=710. 故选B .【点睛】 此题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.16.已知:如图,ABC ∆三条内角平分线交于点D ,CE ⊥BD 交BD 的延长线于E ,则∠DCE=( )A .12BAC ∠ B .12CBA ∠ C .12ACB ∠ D .CDE ∠ 【答案】A【解析】【分析】 根据角平分线的性质以及三角形的外角性质可推导出DCE ∠与BAC ∠的关系.【详解】 由题意知,ECD BDC 90∠∠=-︒由三角形内角和定理得,BAC 180ABC ACB ∠∠∠=︒-+DBC DCB 180BDC ∠∠∠+=︒-∵点D 是ΔABC 三条内角平分线的交点∴ABC 2DBC ∠∠= ACB 2DCB ∠∠=()BAC 180ABC ACB ∠∠∠=︒-+()1802DBC DCB ∠∠=︒-+()1802180BDC ∠=︒-︒-2BDC 180∠=-︒1BAC BDC 902∠∠=-︒ ∴1ECD BAC 2∠∠=故答案选A.【点睛】本题考查角平分线的性质以及三角形的外角性质.17.已知△ABC 的两条高分别为4和12,第三条高也为整数,则第三条高所有可能值为( )A .3和4B .1和2C .2和3D .4和5【答案】D【解析】【分析】先设长度为4、12的高分别是a 、b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求a=24S ;b=212S ;c=2S h,结合三角形三边的不等关系,可得关于h 的不等式,解不等式即可.【详解】 设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么a=24S ;b=212S ;c=2S h∵a-b <c <a+b , ∴24S -212S <c <24S +212S , 即 3S <2S h <23S , 解得3<h <6,∴h=4或h=5,故选D.【点睛】主要考查三角形三边关系;利用三角形面积的表示方法得到相关等式是解决本题的关键.18.一个多边形的内角和是900°,则这个多边形的边数为 ( )A .6B .7C .8D .9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n ,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B .【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.19.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4 B.5 C.6 D.7【答案】C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.20.一个多边形的每个内角均为108º,则这个多边形是()A.七边形 B.六边形 C.五边形 D.四边形【答案】C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.。
上海复旦实验中学数学三角形填空选择单元测试卷附答案一、八年级数学三角形填空题(难)1.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为_________度.【答案】32【解析】【分析】过C点作∠ACE=∠CBD,根据三角形内角和为180°,以及等量关系可得∠ECD=∠BDC,根据角平分线的定义可得∠ABD=∠CBD,再根据三角形内角和为180°,以及等量关系可得∠BDC的度数.【详解】过C点作∠ACE=∠CBD,∵∠BCD+∠DCA=180°,∠BCD+∠CBD+∠BDC=180°,∴∠ECD=∠BDC,∵对角线BD平分∠ABC,∴∠ABD=∠CBD,∴∠ABD=∠ACE,∴∠BAC=∠CEB=64°,∴∠BDC=12∠CEB=32°.故答案为:32.【点睛】此题考查了三角形内角与外角,三角形内角和为180°,三角形的一个外角等于和它不相邻的两个外角的和.2.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.【答案】30°【解析】【分析】设较小的锐角是x,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.3.等腰三角形的三边长分别为:x+1,2x+3,9,则x=________.【答案】3【解析】①当x+1=2x+3时,解得x=−2(不合题意,舍去);②当x+1=9时,解得x=8,则等腰三角形的三边为:9、19、9,因为9+9=18<19,不能构成三角形,故舍去;③当2x+3=9时,解得x=3,则等腰三角形的三边为:4、9、9,能构成三角形。
上海兰生复旦小升初数学期末试卷测试卷 (word 版,含解析)一、选择题1.钟表上,分针与时针走过的轨迹都是一个圆,这两个圆( )。
A .直径相等B .周长相等C .面积相等D .圆心相同 2.某商品降价 是100,求原价是多少?正确的算式是( )A .100÷B .100×(1﹣)C .100÷(1﹣ )3.一个三角形中,三个内角的度数比是2:3:5,这个三角形是( )。
A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定 4.把一根木料截成两段,第一段长 米,第二段占全长的,那么这两段木料长度比较的结果是( )A .第一段长B .第二段长C .一样长D .无法确定 5.下图是一个正方体的展开图,和b 面相对的面是( )面.A .aB .dC .eD .f6.下列说法错误的是( )。
A .如果1=a b ,那么a 一定是b 的倒数B .1千米增加15后,又减少15千米,结果还是1千米 C .正方体的棱长扩大为原来的3倍,那么表面积扩大为原来的6倍,体积扩大为原来的9倍 7.如图将一个圆柱转化成一个长方体、体积( )。
A .不变B .增加C .减少 8.一种电视机提价后,又降价 ,现价( )原价. A .高于B .低于C .等于 9.小明将一个正方形纸对折两次,如图所示:在中央点打孔再将它展开,展开后的图形是( ).A .B .C .D .二、填空题10.地球上海洋的总面积约是三亿六千二百万平方千米,这个数写作(________)平方千米,省略亿位后面的尾数约是(________)亿平方千米。
11.()()():480.75%16===。
12.A =2×3×5,B =2×5×7,A 和B 的最大公因数是(________),最小公倍数是(________)。
13.如图,把一个圆沿半径分成32等份,拼成一个近似的平行四边形,已知平行四边形的周长是16.56 dm ,那么原来这个圆的面釈是(________)dm 2。
一、选择题1.已知,一个小球由桌面沿着斜坡向上前进了10cm ,此时小球距离桌面的高度为5cm ,则这个斜坡的坡度i 为( )A .2B .1:2C .1:2D .1:3 2.如图,在O 中,E 是直径AB 延长线上一点,CE 切O 于点E ,若2CE BE =,则E ∠的余弦值为( )A .35B .45C .34D .433.如图,为方便行人推车过天桥,市政府在10m 高的天桥两端分别修建了50m 长的斜道.用科学计算器计算这条斜道的倾斜角,下列按键顺序正确的是( )A .sin0.2=B .2ndF sin0.2=C .tan0.2=D .2ndF tan0.2= 4.已知如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=23,AB=4,连接AC ,若∠CAD=30°,则CD 为( )A 223B .7C 1033D .13+5.如图,△ABC 的三个顶点均在格点上,则cos A 的值为( )A .12B .55C .2D .2556.在△ABC 中,∠C=90º,AC=3,AB=4,则下列结论正确的是( )A .34sinA =B .34cos A =C .34tan A =D .34cot A = 7.三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A .34B .43C .35D .458.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积变为原矩形面积的一半,则平行四边形ABCD 的内角BCD ∠的大小为( )A .100°B .120°C .135°D .150°9.西南大学附中初2020级小李同学想利用学过的知识测量棵树的高度,假设树是竖直生长的,用图中线段AB 表示,小李站在C 点测得∠BCA =45°,小李从C 点走4米到达了斜坡DE 的底端D 点,并测得∠CDE =150°,从D 点上斜坡走了8米到达E 点,测得∠AED =60°,B ,C ,D 在同一水平线上,A 、B 、C 、D 、E 在同一平面内,则大树AB 的高度约为( )米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73)A .24.3B .24.4C .20.3D .20.410.如图,在△ABC 中,∠ABC =90°,D 为BC 的中点,点E 在AB 上,AD ,CE 交于点F ,AE =EF =4,FC =9,则cos ∠ACB 的值为( )A .35B .59C .512D .4511.如图,△ABC 中,∠C =90°,BC =2AC ,则cos A =( )A .12B .5C .25D .5 12.在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sin A 的值为( ) A .513 B .1213 C .512 D .125二、填空题13.如图,在扇形OAB 中,2OB =,点C 是OB 的中点,CD OB ⊥于点C ,交AB 于点D ,则图中阴影部分的面积为______.14.如图,在ABC 中,6AB BC ==,点O 为BC 中点,点P 是射线AO 上的一个动点,且 60AOC ∠=︒.要使得BCP 为直角三角形,CP 的长为 ________ .15.如图所示,ABO 中,AB OB ⊥,OA=2,AB=1,把ABO 绕点O 旋转150°后得到11A B O ,则点1A 的坐标为_______16.如图,梯形ABCD 是拦水坝的横断面图,(图中1:3i =是指坡面的铅直高度DE 与水平宽度CE 的比),60B ∠=,6AB =,4=AD ,拦水坝的横断面ABCD 的面积是________(结果保留三位有效数字,参考数据:3 1.732=,2 1.414=)17.如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45和30.若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为______米(结果保留根号).18.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点E ,且DE CE =,若AB 6=,则DE =_________.19.已知直角三角形一个锐角60°,斜边长为4,那么此直角三角形斜边上的的高是________.20.如图,在ABC ∆中,3AB AC cm ==,120A ∠=︒,AB 的垂直平分线分别交,AB BC 于,D E ,则EC 的长为_________.三、解答题21.计算(1)()218232- (2)12272333+- (3)2sin 45cos30tan60+⋅22.计算:(1)cos 245°cos 601-sin30︒-︒+tan 245°−tan 260° (2)213tan 308cos 45(1tan 60)cos60︒︒︒︒-++- 23.计算(1)cos 451-sin60︒︒(2)(12)-2-(π-3.14)0-│tan60°-2│ 24.如图1是小明在健身器材上进行仰卧起坐锻炼时的情景,图2是小明锻炼时上半身由ON 位置运动到与底面CD 垂直的OM 位置时的示意图,已知AC 0.66=米,BD 0.26=米,α30=︒(参考数据:3 1.732,2 1.414==)(1)求AB 的长(2)若ON 0.6=米,求M N 、两点的距离(精确0.01)25.如图,在ABC ∆中,5AC =,3tan 4A =,45B ∠=︒.点P 从点A 出发,沿AB 方向以每秒4个单位长度的速度向终点B 运动(不与点A 、B 重合).过点P 作PH AB ⊥,交折线--AC B 于点H ,点Q 为线段AP 的中点,以PH 、PQ 为边作矩形PQGH .设点P 的运动时间为t (秒).(1)直接写出矩形PQGH 的边PH 的长(用含t 的代数式表示);(2)当点G 落在边AC 上时,求t 的值;(3)当矩形PQGH 与ABC ∆重叠部分图形是四边形时,设重叠部分图形的面积为S (平方单位).求S 与t 之间的函数关系式;(4)当ABC ∆的重心落在矩形PQGH 的内部时,直接写出此时t 的取值范围. 26.如图,在△ABC 中,5AB AC ==,6BC =,将ABC ∆绕点B 逆时针旋转60︒得到△A′BC′,连接A C ',求A C '的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】过B 作BC ⊥桌面于C ,由题意得AB=10cm,BC=5cm,再由勾股定理得AC=53然后由坡度的定义即可得出答案. 【详解】 解:如图,过B 作BC ⊥桌面于C ,由题意得:AB =10cm ,BC =5cm ,∴AC=222210553AB BC -=-=,∴这个斜坡的坡度i =BC AC =53=1:3 ,故选:D .【点睛】本题考查了解直角三角形的应用-坡度坡角问题以及勾股定理;熟练掌握坡度的定义和勾股定理是解题的关键.2.B解析:B【分析】连接OC ,则∠OCE=90°,设OC=OB=x ,22CE BE k ==,根据勾股定理即可列出方程222(2)()x k x k +=+,解得32x k =,再根据余弦的定义即可求得答案. 【详解】解:如图,连接OC ,∵CE 切O 于点E ,∴∠OCE=90°,设OC=OB=x ,22CE BE k ==,∵在Rt OCE △中,222OC CE OE +=,∴222(2)()x k x k +=+,解得32x k =, ∴52OE OB BE k =+=, ∴24cos 552CE k E OE k ===,故选:B .【点睛】本题考查了切线的性质、勾股定理以及锐角三角函数,熟练掌握切线的性质以及勾股定理是解决本题的关键.3.B解析:B【分析】先利用正弦的定义得到10sin 0.250A ==,然后利用计算器求锐角∠A . 【详解】∵10A==,sin0.250ndFsin=,∴用计算器求值的顺序为20.2故选:B.【点睛】本题考查了锐角三角函数及计算器的应用,掌握科学计算器的应用是解决本题的关键.4.B解析:B【分析】过C点作CH⊥AD延长线于H点,由CH=AB=4求出AH的长,再减去AD即得到DH的长,再在Rt△DCH中使用勾股定理即可求出CD.【详解】解:如图所示,过C点作CH⊥AD延长线于H点,∵AD∥BC,∠B=90°,∴∠BAH=90°,且∠H=90°,∴四边形ABCH为矩形,∴AB=CH=4,AH CH AB,在Rt△ACH中,3343∴DH=AH-AD=23∴在Rt△CDH中,22121627CD DH CH,故选:B.【点睛】::是解决本题本题考查了解直角三角形,熟练掌握30°,60°,90°三角形中三边之比为3的关键.5.D解析:D【分析】过B点作BD⊥AC,得AB的长,AD的长,利用锐角三角函数得结果.【详解】解:过B点作BD⊥AC,如图,由勾股定理得,AB=221310+=AD=222222+=cosA=2225510ADAB==故选D.【点睛】本题考查了锐角三角函数和勾股定理,作出适当的辅助线构建直角三角形是解答此题的关键.6.B解析:B【分析】按照锐角三角函数的定义求各函数值即可.【详解】解:如图,由勾股定理可得BC=2222437AB AC-=-=选项A,74BCsinAAB==,故错误;选项B,3cos4ACAAB==,故正确;选项C,7tanBCAAC,故错误;选项D,37cot77ACABC===,故错误;故应选:B【点睛】本题考查了锐角三角函数定义,解答关键是按照相关锐角三角函数定义解题. 7.D解析:D【分析】根据锐角三角函数的定义得出cosα=BC AB 进而求出即可. 【详解】解:如图所示:∵AC=3,BC=4,∴AB=5,∴cosα=45BC AB . 故选:D .【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,正确构造直角三角形是解题关键. 8.D解析:D【分析】作AE ⊥BC 于E ,根据平行四边形的面积=矩形面积的一半,得出AE=12AB ,再由三角函数即可求出∠ABC 的度数,即可得到答案.【详解】解:作AE ⊥BC 于E ,如图所示:则∠AEB=90°,根据题意得:平行四边形的面积=BC•AE=12BC•AB , ∴AE=12AB ,∴sinB=12AE AB =, ∴∠ABC=30°, ∴∠BCD=150°.故选:D .【点睛】本题考查了平行四边形的性质、矩形的性质、面积的计算以及三角函数;熟练掌握平行四边形和矩形的性质,并能进行推理计算是解决问题的关键.9.B解析:B【分析】过E 作EG ⊥AB 于G ,EF ⊥BD 于F ,则BG=EF ,EG=BF ,求得∠EDF=30°,根据直角三角形的性质得到EF=12DE=4,DF=43,得到CF=CD+DF=4+43,根据三角函数的定义列方程即可得到结论.【详解】过E 作EG ⊥AB 于G ,EF ⊥BD 于F ,则BG =EF ,EG =BF ,∵∠CDE =150°,∴∠EDF =30°,∵DE =8,∴EF =12DE =4,DF =43, ∴CF =CD +DF =4+43,∵∠ABC =90°,∠ACB =45°,∴AB =BC ,∴GE =BF =AB +4+43,AG =AB ﹣4,∵∠AED =60°,∠GED =∠EDF =30°,∴∠AEG =30°,∴tan30°=3443AG GE AB ==++ , 解得:AB =14+63≈24.4,故选:B .【点睛】此题考查解直角三角形的应用-坡度坡角问题,根据题意作出辅助线是解题的关键. 10.D解析:D【分析】如图,延长AD 到M ,使得DM=DF ,连接BM .利用全等三角形的性质证明BM=CF=9,AB=BM ,利用勾股定理求出BC ,AC 即可解决问题.【详解】解:如图,延长AD 到M ,使得DM=DF ,连接BM .∵BD=DC ,∠BDM=∠CDF ,DM=DF ,∴△BDM ≌△CDF (SAS ),∴CF=BM=9,∠M=∠CFD ,∵CE ∥BM ,∴∠AFE=∠M ,∵EA=EF ,∴∠EAF=∠EFA ,∴∠BAM=∠M ,∴AB=BM=9,∵AE=4,∴BE=5,∵∠EBC=90°,∴2222135EC BE -=-,∴2222912AB BC ++,∴cos ∠ACB=124155BC AC == , 故选:D .【点睛】此题考查解直角三角形,全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 11.D解析:D【分析】此题根据已知可设AC =x ,则BC =2x ,根据三角函数的定义即可得到结论.【详解】解:∵BC =2AC ,∴设AC =a ,则BC =2a ,∵∠C =90°,∴AB=,∴cosA =5AC AB ==, 故选:D .【点睛】此题考查的知识点是锐角三角函数的定义,勾股定理,关键是熟练掌握锐角三角函数的定义.12.B解析:B【分析】先根据勾股定理求出BC=12,再利用余弦函数的定义即可求解.【详解】解:在Rt △ABC 中,由勾股定理得,BC 12,∴sin A =1213BC AB =, 故选:B .【点睛】 此题考查勾股定理以及锐角三角函数的定义,解题关键在于计算出BC 的长度.二、填空题13.【分析】连接DO 则OD=OB=2先由得出∠OCD=90°然后在Rt △COD 中求出cos ∠COD=得到∠COD=60°再根据扇形面积公式计算三角形面积公式即可【详解】连接DO 则OD=OB=2∵∴∠OC解析:23π【分析】连接DO ,则OD=OB=2.先由CD OB ⊥,得出∠OCD =90°,然后在Rt △COD 中求出cos ∠COD=12,得到∠COD=60°,再根据扇形面积公式计算、三角形面积公式即可. 【详解】连接DO ,则OD=OB=2.∵CD OB ⊥,∴∠OCD=90°,∵C 为OB 的中点,∴CO=1OB 2=12DO , ∴cos ∠COD=CO DO =12, ∴∠COD=60°, 则2222213OD OC -=-∴阴影部分的面积26021231336023ππ⨯=-⨯=. 故答案为:233π-. 【点睛】本题考查了扇形面积的计算,解直角三角形,利用三角函数定义及特殊角的三角函数值求出∠COD=60°是解题的关键. 14.或3或【分析】利用分类讨论①当∠BPC=90°时情况一:如图1利用直角三角形斜边的中线等于斜边的一半得出PO=BO 易得△BOP 为等边三角形利用锐角三角函数可得CP 的长;情况二:如图2利用直角三角形斜 解析:333或37【分析】利用分类讨论,①当∠BPC=90°时,情况一:如图1,利用直角三角形斜边的中线等于斜边的一半得出PO=BO ,易得△BOP 为等边三角形,利用锐角三角函数可得CP 的长;情况二:如图2,利用直角三角形斜边的中线等于斜边的一半可得结论.②当∠CBP=90°时,如图3,由对顶角的性质可得∠AOC=∠BOP=60°,易得∠BPO=30°,易得BP 的长,利用勾股定理可得CP 的长.【详解】解:①当∠CPB=90°时,情况一:(如图1),∵点O为BC中点,∴AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=6,∴CP=CB•sin60°=6×3=33;2情况二:如图2,∵点O为BC中点,∴AO=BO,∵∠CPB=90°,∴PO=BO=CO,∵∠AOC=60°,∴△COP为等边三角形,∴CP=CO=3,②当∠CBP=90°时,如图3,∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP=33 tan303OB==︒,在直角三角形CBP中,CP=22226(33)37BC BP+=+=故答案为:33或3或37.【点睛】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键.15.或(-20)【分析】需要分类讨论:在把绕点顺时针旋转和逆时针旋转后得到时点的坐标【详解】解:中∴如图1当绕点顺时针旋转后得到△过作轴交于点则则可得:即有因为在第三象限则的坐标是;如图2当绕点逆时针旋解析:()1,3--或(-2,0)【分析】需要分类讨论:在把ABO绕点O顺时针旋转150︒和逆时针旋转150︒后得到11A B O时点1A的坐标.【详解】解:ABO∆中,AB OB⊥,2OA=,1AB=,∴sin21OBAOBOA∠==,30AOB∴∠=︒.如图1,当ABO∆绕点O顺时针旋转150︒后得到△11A B O,过1A作1AC y⊥轴交于C点则1150150309030AOC AOB BOC∠=︒-∠-∠=︒-︒-︒=︒,则可得:111AOB AOB AOC≅≅即有2222213OC OB OA AB ==-=-=,11AC AB == 因为1A 在第三象限,则1A 的坐标是(1,3)--;如图2,当ABO ∆绕点O 逆时针旋转150︒后得到△11A B O ,则1150********AOB AOB ∠=︒+∠=︒+︒=︒, 即1A 在x 轴上,并有:12OA OAB ==,因为1A 在第二象限,则1A 的坐标是(2,0)-;综上所述,点1A 的坐标为(1,3)-或(2,0)-.故答案是:(1,3)-或(2,0)-.【点睛】 本题考查了坐标与图形变化-旋转.能进行分类讨论,是解题的关键.16.520【分析】过点A 作于点F 利用特殊角的锐角三角函数值和坡度求出AFBFCE 的长把整个梯形分成两个三角形和一个矩形去计算面积【详解】解:如图过点A 作于点F ∵∴∵∴故答案是:520【点睛】本题考查锐角解析:52.0【分析】过点A 作AF BC ⊥于点F ,利用特殊角的锐角三角函数值和坡度求出AF 、BF 、CE 的长,把整个梯形分成两个三角形和一个矩形去计算面积.【详解】解:如图,过点A 作AF BC ⊥于点F ,3sin 606332AF AB =⋅︒=⨯=, 1cos60632BF AB =⋅︒=⨯=, 33DE AF ==∵3DE EC = ∴9EC =, ∵1193333222ABF S AF BF =⋅=⨯=,11273933222CDE S CE DE =⋅=⨯⨯=, 433123ADEF S AD AF =⋅=⨯=, ∴9327312330352.0ABCD S =++=≈. 故答案是:52.0.【点睛】本题考查锐角三角函数的实际应用,解题的关键是掌握利用特殊角的锐角三角函数值解直角三角形的方法. 17.【解析】【分析】在和中利用锐角三角函数用CH 表示出AHBH 的长然后计算出AB 的长【详解】由于在中米在米米故答案为【点睛】本题考查了解直角三角形的应用——仰角俯角问题题目难度不大解决本题的关键是用含C 解析:()120031 【解析】【分析】在Rt ACH 和Rt HCB 中,利用锐角三角函数,用CH 表示出AH 、BH 的长,然后计算出AB 的长.【详解】由于CD//HB , CAH ACD 45∠∠∴==,B BCD 30∠∠==,在Rt ACH 中,CAH 45∠∴=,AH CH 1200∴==米,在Rt HCB ,CH tan B HB∠=, CH 1200HB 12003(tan B tan303∠∴====米), )AB HB HA 120031200120031∴=-==米, 故答案为()120031. 【点睛】本题考查了解直角三角形的应用——仰角、俯角问题,题目难度不大,解决本题的关键是用含CH 的式子表示出AH 和BH .18.【分析】根据菱形的性质及等腰三角形的性质可知∠BEC=2∠EDC=2∠EBC 从而可求∠EBC=30°在Rt △BCE 中可求EC 值由DE=EC 可求DE 的长【详解】∵四边形ABCD 是菱形∴CD=BC=AB解析:2【分析】根据菱形的性质及等腰三角形的性质可知∠BEC=2∠EDC=2∠EBC,从而可求∠EBC=30°,在Rt△BCE中可求EC值,由DE=EC可求DE的长.【详解】∵四边形ABCD是菱形,∴CD=BC=AB=6,∴∠EDC=∠EBC,∵DE=CE,∴∠EDC=∠ECD,∴∠BEC=2∠EDC=2∠EBC,在Rt△BCE中,∠EBC+∠BEC=90°,∴∠EBC=30°,∴3EC=⋅︒=⨯=,BC tan30623∴DE=EC=2,故答案为:2.【点睛】本题主要考查了菱形的性质、等腰三角形的判定和性质、解直角三角形的应用;熟练掌握菱形的性质,得出∠EBC=30°是解题的关键.19.【分析】由直角三角形中30°角所对的直角边等于斜边的一半可求出30°角对应的直角边再由勾股定理可知求出另一直角边进而求出斜边上的高【详解】解:如下图所示BC=4∠B=30°∠C=60°由直角三角形中解析:3【分析】由直角三角形中30°角所对的直角边等于斜边的一半,可求出30°角对应的直角边,再由勾股定理可知求出另一直角边,进而求出斜边上的高.【详解】解:如下图所示,BC=4,∠B=30°,∠C=60°由直角三角形中,30°角所对的直角边等于斜边的一半知:AC=12BC=2由勾股定理知:2222=422 3.-=-=AB BC AC在Rt△ABH中,AH=12AB=3.故答案为:3.【点睛】本题考查了直角三角形中30°角所对的直角边等于斜边的一半、勾股定理等相关知识,熟练掌握直角三角形的性质是解题的关键.20.【分析】根据等腰三角形的性质可求出两底角的度数连接AE可得出AE=BE 推出解直角三角形即可得出答案【详解】解:∵∴连接AE∵ED垂直平分AB∴AE=BE∵∴∴故答案为:【点睛】本题考查的知识点是等腰解析:23【分析】根据等腰三角形的性质可求出两底角的度数,连接AE,可得出AE=BE ,30EAD=∠°,推出90EAC∠=︒,解直角三角形即可得出答案.【详解】解:∵3AB AC cm==,120A∠=︒,∴1(180120)302B C,连接AE,∵ED垂直平分AB,∴AE=BE ,30EAD=∠°,∵120A∠=︒,∴90EAC∠=︒,∴23cos303ACCE===︒故答案为:23.【点睛】本题考查的知识点是等腰三角形的性质、解直角三角形、垂直平分线的性质,综合性较强,但难度不大.三、解答题21.(1)-10;(2)53)2.【分析】(1)先按照乘法分配律计算,再把二次根式化简,即可得出结果;(2)先按照除法法则进行计算,再把各二次根式化简,即可得出结果;(3)先把三角函数值代入,然后进行二次根式的计算即可.【详解】解:(1)原式;(2)原式=2+3(3)原式= 221322+=2. 【点睛】本题考查了二次根式的混合运算及特殊角三角函数值的运算,合理安排运算顺序,可达到简便计算的目的.22.(1)52-;(2)1 【分析】(1)直接代入特殊角的三角函数值进行计算即可解答;(2)直接利用特殊角的三角函数值和二次根式的性质分别化简计算即可解答.【详解】 解:(1)原式= 22121112-+-- = 11132-+- = 52-; (2)原式= 321)32⨯-++221++=1.【点睛】本题考查了实数的运算、二次根式的性质、特殊角的三角函数值,熟记特殊角的三角函数值,正确计算各数是解答的关键.23.(1)+2)【分析】(1)代入特殊角的三角函数值计算即可;(2)根据负整数指数幂、零次幂、特殊角三角函数值化简然后计算即可.【详解】(1)cos 451-sin60︒===︒(2)(12)-2-(π-3.14)0-│tan60°-2│=4-1-(【点睛】本题考查实数的混合运算,需要熟记特殊角度的三角函数值是解题的关键.24.(1)0.8;(2)1.04 m【分析】(1)已知AC 与BD ,求AB ,为此过D 作BE ⊥AC 于E ,可求AE ,由∠ABE 已知,利用30角所对直角.边等于斜边的一半,可求AB 即可,(2)过N 作NF ⊥MO 交射线MO 于F 点,则FN ∥EB ,∠ONF=α=30°,利用外角有∠M=∠MNO=12∠FON=30º,在30 º Rt △OFN 中,OF=12ON ,易求MF ,利用Rt △MFN 中MN=MF cos30︒即可. 【详解】(1)过B 作BE ⊥AC 于E ,则四边形CDBE 为矩形,CE=BD=0.26米,AC=0.66米, ∴AE=AC-EC=0.66-0.26=0.40米,在Rt △AEB 中,α=30°,AB=2AE=2×0.40=0.80米,(2)过N 作NF ⊥MO 交射线MO 于F 点,则FN ∥EB ,∴∠ONF=α=30°,∵ON=0,6米,∴OF=12ON=0,3米, ∵OM=ON=0.6米,∴MF=0.9米,∴∠FON=90º-30º=60º,∴∠M=∠MNO=12∠FON=30º, 在Rt △MFN 中,MN=MF 1.04cos30≈︒.【点睛】本题考查求斜面长,MN长,关键是掌握把要求的线段置于Rt △中,用三角函数来解决问题.25.1)3,01774,14t tPHt t<≤⎧⎪=⎨-<<⎪⎩;(2)1411;(3)229,012147814,114t tSt t t⎧<≤⎪⎪=⎨⎪-+≤<⎪⎩;(4)113122t<<.【分析】(1)分两种情况讨论:当点Q在线段AC上时;当点Q在线段BC上时;(2)当点G落在AC上,显然H在BC上,利用正切定义tanGQAAQ=,列方程即可求解;(3)分情况讨论:当01t≤<时,14111t<<时,147114t≤<时,分别求得S与t的关系式即可;(4)根据题意不难写出t的取值范围即可.【详解】解析(1)①当点H在AC边上时,点P速度为4/s,时间为ts,4AP t∴=90APH∠=︒tan3PH AP A t∴=⋅∠=.②4AP t=,作CD AB⊥于D,3tan4CDAAD∠==且5AC=,4AD ∴=,3CD =,45B ∠=︒,90CDB ∠=︒,45BCD B ∴∠=︒=∠,3BD CD ∴==,7AB =,74BP AB AP t ∴=-=-,90HPB ∠=︒,45B ∠=︒,74HP BP t ∴==-(2)当点G 落在AC 上,如图,此时4AP t =,122AQ AP t ==,74GQ PH t ==- tan GQ A AQ =,即74324t t -=, 解得:1411t = (3)当01t <≤时,如图,此时3PH t =,4AP t =,122AQ PQ AP t === 3tan 2EQ AQ A t =⋅∠= 213932222PQEH S S t t t t ⎛⎫==+⋅= ⎪⎝⎭四 当14111t <<时,如图,此时重叠部分为五边形,不考虑. 当147114t ≤<时,如图,此时74PH t =-,4AP t =,122AQ PQ AP t === 22(74)814PQGH S S PQ PH t t t t ==⋅=-=-+四. (4)如图,建立坐标系点A 为原为,点()7,0B ,点()4,3C ,由重心坐标公式可知,1133A B C G x x x x ++== 13A B C G y y y y ++== ∴重心011,13G ⎛⎫ ⎪⎝⎭①0G 第一次进入矩形时0G 在PH 上,此时11114312AP t t ==⇒=, ②0G 第一次出去矩形时,0G 在GH 上, 此时031742G PH y t t ===-⇒=③0G 在GQ 上时,113AQ =,22243AP AQ t ===, 此时11764t =>不满足题意不考虑; ∴当0G 在矩形内部时,(不含边长),113122t <<. 【点睛】本题属于四边形综合题,考查了解直角三角形的应用,矩形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题. 26.433A C '=+【分析】利用旋转的性质得BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,再判断出△BCC'是等边三角形,即可得到BC=C'C ,进而判断出A'C 是线段BC'的垂直平分线,最后用勾股定理和三角函数求解即可.【详解】 解:如图,连接CC',∵△ABC 绕点B 逆时针旋转60°得到△A′BC′,∴BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,∴△BCC'是等边三角形,∴BC=C'C ,∵A'B=A'C',∴A'C 是BC'的垂直平分线,垂足为D ,∴BD=12BC'=3, 在Rt △A'BD 中,A'B=5,BD=3,根据勾股定理得,A'D=4,在Rt △BCD 中,∠CBD=60°,BC=6,∴CD=BC•cos ∠CBD=6×sin60°3∴3【点睛】本题考查了旋转的性质,等边三角形的判定和性质,线段的垂直平分线的判定和性质,锐角三角函数,勾股定理,解本题的关键是判断出A'C 是线段BC'的垂直平分线.。
上海兰生复旦数学全等三角形单元测试卷(word版,含解析)一、八年级数学轴对称三角形填空题(难)1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD =BD =CD ,∴∠B =∠BAD ,∠C =∠CAD ,∴∠BAD +∠CAD =12×180°=90°, ∴顶角∠BAC =90°, 综上所述,等腰三角形ABC 的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.2.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.【答案】10【解析】【分析】由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.【详解】解:∵BC CD =,∴∠CBD =∠CDB ,∵BD 平分ADC ∠,∴∠ADB =∠CDB ,∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,∴CA=CD ,∴CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152DE BD ==,12BCF ACB ∠=∠, ∵12BDC ADC ∠=∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠,在△BCF和△CDE中,∵BCF CDE∠=∠,∠BFC=∠CED=90°,CB=CD,∴△BCF≌△CDE(AAS),∴CF=DE=5,∴11451022ABCS AB CF=⋅=⨯⨯=.故答案为:10.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.3.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE 的长为10,即PE+PF的最小值为10.故答案为10.4.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).【答案】①②③【解析】【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断④错误.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠BDC=∠ADC=∠AEB=90°,∴∠A +∠ABE=90°,∠ABE +∠DFB=90°,∴∠A=∠DFB ,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC ,∴BD=DC ,在△BDF 和△CDA 中,∠BDF=∠CDA ,∠A=∠DFB ,BD=CD ,∴△BDF ≌△CDA (AAS ),∴BF=AC ,故①正确.∵∠ABE=∠EBC=22.5°,BE ⊥AC ,∴∠A=∠BCA=67.5°,故②正确,∵BE 平分∠ABC ,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF ,故③正确.作GM ⊥AB 于M .如图所示:∵∠GBM=∠GBH ,GH ⊥BC ,∴GH=GM <DG ,∴S △DGB >S △GHB ,∵S △ABE =S △BCE ,∴S 四边形ADGE <S 四边形GHCE .故④错误,故答案为:①②③.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.5.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG ,利用△BDF ≌△GDE ,转换BF=GE ,然后即可求得其最小值.【详解】以BD 为边作等边三角形BDG ,连接GE ,如图所示:∵等边三角形BDG ,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG ,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD ,即∠BDF=∠GDE∴△BDF ≌△GDE (SAS )∴BF=GE当GE ⊥AC 时,GE 有最小值,如图所示GE′,作DH ⊥GE′∴BF=GE= CD+12DG=2+1=3 故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.6.如图,已知,点E 是线段AB 的中点,点C 在线段BD 上,8BD =,2DC =,线段AC 交线段DE 于点F ,若AF BD =,则AC =__________.【答案】10.【解析】【分析】延长DE 至G ,使EG=DE ,连接AG ,证明BDE AGE ∆≅∆,而后证明AFG ∆、CDF ∆是等腰三角形,即可求出CF 的长,于是可求AC 的长.【详解】解:如图,延长DE 至G ,使EG=DE ,连接AG ,∵点E 是线段AB 的中点,∴AE=BE,∴在BDE ∆和AGE ∆中,BE AE BED AEGDE EG =⎧⎪∠=∠⎨⎪=⎩, ∴BDE AGE ∆≅∆,∴AG=BD, BDE AGE ∠=∠,∵AF=BD=8,∴AG=AF,∴AFG AGE ∠=∠∵AFG DFC ∠=∠,∴BDE DFC ∠=∠,∴FC=DC,∴FC=2,∴AC=AF+FC=8+2=10.【点睛】本题考查了等腰三角形的性质与判定以及全等三角形的判定与性质,能利用中点条件作辅助线构造全等三角形是解题的关键.7.如图,在△ABC 中,AB =BC =8,AO =BO ,点M是射线CO 上的一个动点,∠AOC =60°,则当△ABM 为直角三角形时,AM 的长为______.【答案】或4【解析】【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM=∴Rt△ABM中,AM综上所述,当△ABM为直角三角形时,AM的长为4.故答案为或4.8.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键9.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出_____个格点三角形与△ABC成轴对称.【答案】6【解析】【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】如图,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.10.如图,在四边形ABCD中,∠A=60°,∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.【详解】分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:在AD 、AB 上任意取E 1、F 1两点根据对称性:∴CE=C 1E ,CE 1=C 1E 1,CF=C 2F ,CF 1=C 2F 1∴△CEF 的周长= CE +EF +CF= C 1E +EF +C 2F= C 1C 2而△CE 1F 1的周长= CE 1+E 1F 1+CF 1= C 1E 1+E 1F 1+C 2F 1根据两点之间线段最短,故C 1E 1+E 1F 1+C 2F 1>C 1C 2∴△CEF 的周长的最小为:C 1C 2.∵∠A=60°, ∠ADC=∠ABC=90°∴∠DCB=360°-∠A -∠ADC -∠ABC=120°∴∠C C 1C 2+∠C C 2C 1=180°-∠DCB=60°根据对称性:∠C C 1C 2=∠E CD ,∠C C 2C 1=∠F CB∴∠E CD +∠F CB=∠C C 1C 2+∠C C 2C 1=60°∴∠ECF =∠DCB -(∠E CD +∠F CB )=60°故答案为:60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,ABC ,分别以AB 、AC 为边作等边三角形ABD 与等边三角形ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,连接AF ,有以下四个结论:①BE CD =;②FA 平分EFC ∠;③FE FD =;④FE FC FA +=.其中一定正确的结论有( )A .1B .2C .3D .4【答案】C【解析】【分析】根据等边三角形的性质证出△BAE≌△DAC,可得BE=CD,从而得出①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,由△BAE≌△DAC得出∠BEA=∠ACD,由等角的补角相等得出∠AEM=∠CAN,由AAS可证△AME≌△ANC,得到AM=AN,由角平分线的判定定理得到FA平分∠EFC,从而得出②正确;在FA上截取FG,使FG=FE,根据全等三角形的判定与性质得出△AGE≌△CFE,可得AG=CF,即可求得AF=CF+EF,从而得出④正确;根据CF+EF=AF,CF+DF=CD,得出CD≠AF,从而得出FE≠FD,即可得出③错误.【详解】∵△ABD和△ACE是等边三角形,∴∠BAD=∠EAC=60°,AE=AC=EC.∵∠BAE+∠DAE=60°,∠CAD+∠DAE=60°,∴∠BAE=∠DAC,在△BAE和△DAC中,∵AB ADBAE DAC AE AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△DAC(SAS),∴BE=CD,①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,如图1.∵△BAE≌△DAC,∴∠BEA=∠ACD,∴∠AEM=∠ACN.∵AM⊥BF,AN⊥DC,∴∠AME=∠ANC.在△AME和△ANC中,∵∠AEM=∠CAN,∠AME=∠ANC,AE=AC,∴△AME≌△ANC,∴AM=AN.∵AM⊥BF,AN⊥DC,AM=AN,FA平分∠EFC,②正确;在FA上截取FG,使FG=FE,如图2.∵∠BEA=∠ACD,∠BEA+∠AEF=180°,∴∠AEF+∠ACD=180°,∴∠EAC+∠EFC=180°.∵∠EAC=60°,∴∠EFC=120°.∵FA平分∠EFC,∴∠EFA=∠CFA=60°.∵EF=FG,∠EFA=60°,∴△EFG是等边三角形,∴EF=EG.∵∠AEG+∠CEG=60°,∠CEG+∠CEF=60°,∴∠AEG=∠CEF,在△AGE和△CFE中,∵AE ACAEG CEFEG EF=⎧⎪∠=∠⎨⎪=⎩,∴△AGE≌△CFE(SAS),∴AG=CF.∵AF=AG+FG,∴AF=CF+EF,④正确;∵CF+EF=AF,CF+DF=CD,CD≠AF,∴FE≠FD,③错误,∴正确的结论有3个.故选C.【点睛】本题考查了等边三角形的判定与性质以及全等三角形的判定与性质,正确作辅助线是解答本题的关键.12.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A .锐角三角形B .直角三角形C .钝角三角形D .随x ,m ,n 的值而定【答案】C【解析】【分析】 将△ABM 绕点B 顺时针旋转60°得到△CBH .连接HN .想办法证明∠HCN =120°HN =MN =x 即可解决问题.【详解】将△ABM 绕点B 顺时针旋转60°得到△CBH .连接HN .∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°.∵∠MON =30°,∴∠CBH +∠CBN =∠ABM +∠CBN =30°,∴∠NBM =∠NBH .∵BM =BH ,BN =BN ,∴△NBM ≌△NBH ,∴MN =NH =x .∵∠BCH =∠A =60°,CH =AM =n ,∴∠NCH =120°,∴x ,m ,n 为边长的三角形△NCH 是钝角三角形.故选C .【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.13.如图,在ABC ∆中,120BAC ︒∠=,点,E F 分别是ABC ∆的边AB 、AC 的中点,边BC 分别与DE 、DF 相交于点,H G ,且,DE AB DF AC ⊥⊥,连接AD 、AG 、AH ,现在下列四个结论:①60EDF ︒∠=,②AD 平分GAH ∠,③B ADF ∠=∠,④GD GH =.则其中正确的结论有( ).A .1个B .2个C .3个D .4个【答案】A【解析】【分析】利用,DE AB DF AC ⊥⊥及四边形的内角和即可得到①正确;;根据三角形内角和与线段的垂直平分线性质得到∠BAH+∠GAC=60︒,无条件证明∠GAD=∠HAD,故②错误;由等量代换得B ADF ∠≠∠,故③错误;利用三角形的内角和与对顶角相等得到GD GH ≠,故④错误.【详解】∵,DE AB DF AC ⊥⊥,∴∠DEA=∠DFA=90︒,∵120BAC ︒∠=,∴∠EDF=360︒-∠DEA-∠DFA-∠BAC=60︒,故①正确;∵120BAC ︒∠=,∴∠B+∠C=60︒,∵点,E F 分别是ABC ∆的边AB 、AC 的中点,,DE AB DF AC ⊥⊥,∴BH=AH ,AG=CG ,∴∠BAH=∠B ,∠GAC=∠C ,∴∠BAH+∠GAC=60︒,∵无条件证明∠GAD=∠HAD,∴AD 不一定平分GAH ∠,故②错误;∵∠ADF+∠DAF=90︒,∠B=∠BAH,90BAH DAF ∠+∠≠,∴B ADF ∠≠∠,故③错误;∵90B BHE ∠+∠=,30B ∠≠ ,∴ 60BHE ∠≠,∴60DHG ∠≠,∴DHG HDG ∠≠∠,∴GD GH ≠,故④错误,故选:A.【点睛】此题考查线段的垂直平分线的性质,利用三角形的内角和,四边形的内角和求角度,利用对顶角相等,等角对等边推导边的关系.14.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水. 某同学用直线(虛线)l 表示小河,,P Q 两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是( ).A .B .C .D .【答案】C【解析】【分析】根据轴对称分析即可得到答案.【详解】根据题意,所需管道最短,应过点P 或点Q 作对称点,再连接另一点,与直线l 的交点即为水泵站M ,故选项A 、B 、D 均错误,选项C 正确,故选:C.【点睛】此题考查最短路径问题,应作对称点,使三点的连线在同一直线上,这是此类问题的解题目标,把握此目标即可正确解题.15.如图,△ABC 中,AB =AC ,且∠ABC =60°,D 为△ABC 内一点 ,且DA =DB ,E 为△ABC 外一点,BE =AB ,且∠EBD =∠CBD ,连DE ,CE. 下列结论:①∠DAC =∠DBC ;②BE ⊥AC ;③∠DEB =30°. 其中正确的是( )A .①...B .①③...C .② ...D .①②③【答案】B【解析】【分析】 连接DC,证ACD BCD DAC DBC ∠∠≅=得出①,再证BED BCD ≅,得出BED BCD 30∠∠==︒;其它两个条件运用假设成立推出答案即可.【详解】 解:证明:连接DC ,∵△ABC 是等边三角形,∴AB=BC=AC ,∠ACB=60°,∵DB=DA ,DC=DC ,在△ACD与△BCD中,AB BC DB DA DC DC=⎧⎪=⎨⎪=⎩,∴△ACD≌△BCD (SSS),由此得出结论①正确;∴∠BCD=∠ACD=130 2ACB∠=︒∵BE=AB,∴BE=BC,∵∠DBE=∠DBC,BD=BD,在△BED与△BCD中,BE BCDBE DBCBD BD=⎧⎪∠=∠⎨⎪=⎩,∴△BED≌△BCD (SAS),∴∠DEB=∠BCD=30°.由此得出结论③正确;∵EC∥AD,∴∠DAC=∠ECA,∵∠DBE=∠DBC,∠DAC=∠DBC,∴设∠ECA=∠DBC=∠DBE=∠1,∵BE=BA,∴BE=BC,∴∠BCE=∠BEC=60°+∠1,在△BCE中三角和为180°,∴2∠1+2(60°+∠1)=180°∴∠1=15°,∴∠CBE=30,这时BE是AC边上的中垂线,结论②才正确.因此若要结论②正确,需要添加条件EC∥AD.故答案为:B.【点睛】本题考查的知识点主要是全等三角形的判定与性质以及等边三角形的性质,通过已知条件作出恰当的辅助线是解题的关键点.16.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°【答案】B【解析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案:如图,作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH.∵∠BAD=120°,∴∠HAA′=60°.∴∠AA′M+∠A″=∠HAA′=60°.∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°.故选B.17.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)【答案】A【解析】试题分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M 的对应点的坐标,即可得规律:第n 次变换后的点M 的对应点的为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2),继而求得把正方形ABCD 连续经过2014次这样的变换得到正方形ABCD 的对角线交点M 的坐标.试题解析:∵正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).∴对角线交点M 的坐标为(2,2),根据题意得:第1次变换后的点M 的对应点的坐标为(2-1,-2),即(1,-2), 第2次变换后的点M 的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M 的对应点的坐标为(2-3,-2),即(-1,-2),第n 次变换后的点M 的对应点的为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2),∴连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为(-2012,2). 故选A .考点:1.翻折变换(折叠问题);2.正方形的性质;3.坐标与图形变化-平移.18.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:①∠ADC =15°;②AF =AG ;③AH =DF ;④△ADF ≌△BAH ;⑤DF =2EH .其中正确结论的个数为( )A .5B .4C .3D .2【答案】B【解析】【分析】 ①根据△ABC 为等边三角形,△ABD 为等腰直角三角形,可以得出各角的度数以及DA=AC ,即可作出判断;②分别求出∠AFG 和∠AGD 的度数,即可作出判断;④根据三角形内角和定理求出∠HAB 的度数,求证EHG DFA ∠=∠,利用AAS 即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH ,又由③可知AH DF =,即可作出判断.【详解】①正确:∵ABC △是等边三角形,∴60BAC ︒∠=,∴CA AB =.∵ABD △是等腰直角三角形,∴DA AB =.又∵90BAD ︒∠=,∴150CAD BAD BAC ︒∠=∠+∠=,∴DA CA=,∴()1180150152ADC ACD︒︒︒∠=∠=-=;②错误:∵∠EDF=∠ADB-∠ADC=30°∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG∵∠AGD=90°-∠ADG=90°-15°=75°∠AFG≠∠AGD∴AF≠AG③,④正确,由题意可得45DAF ABH︒∠=∠=,DA AB=,∵AE BD⊥,AH CD⊥.∴180EHG EFG︒∠+∠=.又∵180?DFA EFG∠+∠=,∴EHG DFA∠=∠,在DAF△和ABH中()AFD BHADAF ABH AASDA AB∠=∠⎧⎪∠=∠⎨⎪=⎩∴DAF△≌ABH.∴DF AH=.⑤正确:∵150CAD︒∠=,AH CD⊥,∴75DAH︒∠=,又∵45DAF︒∠=,∴754530EAH︒︒︒∠=-=又∵AE DB⊥,∴2AH EH=,又∵=AH DF,∴2DF EH=【点睛】本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.19.如图所示,在四边ABCD中,∠BAD=120°,∠B=∠D=90°,若在BC和CD上分别找一点M,使得△AMN的周长最小,则此时∠AMN+∠ANM的度数为()A.110°B.120°C.140°D.150°【答案】B【解析】【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°,∴∠AA′M+∠A″=180°-120°=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故选B.【点睛】此题主要考查了平面内最短路线问题求法,以及三角形的外角的性质和垂直平分线的性质等知识的综合应用,根据轴对称的性质,得出M,N的位置是解题的关键.20.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=108°,则∠C的度数为()A.40°B.41°C.32°D.36°【答案】D【解析】分析:如图,连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=108°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,由此即可解决问题.详解:如图,连接AO、BO.由题意得:EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°.∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO.∵∠CDO+∠CFO=108°,∴2∠DAO+2∠FBO=108°,∴∠DAO+∠FBO=54°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=144°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣144°=36°.故选D.点睛:本题考查了三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.。
上海兰生复旦数学三角形填空选择单元测试卷 (word 版,含解析)一、八年级数学三角形填空题(难)1.如图,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD=2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是_____.【答案】30【解析】【分析】由于BD =2DC ,那么结合三角形面积公式可得S △ABD =2S △ACD ,而S △ABC =S △ABD +S △ACD ,可得出S △ABC =3S △ACD ,而E 是AC 中点,故有S △AGE =S △CGE ,于是可求S △ACD ,从而易求S △ABC .【详解】解:∵BD =2DC ,∴S △ABD =2S △ACD ,∴S △ABC =3S △ACD .∵E 是AC 的中点,∴S △AGE =S △CGE .又∵S △GEC =3,S △GDC =4,∴S △ACD =S △AGE +S △CGE +S △CGD =3+3+4=10,∴S △ABC =3S △ACD =3×10=30. 故答案为30.【点睛】本题考查了三角形的面积公式、三角形之间的面积加减计算.注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.2.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠: 1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=________________.【答案】20202α【解析】 【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知21211112222a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】解:∵∠ABC 与∠ACD 的平分线交于点A 1,∴11118022A ACD ACB ABC ∠=︒-∠-∠-∠ 1118018022ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠()() 1122a A =∠=, 同理可得221122a A A ∠=∠=, …∴2020A ∠=20202α. 故答案为:20202α. 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.3.如图,△AEF 是直角三角形,∠AEF=900,B 为AE 上一点,BG⊥AE 于点B ,GF∥BE,且AD =BD =BF ,∠BFG=600,则∠AFG 的度数是___________。
【答案】20°【解析】根据平行线的性质,可知∠A=∠AFG ,∠EBF=∠BFG=600,然后根据等腰三角形的性质,可知∠BDF=2∠A ,∠A+∠AFB=3∠A=∠EBF ,因此可得∠AFG=20°. 故答案为:20°.4.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.【答案】1980【解析】【详解】解:设多边形的边数为n,多加的角度为α,则(n-2)×180°=2005°-α,当n=13时,α=25°,此时(13-2)×180°=1980°,α=25°故答案为1980.5.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.6.如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在△ABC 外的 A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .【答案】γ=2α+β.【解析】【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',代入已知可得结论.【详解】由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为:γ=2α+β.【点睛】此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.7.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.【答案】45°【解析】【分析】根据正多边形的外角度数等于外角和除以边数可得.【详解】∵硬币边缘镌刻的正多边形是正八边形,∴它的外角的度数等于360÷8=45°.故答案为45°.【点睛】 本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.8.如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,220∠=,则B ∠=__________.【答案】50°【解析】【分析】由角平分线的定义和已知可求出∠BAC ,由AD 是BC 边上的高和已知条件可以求出∠C,然后运用三角形内角和定理,即可完成解答.【详解】解:∵AE 平分BAC ∠,若130∠=∴BAC ∠=2160∠=;又∵AD 是BC 边上的高,220∠=∴C ∠=90°-270∠= 又∵BAC ∠+∠B+∠C=180°∴∠B=180°-60°-70°=50°故答案为50°.【点睛】本题考查了角平分线、高的定义以及三角形内角和的知识,考查知识点较多,灵活运用所学知识是解答本题的关键.9.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.【答案】40°【解析】【分析】根据外角的概念求出∠ADC 的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD ⊥AB ,∴∠DAB=90°,∴∠B=360°﹣∠C ﹣∠ADC ﹣∠A=40°,故答案为40°.【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.10.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,若长方形纸片的一组对边与直角三角形的两条直角边相交成∠1,∠2,则∠2-∠1=____.【答案】90°【解析】【分析】【详解】如图:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为90°.二、八年级数学三角形选择题(难)11.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A.2a-10B.10-2aC.4D.-4【答案】C【解析】试题分析:已知三角形的三边长分别为2,a-1,4,则根据三角形的三边关系:可得:a-1>4-2,a-1<2+4即a>3,a<7.所以a-3>0,a-7<0. |a-3|+|a-7|=a-3+(7-a)=4.故选C点睛:本题主要考查考生三角形的三边关系:两边之和大于第三边,两边之差小于第三边。
由此可以得到a>3,a<7,因此可以判断a-3和a-7的正负情况。
此题还考查了考生绝对值的运算法则:正数的绝对值是其本身,负数的绝对值是它的相反数,零的绝对值还是零。
由此可化简|a -3|+|a -7|12.如图,ABC 的面积为1.分别倍长(延长一倍)AB ,BC ,CA 得到111A B C .再分别倍长A 1B 1,B 1C 1,C 1A 1得到222A B C .…… 按此规律,倍长2018次后得到的201820182018A B C 的面积为( )A .20176B .20186C .20187D .20188【答案】C【解析】 分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此类推写出即可.详解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,S △A 1B 1C 1=7S △ABC ,同理S △A 2B 2C 2=7S △A 1B 1C 1=72S △ABC ,依此类推,S △AnBnCn =7n S △ABC .∵△ABC 的面积为1,∴S △AnBnCn =7n ,∴S △A 2018B 2018C 2018=72018.故选C .点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.13.如图,三角形ABC 内的线段,BD CE 相交于点O ,已知OB OD =,2OC OE =.若BOC ∆的面积=2,则四边形AEOD 的面积等于( )A.4 B.5 C.6 D.7【答案】D【解析】【分析】连接AO,利用等高不等底的三角形面积比等于底长的比,可求出△COD与△BOE的面积.列出关于△AOE与△AOD的面积的方程即可求出四边形AEOD的面积.【详解】连接OA,∵OB=OD,∴S△BOC=S△COD=2,∵OC=2OE,∴S△BOE=12S△BOC=1,∵OB=OD,∴S△AOB=S△AOD,∴S△BOE+S△AOE=S△AOD,即:1+S△AOE=S△AOD①,∵OC=2OE,∴S△AOC=2S△AOE,∴S△AOD+S△COD=2S△AOE,即:S△AOD+2=2S△AOE②,联立①和②:解得:S△AOE=3,S△AOD=4,S四边形AEOD=S△AOE+S△AOD=7,故选D.【点睛】本题考查三角形面积问题,涉及方程组的解法,注意灵活运用等高不等底的三角形面积比等于底长的比这一结论.14.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--【答案】A【解析】【分析】【详解】 分析:根据三角形的外角得:∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',代入已知可得结论. 详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.15.如图,直线a ∥b ,若∠1=50°,∠3=95°,则∠2的度数为( )A.35°B.40°C.45°D.55°【答案】C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:如图,根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3-∠1=95°-50°=45°,∵a∥b,∴∠2=∠4=45°.故选C.【点睛】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.16.若正多边形的内角和是540︒,则该正多边形的一个外角为()A.45︒B.60︒C.72︒D.90︒【答案】C【解析】【分析】n-•︒求出多边形的边数,再根据多边形的外角和是固定根据多边形的内角和公式()2180的360︒,依此可以求出多边形的一个外角.【详解】正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572==.÷︒【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.17.一正多边形的内角和与外角和的和是1440°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形【答案】C【解析】【分析】依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.【详解】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°+360°=1440°,n﹣2=6,n=8.故这个多边形的边数为8.故选:C.【点睛】考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.18.一个多边形的内角和是900°,则这个多边形的边数为()A.6 B.7 C.8 D.9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.19.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG;其中正确的个数是()A.1B.2C.3D.4【答案】C【解析】【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB.又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;④无法证明CA平分∠BCG,故错误;③∵∠A=90°,∴∠ADC+∠ACD=90°.∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,∴∠CGE=2∠DFB,∴∠DFB=∠CGE,故正确.故选C.点睛:本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.20.一个多边形的每个内角均为108º,则这个多边形是()A.七边形 B.六边形 C.五边形 D.四边形【答案】C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.。