设计材料及加工工艺整理
- 格式:doc
- 大小:71.00 KB
- 文档页数:30
加工工艺及夹具设计一、引言加工工艺及夹具设计在制造业中起着至关重要的作用。
加工工艺是将原材料转化为成品的过程,而夹具则是用于固定工件,以保证加工精度和工艺稳定性的工具。
本文将重点探讨加工工艺的基本原理和夹具设计的要点。
二、加工工艺的基本原理1.加工工艺的分类加工工艺可以分为传统加工工艺和先进加工工艺。
传统加工工艺包括车削、铣削、镗削等,而先进加工工艺则包括电火花加工、激光加工、水刀切割等。
不同的加工工艺适用于不同的工件材料和形状,选择适当的加工工艺能够提高生产效率和产品质量。
2.加工工艺的优化优化加工工艺可以提高生产效率和降低成本。
在加工工艺中,我们可以通过选择合适的切削速度、进给速度和切削深度来提高加工效率。
此外,合理选择刀具材料和刀具几何形状也是优化加工工艺的重要手段。
3.加工工艺的控制加工工艺的控制是保证加工精度和产品质量的关键。
在加工过程中,我们可以通过控制切削力、刀具温度和工件表面质量等参数来实现加工工艺的控制。
此外,使用先进的自动化设备和检测仪器也是加工工艺控制的重要手段。
三、夹具设计的要点1.夹具类型的选择夹具类型的选择应根据工件的形状和加工要求来确定。
常见的夹具类型包括机械夹具、气动夹具和液压夹具等。
根据工件的特点,选择合适的夹具类型可以提高夹持力和稳定性,确保加工精度。
2.夹具结构的设计夹具结构的设计应考虑工件的形状和加工要求。
夹具的结构应尽量简单、紧凑,并且易于装夹和卸夹。
在设计夹具结构时,还应考虑夹具的刚度和稳定性,以确保夹持力的稳定和均匀。
3.夹具材料的选择夹具材料的选择应根据工件材料和加工要求来确定。
夹具材料应具有良好的刚度和耐磨性,以确保夹具的使用寿命和稳定性。
此外,夹具材料还应具有良好的热传导性能,以避免加工过程中的热变形和变色问题。
4.夹具的定位和固定夹具的定位和固定是确保加工精度的关键。
在夹具设计中,应考虑工件的定位方式和夹持力的分布情况。
合理的定位和固定方式可以提高夹持力的稳定性,减小加工误差。
五金加工主要的技术工艺流程及工艺介绍1. 设计与规划五金加工的第一步是进行设计与规划,包括产品设计、材料选择、工艺路线确定等。
这个阶段需要与客户进行沟通,了解其需求,并根据需求进行产品设计。
同时,还需要考虑到材料的物理特性、成本以及生产效率等因素,制定合理的工艺路线。
2. 材料准备在开始加工之前,需要对所使用的材料进行准备。
首先是选择合适的原材料,根据产品要求选择不同种类和规格的金属材料。
然后对选定的材料进行切割和整理,以便后续加工使用。
3. 加工方式选择根据产品的形状和要求,选择合适的加工方式。
常见的五金加工方式包括冲压、铸造、锻造、焊接、机械加工等。
不同的加工方式适用于不同类型和形状的产品。
3.1 冲压冲压是通过模具将金属板材或带状材料在冲床上进行一系列冲击、拉伸和弯曲等变形操作来实现加工的一种方式。
冲压加工可以高效地生产大批量、高精度的零部件,广泛应用于汽车、电子、家电等行业。
冲压工艺流程包括以下几个步骤:•材料切割:将金属板材按照尺寸要求进行切割,通常使用剪板机进行操作。
•模具设计与制造:根据产品的形状和尺寸要求,设计制造合适的冲压模具。
•冲压操作:将切割好的金属板材放置在冲床上,通过模具进行冲击、拉伸和弯曲等操作,使其变形成所需形状。
•去毛刺与清洗:对冲压后的零部件进行去毛刺处理,并进行清洗以去除表面的污垢。
•表面处理:根据产品要求,对零部件进行表面处理,如喷涂、镀铬等。
3.2 铸造铸造是将熔化的金属或合金倒入模具中,并在其凝固后获得所需形状和尺寸的工艺。
铸造加工适用于制作复杂形状或大型零件。
铸造工艺流程包括以下几个步骤:•模具设计与制造:根据产品的形状和尺寸要求,设计制造合适的铸造模具。
•材料熔化:将所选材料加热到其熔点以上,使其完全熔化为液态。
•浇注:将熔化的金属或合金倒入模具中,在其凝固后获得所需形状和尺寸的零件。
•清理与整理:对铸造后的零件进行去毛刺和修整,以获得平整的表面和精确的尺寸。
四方刀架的加工工艺及夹具设计前言机床四方刀架,它是一种应用广泛的夹持刀具的部件,它可以同时夹持四把刀具,并可以通过旋转位置以实现换刀的功能。
功能就是夹持刀具可实现转位换刀。
四方刀架由于经常旋转接触面而需较高的精度。
持刀时要较高的压紧力,因此持刀面要一定的硬度和强度。
零件材料为45钢,零件在工作中需较大夹持力和较好的耐磨性,因此应选择煅造,提高零件的刚度和强度,以增强刀具加工的位置精度。
制定工艺路线的出发点,应当是使零件的几何形状,尺寸精度及位置精度等技术要求能得到合理的保证。
在生产纲领已确定为中批量生产的条件下,可以考虑采用万能性机床配以专用工夹具,并尽量使工序集中来提高生产率。
除此以外,还应当考虑经济效果,以便使生产成本尽量下降。
基面选择是工艺规程设计中的重要工作之一。
基面选择得正确与合理,可以使加工质理得到保证,生产得以提高。
否则,加工工艺过程中会问题百出,更有甚者,还会造成零件大批量报废,使生产无法正常进行。
分析毛坯的余量大小及均匀性,主要是考虑在加工时要不要分层切削,分几层切削,也要分析加工中与加工后的变形程度,考虑是否应采取预防性措施与补救措施。
如对于热轧中、厚铝板,经淬火时效后很容易在加工中与加工后变形,最好采用经预拉伸处理后的淬火板坯。
总之,经过一段时间的调研,参阅大量的资料,根据学校提供的技术资料,确定做四方刀架的加工工艺及夹具设计。
目录摘要 (2)Abstrac (3)第一章概述 (4)1.1四方刀架的作用 (4)1.2四方刀架的要求 (4)1.3加工四方刀架的机床选择 (4)1.4加工四方刀架的刀具选择 (7)第二章四方刀架的工艺性分析 (9)2.1工艺路线的拟定: (9)2.2加工阶段的划分: (10)2.3工序的集中与分散 (11)2.4加工顺序的安排: (11)第三章四方刀架工艺规程的设计 (15)3.1确定四方刀架毛坯的制造方式 (15)3.2四方刀架基准面的选择 (15)3.3加工四方刀架工艺路线的确定 (16)3.4根据上述原始资料及加工工艺,分别确定各加工表面的机械加工余量、工序尺寸及毛坯尺寸如下: (19)3.5确定切削用量及工时 (20)3.6 四方刀架C表面淬火 (38)第四章四方刀架零件加工的夹具设计 (39)4.1设计夹具的方法和步骤: (39)4.2夹具设基本要求计的: (39)4.3设计步骤如下: (40)4.4夹具总图上尺寸,公差及技术要求的标注 (40)4.5工件在夹具中加工的精度分析 (41)4.6夹具总体方案的设计: (42)第五章结论 (44)参考文献 (45)致谢 (46)摘要本设计的课题是四方刀架的加工工艺和夹具设计,工艺学是机械制造类的一项主要专业知识,它是研究如何科学地最优地生产各种机械装备的一门技术学科,也就是研究在机械制造中优质、高产、低消耗地生产机械装备的原理和方法的学科。
烟灰缸成型设计及加工工艺技术在设计和加工烟灰缸的过程中,需要考虑到形状、大小、材料以及加工工艺等因素。
下面将讨论一种常见的烟灰缸成型设计及加工工艺技术。
首先,在设计阶段,需要确定烟灰缸的整体形状。
常见的烟灰缸形状有圆柱形、立方体、椭圆形等。
根据不同的设计需求,可以选择合适的形状。
其次,在确定形状后,需要考虑烟灰缸的大小。
大小主要取决于烟灰缸的容量要求和使用场景,一般来说,烟灰缸的直径应该能够容纳大部分烟蒂和烟灰。
接下来,在材料选择方面,常见的烟灰缸材料包括金属、玻璃、陶瓷等。
不同的材料具有不同的质感和外观效果,可以根据个人喜好和设计风格选择合适的材料。
例如,金属材料可以为烟灰缸增添一份现代感,而玻璃材料则可展现出透明和优雅的特点。
然后,在加工工艺方面,有几种常用的加工工艺。
首先是注塑成型工艺,这是一种将热塑性塑料通过注塑机加热融化,然后注入模具中形成烟灰缸的工艺。
其次是铸造工艺,这是一种将熔融金属注入到砂模或金属模具中,通过冷却凝固而形成烟灰缸的工艺。
最后是手工制作工艺,这是一种通过手工剪裁、折焊等工艺对金属或玻璃材料进行成型的工艺。
综上所述,当设计和加工烟灰缸时,需要考虑到烟灰缸的形状、大小、材料以及加工工艺等因素。
通过合理的设计和选择适合的加工工艺,可以制作出具有吸引力和实用功能的烟灰缸。
烟灰缸作为一种生活用品,常常被人们低估了其设计和加工工艺的重要性。
然而,在现代设计中,烟灰缸已经不再仅仅是一个功能性的容器,而是一个可以展现个性和时尚的艺术品。
因此,设计和加工工艺对于制作出高质量、独特的烟灰缸至关重要。
首先,设计师在烟灰缸的形状上可以展现出自己的创意和个性。
不再局限于传统的圆柱形或立方体形状,设计师可以尝试更多的抽象形状或有机曲线,通过独特的形状设计,使烟灰缸在视觉上更加吸引人,并且更符合现代审美的需求。
此外,不同形状的烟灰缸还具有不同的功能特点,例如,圆柱形烟灰缸容易清理,而立方体烟灰缸则更稳定。
碳纤维板是用碳纤维和树脂预制成型的复合材料。
其秉承了碳纤维自重轻、轻度高和耐腐蚀等特性。
我们碳纤维板主要用于无人机航模、X光滤线栅以及其他一些具有明显减重效果的高强度结构件。
它的密度仅为1.5g/cm^3,是钢材的1/5,而强度是同截面钢材的7-10倍。
一般碳纤维板在一次整体成型后,由于精度要求或装配需要,常需进行切削加工工艺,以下由无锡威盛新材料科技有限公司给大家简单介绍一下碳纤维板的加工工艺。
传统的机械加工方法包括车、铣、磨、钻等,目前基本上沿用传统的金属切削加工工艺和装备,具有加工方法简单、工艺成熟、设备投入少等特点,但同时也存在刀具磨损快、加工精度难以保证、加工效率低、加工过程中产生有害的粉末状切屑等缺点。
碳纤维强度大,但脆,机械加工时,如果用力太小没有用,用力太大的话会破裂,比较麻烦。
要解决上面的问题,最主要从刀具入手。
在切削工艺参数、切割深度相同的条件下,使用不同材料,尺寸,形状的刀具,对碳纤维材料进行切割,看效果如何,反复试验,控制变量,找到最合适的刀具。
刀具切削的力度、时间、环境的温度等因素也会影响到加工的结果。
根据无锡威盛新材料科技有限公司的多年经验,在对碳纤维复合材料进行钻孔时,刀其必须锋利,切削参数至少在2000r/min以上,但也不能过高,最好采用4000-6000r/min的转速。
在一些资历不是很高的碳纤维加工厂商里,很多都会遇到碳纤维复合材料机械切削加工出现的各种情况:1、材料呈层状,块状崩落、撕裂,最严重的情况是整个加工件报废。
2、刀具磨损快,如果使用钝刀具加工,更加容易造成胚料损伤,而在精加工的时候,刀具的形状和尺寸有所变化,会影响产品的形状和尺寸。
另外,对规定直径尺寸的刀而言,刀具的磨损会引起孔、槽尺寸的不稳定。
3、刀具的使用方法不够准确,寿命短,耐用度低,使产品的加工成本大大提高了,无法保证质量稳定和加工成本。
无锡威盛新材料科技有限公司从以往的经验总结出,“菠萝刃”镂铣刀这种刀具的上切、下切菱型刃设计能有效切断碳纤维材料。
活塞的机械加工工艺及夹具设计活塞是一种常见的机械零件,广泛应用于内燃机、液压泵、空压机等设备中。
为了保证活塞的精度和质量,需要借助机械加工工艺和夹具设计。
首先,活塞的机械加工工艺包括以下几个步骤:1. 材料准备:选择适当的材料,例如铸铁、铝合金等,根据活塞的要求和使用环境来确定。
2. 铸造或锻造:根据活塞的大小和形状要求,选择合适的工艺来进行材料的铸造或锻造,以获取初始形状。
3. 粗加工:根据活塞的设计图纸,利用铣床、车床等机械设备进行粗加工,包括车削、铣削、切割等操作,将活塞加工至近似形状。
4. 热处理:对粗加工后的活塞进行热处理,包括淬火、回火等工艺,以增强活塞的硬度和耐磨性。
5. 精加工:利用磨床、镗床等设备进行精细加工,包括磨削、镗孔等操作,以达到活塞设计要求的尺寸和平滑度。
6. 表面处理:根据活塞的使用要求,进行表面处理,如镀铬、镀镍等,以提高活塞的耐腐蚀性和装配性。
夹具设计是活塞加工工艺中不可或缺的一环。
夹具的设计需要考虑以下几个要点:1. 稳定性:夹具的设计应具有足够的稳定性,能够确保活塞在加工过程中不产生位移或摆动,以保证加工精度。
2. 定位精度:夹具应能够准确地定位活塞,使其在加工过程中达到设计要求的尺寸和形状。
3. 刚性:夹具的构造应具有足够的刚性,以保证在加工过程中不发生变形或振动,影响活塞的加工质量。
4. 操作性:夹具应具有良好的操作性,方便夹紧和解放活塞,提高生产效率。
5. 耐用性:夹具应选用耐磨、耐腐蚀的材料,确保使用寿命长,减少更换和维修次数。
综上所述,活塞的机械加工工艺及夹具设计对于活塞的质量和精度至关重要。
通过合理的加工工艺和夹具设计,可以提高活塞的加工效率和质量,满足使用要求。
在活塞的机械加工工艺中,精加工是非常重要的步骤。
精加工的目的是通过磨削、镗孔等操作来达到活塞设计要求的尺寸和平滑度。
下面我们将详细介绍一些常用的精加工工艺。
磨床是一种常用的精加工设备,可用于加工活塞的外圆和端面。
发动机气门导管加工工艺及夹具设计
简介
本文档旨在介绍发动机气门导管的加工工艺及夹具设计。
发动
机气门导管是发动机中的重要部件,其加工工艺和夹具设计对于保
证导管质量和生产效率具有重要意义。
加工工艺
发动机气门导管加工工艺主要包括以下几个步骤:
1. 材料准备:选择合适的材料,如不锈钢、碳素钢等,并进行
裁剪和清洗。
2. 加工前准备:对材料进行预处理,如表面处理和热处理,以
提高硬度和耐腐蚀性。
3. 加工工艺选择:根据导管的几何形状和要求,选择合适的加
工方法,如数控车削、数控铣削等。
4. 加工操作:按照加工工艺选择的方法进行导管的加工操作,
包括车削、镗孔、磨削等。
5. 表面处理:对加工后的导管进行表面处理,如研磨、抛光等,以提高表面光滑度和精度。
6. 检验和质量控制:对加工后的导管进行严格的检验和质量控制,确保其尺寸精度和质量要求。
夹具设计
夹具设计是保证加工质量和提高生产效率的重要环节。
夹具设
计应考虑以下几个方面:
1. 夹紧力和稳定性:夹具应具备足够的夹紧力,以确保加工过
程中导管的位置稳定,防止移动和晃动。
2. 加工定位:夹具应提供准确的加工定位功能,以确保导管在
加工过程中的几何形状和尺寸精度。
3. 操作便捷性:夹具设计应考虑到操作人员的使用便捷性和工
作效率,方便夹具的安装和拆卸。
4. 导管保护:夹具应能够有效保护导管的表面免受划伤和损坏。
结论
根据发动机气门导管的加工工艺及夹具设计要求,我们可以制
定出合适的加工流程和夹具设计方案,以保证导管的质量和生产效率。
阀体加工工艺及夹具设计阀体加工工艺及夹具设计阀体是阀门中最重要的部件之一,是流体控制的核心。
因此,阀体的加工工艺及夹具设计是阀门生产过程中不可忽视的环节。
本文将详细介绍阀体的加工工艺及夹具设计。
一、阀体加工工艺1. 材料准备:阀体一般采用高强度铸铁、钢材等材料,因此在加工之前需要进行材料准备工作,包括材料选择、锻造、热处理等。
2. 阀体加工:阀体加工包括铣削、钻孔、倒角、整形等工序,其中铣削是最为重要的工序之一。
在铣削过程中,要注意工件稳固,铣刀的选择和切削速度的控制,以确保铣削精度和表面质量。
3. 检验:加工完成后,要进行阀体的检验,包括外观检查、尺寸检查、硬度检测等,以确保阀体的质量。
二、夹具设计夹具是夹紧、固定工件的装置,是加工过程中的必要工具之一。
阀体加工需要用到多种夹具,包括平面夹具、定位夹具、支撑夹具等。
1. 平面夹具设计:平面夹具主要用于阀体的铣削和切削,其结构应具有一定的稳定性和刚性,以确保加工精度和安全性。
要注意夹具的夹紧力度和工件的位置。
2. 定位夹具设计:定位夹具用于定位阀体的位置,其结构应具有高度的精度和稳定性,以确保加工精度。
在设计时要考虑夹具的重量和工件的大小。
3. 支撑夹具设计:支撑夹具主要用于阀体的钻孔,其结构应能够稳定地支撑工件,确保加工精度和安全性。
要注意夹具的设计和位置,以确保加工精度。
综上所述,阀体加工工艺及夹具设计是阀门生产过程中非常重要的环节,要注意材料的选择和准备、工序的选择和控制及夹具的设计和位置,以确保阀体的质量和精度。
曲轴的加工工艺及夹具设计.曲轴是一种中空的长轴,具有凸轮和连杆等部件。
曲轴广泛用于发动机、发电机、泵和压缩机等机械设备中。
由于其制作具有较强的特殊性和难度,因此制作曲轴的工艺及夹具设计至关重要。
1. 设计工艺和工艺路线曲轴的设计必须遵循机械原理和技术规范。
在进行曲轴设计时,需考虑到曲轴的材质,曲轴壳特征,曲轴壳直径和轴承座位置等因素。
在考虑这些因素的同时,需要进行材料选择和制造工艺选择,以便获得最优的曲轴设计,同时优化制造成本。
2.原料准备曲轴一般由高强度合金钢、铸铁或铝合金等材料制成。
在对原料进行处理时,需遵循材料质量指导书规定和制造工艺要求。
在准备原料时,还需对其进行热处理,以获得合适的材料性能,提高曲轴的强度和耐用性。
3. 车削工艺曲轴车削工艺是曲轴加工流程的核心,也是曲轴用最多的材料加工工艺。
在车削工艺中,需要使用高精度的车床和其它特殊加工设备,以保证曲轴的直径精度、凸轮和连杆安装位置、轴承座间隙等要求.磨削工艺是曲轴精度提高的关键。
在磨削过程中,需要使用优质的磨削工具和磨削设备。
磨削工艺中,需要注意磨削的时间、力和速度。
5. 精修工艺精修工艺主要是通过热处理或冷加工,以提高曲轴的强度和稳定性。
在精修过程中,需对曲轴进行一系列的检测和测试,以保证曲轴符合设计要求和制造标准。
1. 铸造夹具铸造夹具是曲轴制造中的一种常见夹具。
在铸造夹具中,需要考虑曲轴壳体的角度和直径,以及曲轴壳体的形状和大小等因素。
铸造夹具一般由木材或铸铁制成,以保证夹具的强度和稳定性。
2. 加工夹具加工夹具是曲轴制造中的另一种常见夹具。
在加工夹具中,需要考虑曲轴加工的每一个环节。
加工夹具需要能够满足曲轴加工的精度要求和工艺要求,同时,加工夹具还需要兼具夹持曲轴的能力。
3. 检测夹具检测夹具主要用于曲轴的检测和测试。
在检测夹具中,需要考虑曲轴的尺寸、形状和位置,以及曲轴检测的精度要求。
同时,检测夹具需要依据曲轴的检测项目,兼具夹持、测量、测试等多个功能。
球头连杆加工工艺及钻30孔夹具设计一、介绍球头连杆是一种常用于机械设备中的零件,其加工工艺和夹具设计对于保证加工质量和效率至关重要。
本文将从加工工艺和夹具设计两个方面,对球头连杆的加工过程进行探讨。
二、球头连杆加工工艺对球头连杆进行加工的工艺流程如下:1. 材料准备根据球头连杆的特性和使用要求,选取合适的材料进行加工。
常用的材料包括碳钢、合金钢等。
2. 切割工艺将选取的材料进行切割,得到合适大小的工件。
切割可以采用锯切、火焰切割等方法,确保切割面平整、光滑。
3. 粗加工对工件进行粗加工,去除边角和杂质。
粗加工可以采用车床、铣床等设备进行,使工件达到初步的形状和尺寸要求。
4. 热处理通过热处理,提高工件的硬度和韧性。
常用的热处理方法包括淬火、回火等,可以根据球头连杆的具体要求进行选择。
对经过热处理的工件进行精加工,使其达到精确的尺寸和形状要求。
精加工可以采用磨床、镗床等设备进行。
6. 表面处理对球头连杆进行表面处理,增加其耐磨性和防腐性能。
常用的表面处理方法包括镀铬、喷涂等。
7. 检验和调整对加工完成的球头连杆进行检验,确保其质量符合要求。
如有需要,可以进行调整和修正。
三、钻30孔夹具设计钻30孔夹具是用于加工球头连杆上孔的工装,其设计应考虑夹紧力和定位精度等因素。
1. 夹紧机构设计夹紧机构应能够夹紧球头连杆,确保其在加工过程中不发生位移。
常用的夹紧方式有机械夹紧和液压夹紧等。
2. 定位机构设计定位机构应确保球头连杆在夹具中的位置准确、稳定。
常用的定位方式有定位销、定位块等。
3. 支撑机构设计支撑机构应能够支撑球头连杆,防止加工过程中发生变形。
常用的支撑方式有支撑块、支撑槽等。
钻孔过程中产生的屑应及时排出,以免影响加工质量。
排屑设计可以使用排屑槽、排屑孔等。
5. 夹具材料选择夹具应选用硬度高、耐磨性强的材料,以保证夹具的使用寿命和稳定性。
常用的夹具材料包括合金钢、工具钢等。
6. 夹具结构设计夹具的结构设计应满足加工工艺和操作要求,确保加工稳定、高效。
设计材料及加工工艺 (章节总结) 第一章 概论 1.1设计与材料 纵观人类的进化史,与人类的生活和社会发展密不可分的有很多因素,其中材料的的开发、使用和完善就是其中之一。 材料是人类生产各种所需产品和生活中不可缺少的物质基础。可以说我们生活的周围任何物品都离开材料。 材料科学的发展,使产品形态产生了根本变化,材料的发展,更是推动了人们生活的进步。 1.2产品造型设计的物质基础 材料在产品造型设计中,是用以构成产品造型,不依赖于人的意识而客观存在的物质,所以材料是工业造型设计的物质基础。 工艺:材料的成型工艺、加工工艺和表面处理工艺。是人类认识、利用和改造材料并实现产品造型的技术手段。 材料与工艺是设计的物质技术条件,与产品的功能、形态构成了产品设计的三大要素。而产品的功能和造型的实现都建立在材料和工艺上。 1.3材料设计 1.材料设计的内容 产品造型中的材料设计,以“物—人—环境的材料系统为对象,将材料的性能、使用、选择、制造、开发、废弃处理和环境保护啊看成一个整体,着重研究材料特性与人、社会、环境的协调关系,对材料的工学性,社会性、经济性、历史性、生理性、心理性和环境性等问题进行平衡和把握,积极评价各种材料在设计中的使用和审美价值,是材料的特性和产品的物理功能和犀利功能达到高度的和谐统一,是材料具有开发新产品和新功能的可行性,并从各种材料的质感中获取最完美的结合和表现,给人以自然,丰富、亲切的视觉和触觉的综合感受。 产品造型的材料选择中,我们不仅要从材料本身的角度考虑材料的功能特性,还要考虑整个材料设计系统。 2.材料设计的方式 出发点:原材料所具有的特性与产品所需性能之间的比较。 两种主要方式:从产品的功能用途出发,思考如何选择和研制相应材料从原料出发,思考如何发挥材料的特性,开拓产品的新功能,甚至创造全新的产品。 3.材料与产品的匹配关系 产品设计包含功能设计、形式设计,在产品设计中都要匹配。 材料性能的三个层次:核心部分是材料的固有性能;中间层次世人的感觉器官能直接感受的材料性能;外层是材料性能中能直接赋予视觉的表面性能。 产品功能设计所要求的是与核心部分的材料固有性能相匹配,而在产品设计中除了材料的形态之外,还必须考虑材料与使用者的触觉、视觉相匹配。 1.4设计材料的分类 1.按材料的来源分类:①天然材料②技工材料③合成材料④复合材料⑤智能材料或应变材料 2.按材料的物质结构分类:①金属材料②无机材料③有机材料④复合材料 3.按材料的形态分类:①线状材料②板状材料③块状材料 1.5材料特性的基本特性 从材料特性包括:①材料的固有特性,即材料的物理化学特性②材料的派生特性,即材料的加工特性材料的感觉特性和经济特性。 特性的综合效应从某种角度讲决定着产品的基本特点。 1.5.1材料特性的评价 材料特性的评价:①基础评价,即以单一因素评价②综合评价,即以组合因素进行评价。 1.5.2材料的固有特性 材料的固有特性是由材料本身的组成、机构所决定的,是指材料在使用条件下表现出来的性能,他受外界条件的制约。 1.5.3材料的派生特性 材料的派生特性包括材料的加工特性、材料的感觉特性、环境特性和材料的经济性。
第二章 材料的工艺特性 材料的工艺特性是指:材料适应各种工艺处理要求的能力,材料的工艺性包括材料的成型工艺、加工工艺和表面处理工艺。他是材料固有特性的综合反映,是决定材料能否进行加工或如何进行加工的重要因素,直接关系到加工效率、产品质量和生产成本等。 2.1材料的成型加工 2.1.1 成形加工工艺 材料的成型加工性是衡量产品造型材料优劣的重要标志 成型加工工艺对设计效果的影响因素很多,主要从以下几个方面表现出来: 1.工艺方法2.工艺水平3.新工艺的采用;4.工艺方法的综合运用 2.1.2材料成型工艺的选择原则 是高效、优质、低成本,即应在规定的周期内,经济地生产出符合技术要求的产品,其核心是产品品质。必须指出,产品的成本运算是以生产合格产品为基础的。根据零件类别、用途、功能、使用性能要求、结构形状与复杂程度、尺寸大小、技术要求等,可基本确定零件应选用的材料与成型方法。 2.2 材料的连接工艺 材料的连接工艺包括机械连接、焊接、粘接技术、静连接、动连接。 2.3材料的表面处理 具体说就是要处理注入色彩、光泽、纹理、质地等直接赋予视觉与触觉的一切表面造型要素。在产品造型设计时要根据产品的性能、使用环境、材料性质,正确选择表面处理工艺和面饰材料。 2.3.1表面处理的目的 一是保护产品,即保护材料本身赋予产品表面的光泽、色彩、肌理等而呈现出的外观美,并提高产品的耐用性,确保产品的安全性,由此有效的利用材料资源:二是根据产品造型设计的意图,改变产品表面状态,赋予表面更丰富的色彩、光泽、肌理等,提高表面装饰效果,改善表面的物理性能、化学性能及生物学性能,使产品表面有更好的感觉特性。 表面处理技术,即可以是相同材料具有不同的感觉特性,又可是不同材料获得相同的感觉特性。 2.3.2表面处理类型 设计中所采用的三类表面处理技术: (1)表面被覆:①镀层被覆②涂层被覆;目的:保护作用、装饰作用、特殊作用(如隔热、杀菌等)。涂装工艺一般包括制件表面涂装前处理、涂敷涂料及涂层干燥三大步骤。③珐琅被覆;广泛应用于厨房用具、医疗用具等。 (2)表面层改质:①化成处理,形成的膜对基物体具有耐蚀保护性耐磨性,不会从基体金属上脱离②阳极氧化处理;得到不同硬度、弹性、孔隙率孔径的氧化膜。 (3)表面精加工 2.3.3材料表面处理工艺的选择原则 ①形态的时代性②求简的单纯性③功能的合理性④情感的审美性⑤产品档次的经济性⑥成本⑦环境保护 2.4 新材料成形技术——快速成形技术 快速成型,又称快速原型制造技术、快速制样或实体自由形式制造。快速成型是一种用材料逐层堆积出制件的制造方法。 2.4.1 快速成型的原理及特点 原理:快速成型是基于离散、堆积原理而实现快速加工原型或零件的加工技术。 特点:1、改变了传统模式的制造方式,设计制造一体化。2、设计的易达性。3、快速性。 4、材料的广泛性。 2.4.2 快速成型的基本方法 1、光固化成型——SLA成型工艺 2、选择性激光少杰成型——SLS成型技术 3、熔积堆积成型——FDM成型技术 4、分层实体成型——LOM成型技术 2.4.3 快速成型技术在设计领域的应用 快速成型技术在设计领域的应用包括:1、优化产品设计;2、支持同步(并行)工程的实施;3、对产品性能进行及时、准确的校验与分析;4、快捷、经济地制作各种模型。
第三章 材料感觉特性的应用 3.1材料感觉特性的概念 材料感觉特性又称材料质感,是人的感觉系统因生理刺激对材料做出的反映或由人的知觉系统从材料表面特征得出的信息,是人对材料的生理和心理活动,他建立在生理基础上,是人通过感觉器官对材料做出的综合印象。 3.1.1材料感觉特性的内容 两个基本属性:生理心理属性、物理属性 材料感觉特性按人的感觉可分为触觉质感和视觉质感,按材料本身的构成特性可分为自然质感和人为质感。 1.材料的触觉质感:生理心理构成物理构成 2.材料的视觉质感:生理构成、物理构成、间接性、距离效应 3.材料的自然质感;关注材料的天然性、真实性、价值性 4.材料的人为质感:突出认为的工艺特性,强调工艺没和技术创造性 3.1.2材料感觉特性的评价 1.材料感觉特性的描述:自然-人造、高雅-低俗、明亮-阴暗、柔软-坚硬、光滑-粗糙、时髦-保守、干净-肮脏、整齐-杂乱、鲜艳-平淡、感性-理性、浪漫-拘谨、协调-冲突、亲切-冷漠、自由-束缚、古典-现代、轻巧-笨拙、细致-粗略、活泼-呆板、科技-手工、温暖-凉爽 2.材料感觉特性的测定 选取玻璃、陶瓷、木材、金属、塑料、橡胶、皮革比较,表3-3 材料感觉特性的差异。 3.1.3影响材料感觉特性的相关因素 材料感觉特性构成因素众多,通常表现为: 1.材料种类2.材料成型加工工艺和表面处理工艺 同质异感、异质同感:不同加工方法和工艺技巧会产生不同的外观效果,从而获得不同的感觉特性:铸造工艺、焊接工艺、编织工艺、车削工艺、磨削工艺、电镀工艺、喷砂工艺 3.其他因素:时代的科技水平、审美标准、流行时尚 3.2质感设计 质感设计是对工艺产品造型设计的技术性和艺术性的先期规划,是一个合乎设计规范的”认材-选材-配材-理材-用材”的有机过程。 3.2.1质感设计的形式美法则 实际上是各种材质有规律组合的基本法则:1、调和与对比法则,即,使整体中各部位的物面质感统一和谐。2、主从法则,即强调在产品的质感设计上要有重点 3.2.2质感设计的运用原则 合理的使用材料、艺术性的使用材料、创造性的使用材料 3.2.3质感设计的主要作用 提高适用性、增加宜人性、塑造产品的精神品味、达到产品的多样性和经济性、创造全新的产品风格 3.3材料的抽象表达 1.材料的抽象表达 定义:是将材料的某些特性加以提炼,升华为具有某种审美价值的意象,并沿着抽象表达的共同方向,是材料成为能唤起人们某种感情的具有抽象意义的材料。 2.抽象思维是材料抽象表达的基础 3.材料的抽象表达对设计有直接的意义 3.4材料的美感 材料的美感与材料本身的组成、性质、表面结构及使用状态有关 3.4.1材料的色彩美感 材料的色彩可分为材料的固有色彩和材料的人为色彩 只有运用色彩规律将材料色彩进行组合和协调,才会产生明度对比、色相对比、和面积效应以及冷暖效应等现象,突出和丰富材料的色彩表现力。 (1)相似色材料组合(2)对比色材料组合 3.4.2材料的肌理美感 肌理是由天然材料自身的组织结构或人工材料的人为组织设计而形成的,在视觉或触觉上可感受到的一种表面材质效果。 根据材料表面形态的构造特征,肌理可分为自然肌理和再造肌理;根据材料表面给人以知觉方面的感受,吉利还可分为视觉肌理和触觉肌