当前位置:文档之家› 武汉大学数学与统计学院2005-2006学年第一学期《线性代数》A卷(供工科54学时用)

武汉大学数学与统计学院2005-2006学年第一学期《线性代数》A卷(供工科54学时用)

武汉大学数学与统计学院2005-2006学年第一学期《线性代数》A卷(供工科54学时用)
武汉大学数学与统计学院2005-2006学年第一学期《线性代数》A卷(供工科54学时用)

武汉大学数学与统计学院

2005-2006学年第一学期《线性代数》A 卷(供工科54学时用)

学院 专业 学号 姓名

注 所有答题均须有详细过程,内容必须写在答题纸上,凡写在其它地方一律无效。

一、计算题(每题5分,6题共30分):

1.设111111111-?? ?=-- ? ?--??

A ,当 1 n 是不小于的整数时,计算n

A .

2.设二阶方阵A 满足方程O I A A =+-232

,求A 所有可能的特征值. 3.求二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩. 4.已知阶矩阵 (2)n ≥,且

非奇异,求**()A .

5.设A 是三阶实对称矩阵,其对应的二次型的正负惯性指数均为1,且满足0+==E A E A -,

计算A I 323+.

6. 设n 阶向量T

x x )00(,,,, =α,矩阵T n I A αα-=,且T n x I A αα+=-1,求实数x .

二、解答题(3题共45分,每题15分) 1.设10102016A a ?? ?

= ? ???

,且()2R A =,满足

,求a 和

.

2.已知2222

54245λλλ--?? ?=-- ? ?---??

A ,121λ?? ?

= ? ?--??b ,就方程组=AX b 无解、有唯一解、有无穷多解诸情形,对λ值进行讨论,并在有无穷多解时,求出其通解.

3、设二次型222

123123122331(,,)222=++---f x x x x x x x x x x x x ,

(1).求出二次型f 的矩阵A 的全部特征值; (2).求可逆矩阵P ,使AP P 1

-成为对角阵;

(3).计算m

A (m 是正整数).

三、证明题和讨论题(2题共25分):

1.(10分)设

是阶实方阵,

(1).当为奇数且I AA T

=及

时, 证明:0=-A I .

(2).当 m 为给定任意正整数且O I A m

=+)(时, 证明:A 可逆.

2.(15分)对线性空间3

R 中的向量组A :123,,ααα和B :123,,βββ,讨论下面的问题:

(1).向量组B 是否能成为3

R 中的基?能否用A 线性表示B ?如果可以,试求出由123,,ααα到

123,,βββ的过渡矩阵P ,其中

1100α?? ?= ? ??? 2110α?? ?= ? ??? 3111α??

?= ? ???;111β?? ?= ? ???a 2112β?? ?= ? ?-??a 3110β-?? ?= ?

???

,且a 为实数.

(2).若112321233123(22), (22), (22), βαααβαααβααα=+-=-+=--k k k k 是非零实数,

(a )给出向量组123,,βββ线性无关的一个充要条件,并证明之; (b )给出矩阵

123(),,βββ为正交阵的一个充要条件,并证明之.

(2005-2006上工科54

学时)线性代数A 卷参考解答

一、计算题:

1、1

1113111

111()n --??

?--- ?

?--??

;2

1212λλ=,=;3、

2 ;4、2n A A -; 5、-10 ; 6、-1 . 二、解答题:

1、解:由初等变换求得a =1,(记E I =,下同),由0≠-E A ,因此 可逆 ,且

2、解:经计算, 因此方程组有唯一解

时,对增广矩阵作行变换化为阶梯形:

,即

时无解。

时,同样对增广矩阵作行变换化为阶梯形:

因 ,所以

时有无穷多解。等价方程组为:

,得通解为:

3、解:1) 二次型的矩阵为A =

;

|

E-A |==(+1)(-2)

所以A 的全部特征值为: =-1, =

=2

对 = —1, 解 (-E -A )X =0 得基础解系为 =(1,1,1); 对

=2, 解(2E —A )X =0得基础解系为

= (—1,1,0),

= (—1,0,1)。

2).令P =123(,,)ααα=

,即为所求可逆阵,此时AP ==.

3) 1(1)2(1)42--=Λ==-m

m

m m

m m m

A

P P .

三、证明题和讨论题

1、证明: 1)

,所以

.

2)由12121()---+=+++???++=m m m m m A E A k A k A k A E o ,其中(1,2, 1.)=???-i k i m 均为

组合系数. 得12

3121()0----+++???+=-≠m m m m A A k A

k A k E E , 从而0.≠A 即可逆.

(另证:设

为A 的任意一个特征值,X 为对应的特征向量,则AX=

X ,注意EX=X , 两式相加

(A +E )X=(

+1)X , 两边左乘矩阵A +E ,得(A+E )X =(

+1)(A +E )X =(+1)X.

重复该过程可得(A +E )X=(+1)X ,而(A +E )=0,且X

0,所以有(

+1)=0 故A 的任一个特征值都为-1,由|

|=

=(1)0m -≠

,

可逆。)

2、解:设123(,,)A ααα=,123(,,)B βββ=,

1)111011001A ?? ?= ?

?

??

, 11111120B a a ?? ?= ? ?-??- ,易知1≠a 时, 123,,βββ能成为3

R 中的基.即有=A BQ ,且0≠Q ,令11

()--==B AQ AP P Q =,故能用A 线性表示B .由初等行变换 求得1110011001A -?? ? ?

???

-=-,则所求过渡矩阵为10

0211120P A B a a a a --?? ?==--+ ? ?-??. 2) 由题设C B A =,其中221C=212122?? ? ? ???

k ----,且3

270=≠C k .

如果0≠A ,即123,,ααα线性无关,则有C C 0=≠B A A =,得123,,βββ线性无关; 反之如果123,,βββ线性无关,则由C 0=≠A B ,得到0≠A . 可见, 123,,ααα线性无关是123,,βββ线性无关的一个充分必要条件. 如果123(,,)ααα=A 是正交阵,即T

=A A E ,

则22

2212212122129122122T T T T -????

???===---= ??? ???

----????

B B

C A AC C C k k E ,可见13=±k 时.B 是

正交阵.

反之B 是正交阵时, 29T T T T

===BB AC CA k AA E ,即T

=

AA 219E k ,可见13

=±k 时,A 是正交阵.综上, B 为正交阵的一个充要条件是1

3

k 且A 为正交阵.

2015年武汉大学线性代数考研真题

2015年线性代数 一、 ①证明?? ????-C B C A A 可逆的充要条件是AB 可逆 ②若??????-C B C A A 可逆,求出?? ????-C B C A A 的逆。 二、r b A r A r b ==≠),()(,0,b Ax =的所有解集合为S,证明: ①S 中包含1+-r n 个线性无关的向量121,...,+-r n ηηη。 ②ξ是S 中元素充要条件是存在)1...,2,1(,+-=r n i k i , 111=∑+-=r n i i k ,使得 ∑+-==1 1r n i i i k ηξ 三、已知A 为实正交矩阵,det(A)=1,证明存在正交矩阵P ,使得 21cos ,cos sin 0sin cos 00 01 332211'-++=??????????-=a a a AP P θθθθθ 其中。 四、以下有关矩阵秩的命题在数域F 上判断正误,如正确请说明理由,如不正确请举例说明。 (1)、若)()(B r A r =,则()()* *B r A r = (2)、若())(B r AB r =,则)()(BC r ABC r = (3)、)()('AA r A r = (4)、若一个对称矩阵的秩为r ,则有一个非0 的r 阶主子式。 五、A 是n 阶实对称矩阵,其正负惯性指数分别是q p ,, AX X x f ')(=,记{} n f R x x f x N ∈==,0)(|,证明: (1)、包含于f N 的线性空间维数至多是),max(q p n - (2)、若w 是n R 的一个线性子空间,将二次型限定w 在中,得到的正负惯性指数分别是p1,q1,则有q q p p ≤≤11,。

武汉大学大一上学期高数期末考试题

高数期末考试 一、填空题(本大题有4小题,每小题4分,共16分) 1. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则 . 2. lim (cos cos cos )→∞ -+++=2 2 221 n n n n n n π π ππ . 3. = -+? 2 12 12 211 arcsin - dx x x x . 二、单项选择题 (本大题有4小题, 每小题4分, 共 16分) 4.  )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 5. ) ( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 6. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1) -二阶可导且'>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 7. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )2 2x (B )2 2 2x +(C )1x - (D )2x +. 8. 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--?????≤<-≤=1 32 )(1020 )(dx x f x x x x xe x f x 12. 设函数)(x f 连续, =?1 ()()g x f xt dt ,且 →=0 ()lim x f x A x ,A 为常数. 求'()g x 并讨论'()g x 在 =0x 处的连续性. 13. 求微分方程2ln xy y x x '+=满足 =- 1(1)9y 的 解. 四、 解答题(本大题10分) 14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01, 且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵 坐标之和,求此曲线方程. 五、解答题(本大题10分) 15. 过坐标原点作曲线x y ln =的切线,该切线与曲线 x y ln =及x 轴围成平面图形D. (1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所 得旋转体的体积V . 六、证明题(本大题有2小题,每小题4分,共8分) 16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的 [,]∈01q ,1 ()()≥??q f x d x q f x dx . 17. 设函数)(x f 在[]π,0上连续,且 )(0 =?π x d x f , cos )(0 =? π dx x x f .证明:在()π,0内至少存在两个 不同的点21,ξξ,使.0)()(21==ξξf f (提示:设 ?= x dx x f x F 0 )()()

武汉大学2014年线性代数真题解答

武汉大学2014年线性代数真题解答 一.由12001 30000 20 010A ?? ? ?= ? ? -?? ,且1 1[()*]6122A BA AB E -=+,求B . 二.计算011121 211n n n n n n s s s s s s x D s s s x -+-= ,其中12k k k k n s x x x =++ .

三.有121,,,,s s αααα+ ,且1 ,1,,i i i s t i s βαα+=+= , 证明如果12,,,s βββ 线性无关,则121,,,s ααα+ 必定线性无关.

四.线性空间V 定义的第(3),(4)条公理,即 (3)任意的V α∈,存在0V ∈,使00ααα+=+=; (4)任意的V α∈,存在V β∈,使0αββα+=+=. 证明他们的等价条件为:任意的,V αβ∈,存在x V ∈,使x αβ+=. 五.设()n sl F 是()M F 上,A B 矩阵满足AB BA -生成的子空间,证明

2dim(())1n sl F n =- . 六.设数域K 上的n 维线性V 到m 维线性上的所有线性映射组成空间(,')k Hom V V ,证明(1)(,')k Hom V V 是线性空间; (2)(,')k Hom V V 的维数为mn . 七.已知013210 1010101n n n c c F c c c ----?? ?- ? ? = ?- ? ?- ? ?-? ? , (1)求F 的的特征多项式()f x 与最小的项式()m x ; (2)求所有与F 可交换的矩阵.

武汉大学【统计学】习题活页及答案

第三章统计表与统计图 1. 根据数据集03,按“性别”和“教育程度”计算相应的平均工资。用标准的统计表表现用Excel操作所得出的结果。 问:(1)男性的平均工资为______________;女性的平均工资为_____________。 (2)平均工资最低的是哪类人?_____________ 最高的是哪类人? ________________ 2. 根据数据集03,按“教育程度”和“性别”计算2007年考核时各个档次的人数。用标准的统计表表现按“教育程度”和“性别”分类的2007年考核为“优”的人数。 3. 根据王小毛、吴燕燕和朱青新三人的一年的销售记录,汇总出各种产品的销售量。问: (1)一月份A产品的销售总量是_________,其原始资料是: (2)八月份F产品的销售总量是_________,其原始资料是: (3)十一月份F产品的销售总量是_________,其原始资料是: 4. 根据数据集01中C列的“国内生产总值”指标,绘制1952-2006年GDP的趋势图。根据Excel作出的图形,手绘出该趋势图的大概形状。 5. 仿照例题3.3,根据数据集01中的相关资料,编制1953、1963、1973、1983和1993年的饼图,比较这六年产业结构的变化状态,并根据这六年的资料绘制三维百分比堆积柱形图。根据Excel作出的图形,手绘出1953年的饼图和六年的三维百分比堆积柱形图的大概形状。 第四章数据的描述性分析 1.一个车间200名工人某日生产零件的分组资料如下: 零件分组(个)工人数(人) 40-50 50-60 60-70 70-80 80-90 20 40 80 50 10

武汉大学2005-2006线性代数试题(工科54学时)

武汉大学数学与统计学院 2005-2006学年第一学期《线性代数》A 卷(供工科54学时用) 学院 专业 学号 姓名 注 所有答题均须有详细过程,内容必须写在答题纸上,凡写在其它地方一律无效。 一、计算题(每题5分,6题共30分): 1.设111111111-?? ?=-- ? ?--?? A ,当 1 n 是不小于的整数时,计算n A . 2.设二阶方阵A 满足方程O I A A =+-232 ,求A 所有可能的特征值. 3.求二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩. 4.已知阶矩阵 (2)n ≥,且非奇异,求** ()A . 5.设A 是三阶实对称矩阵,其对应的二次型的正负惯性指数均为1,且满足 0+==E A E A -, 计算A I 323+. 6. 设n 阶向量T x x )00(,,,, =α,矩阵T n I A αα-=,且T n x I A αα+=-1,求实数x . 二、解答题(3题共45分,每题15分) 1.设10102016A a ?? ? = ? ??? ,且()2R A =,满足 ,求a 和 . 2.已知2222 54245λλλ--?? ?=-- ? ?---??A ,121λ?? ? = ? ?--?? b ,就方程组=AX b 无解、有唯一解、有无穷多解诸情形,对λ值进行讨论,并在有无穷多解时,求出其通解. 3、设二次型222 123123122331(,,)222=++---f x x x x x x x x x x x x , (1).求出二次型f 的矩阵A 的全部特征值; (2).求可逆矩阵P ,使AP P 1 -成为对角阵; (3).计算m A (m 是正整数). 三、证明题和讨论题(2题共25分): 1.(10分)设 是阶实方阵, (1).当为奇数且I AA T =及 时, 证明:0=-A I . (2).当 m 为给定任意正整数且O I A m =+)(时, 证明:A 可逆. 2.(15分)对线性空间3 R 中的向量组A :123,,ααα和B :123,,βββ,讨论下面的问题: (1).向量组B 是否能成为3 R 中的基?能否用A 线性表示B ?如果可以,试求出由123,,ααα到 123,,βββ的过渡矩阵P ,其中 1100α?? ?= ? ??? 2110α?? ?= ? ??? 3111α?? ?= ? ???;111β?? ?= ? ???a 2112β?? ?= ? ?-??a 3110β-?? ?= ? ??? ,且a 为实数. (2).若112321233123(22), (22), (22), βαααβαααβααα=+-=-+=--k k k k 是非零实数, (a )给出向量组123,,βββ线性无关的一个充要条件,并证明之;

武汉大学统计学复习题

第一章 绪论 思考题: 1. 医药统计研究的过程是什么? 2. 统计资料主要分为哪几种类型? 3. 什么是总体;什么是样本。 4. 概率与常用概率分布 练习与思考 1.瓶中装有100片药片,其中有5片次品,从中任取10片,求: (1)10片全是正品的概率; (2)恰有2片次品的概率。 2.10把钥匙中有3把能打开锁,任取2把,求能打开锁的概率。 3.设A ,B ,C 是三个随机事件,试用A ,B ,C 表示下列事件: (1)A 不发生而B ,C 都发生; (2)A 不发生而B ,C 中至少有一个发生; (3)A ,B ,C 中至少有两个发生; (4)A ,B ,C 中恰有两个发生。 4.某药厂的针剂车间灌注一批注射液,需4道工序,已知由于割瓶时掉入玻璃屑而成废品的概率为0.5,由于安瓿洗涤不洁而造成废品的概率为0.2,由于灌药时污染而成废品的概率为0.1,由于封口不严而成废品的概率为0.8,试求产品合格的概率。 5.甲乙两个反应罐在1小时内需要工人照顾的概率分别为0.1和0.2。求在1小时内: (1)甲乙两罐都需要照顾的概率; (2)甲乙两罐都不需要照顾的概率; (3)一罐需要照顾而一罐不需要照顾的概率。 6.设()0.2, ()0.3, (/)0.3,P A P B P A B ===试求: (1)()P AB ; (2)(/)P B A ; (3)()P AB ; (4)()P A B +。 7.三个射手向一敌机射击,射中的概率分别为0.4,0.6,0.7。如果一人射中,敌机被击落的概率为0.2;二人射中,敌机被击落的概率为0.6;三人射中则必被击落。已知敌机被击中,求该机是三人击中的概率? 8.已知X 的可能取值为0,±1,±2,且 }1|{|}2{,6.0}1|{|,3.0}0{,4.0}21{==≥=≤===<<-X P X P X P X P X P 试求:X 的概率分布? 9.已知在8次独立试验中,事件A 至少发生一次的概率为0.57,试求在一次试验中事件A 发生的概率? 10.当投掷五枚分币时,已知至少出现两个正面,问:正面数刚好是三个的条件概率? 11.设X 服从泊松分布,且已知{}{}12P X P X ===,求{}4P X =。 12.设k 在[0,5]上服从均匀分布,求方程02442 =+++k kx x 有实根的概率? 13.设随机变量X 的概率密度函数为

武汉大学2002-2003线性代数试题(54工)

备用试题 武汉大学数学与统计学院2002-2003学年第2学期 《线性代数》试题 (工科54学时) 姓名 学号 班号 专业 成绩 说明:一共九道题目,第一至第四题每题10分,第五至第九题每题12分。 一、设四阶行列式D = 1 0370121 34031 2 2 1 ---- 1)、求D 的代数余子式A 12; 2)、求A 11-2A 12+2A 13-A 14 。 二、求满足A 2=A 的一切二阶矩阵。 三、设A = 111212122212 ...................... n n n n n n a b a b a b a b a b a b a b a b a b ????? ???? ? ? ?????? ,(0 ,1,2,...,i j a b i j n ≠=,),求()R A 四、已知向量组1α,2α,3α线性无关,令1123βααα=-+,21232βααα=++, 312323βααα=-+,讨论向量组123, , βββ的线性相关性。 五、设线性方程组为 2 3112131 23 1222322 31323 3323 1 42434 x a x a x a x a x a x a x a x a x a x a x a x a ?++=? ++=?? ++=??++=? , 1) 如果1234, , , a a a a 两两不相等,问所给方程组是否有解? 2) 如果1324, (0)a a k a a k k ==-≠==,且已知12ββ,是该方程组的两个特解,其中: T T 12(1, 1, 1)(1, 1, 1)ββ==--,,试写出此方程组的通解。 六、设三阶方阵A 的三个特征值为1,0,1321-=λ=λ=λ,A 的属于321,,λλλ的特征向量依次为 ???? ? ??=????? ??=????? ??=520,210,002321ααα, 求方阵A 。 七、已知二次型123(, , )f x x x =22 2312132343448x x x x x x x x -+-+ 1) 写出二次型f 的矩阵A ; 2)用正交变换把二次型f 化为标准型。 八、证明三个平面123:, :, :x cy bz y az cx z bx ay πππ=+=+=+相交于一直线的充要条件为 2 2 2 21a b c abc +++= 九、给定3R 的基?????===.)1,1,1(,)0,1,2(,)1,0,1(3 21ξξξ 和 ??? ??--=-=-=). 1,1,2(,)1,2,2(,)1,2,1(321ηηη若定义线性变换)3,2,1(,)(==T i i i ηξ, 试求: 1)求由基321,,ξξξ到基321,,ηηη的过渡矩阵X ; 2)求T 关于基321,,ξξξ的变换矩阵A 。

武大《高等数学》期末考试试题

2000~2001学年第二学期《 高等数学 》期末考试试题(180学时) 专业班级 学号_______________ 姓名 一、 已知一个二阶常系数线性齐次微分方程有相等的实根a ,试写出此微分方程及通解。 (8分) 二、 设幂级数∑∞=?0 )1(n n n x a 在x =3处发散,在x =1处收敛,试求出此幂级数的收敛半径。(8分) 三、 求曲面323 =+xz y x 在点(1,1,1)处的切平面方程和法线方程 。(10分) 四、 设)(,0x f x >为连续可微函数,且2)1(=f ,对0>x 的任一闭曲线L,有0)(43=+∫L dy x xf ydx x ,求)(x f 。 (10分) 五、 设曲线L (起点为A ,终点为B )在极坐标下的方程为36(,2sin πθπθ≤≤= r ,其中θ=6π 对应起点A ,3 π θ=对应终点B ,试计算∫+?L xdy ydx 。(10分) 六、 设空间闭区域Ω由曲面222y x a z ??=与平面0=z 围成,其中0>a ,Σ为Ω的 表面外侧,且假定Ω的体积V 已知,计算: ∫∫Σ=+?.)1(2222dxdy xyz z dzdx z xy dydz yz x 。(10分) 七、 函数),(y x z z =由0),(=z y y x F 所确定,F 具有连续的一阶偏导数,求dz 。 (12分) 八、 计算∫∫∫Ω +,)(22dxdydz y x 其中Ω是由平面z =2与曲面2222z y x =+所围成的闭区域。(12分) 九、 已知级数 ∑∞=1n n U 的部分和arctgn S n =,试写出该级数,并求其和,且判断级数∑∞=1n n tgU 的敛散性。(12分) 十、 设)(x f 连续,证明∫∫∫??=?A A D dt t A t f dxdy y x f |)|)(()(,其中A 为正常数。D :2||,2||A y A x ≤≤ 。(8分)

2015武汉大学数学分析考研真题

2015武汉大学数学分析 一、(40分) 1、.) 1()1)(1()1()1)(1(lim 2111------+--→k k n n n x x x x x x x 2、.sin cos cos lim 20x bx ax m n x -→ 3、).11(lim 132 n -+∑=∞→n k n k 4、已知 2 110n a a n n +≤<+,证明数列{}n a 极限存在。 二、已知曲面0)))((,))(((11=------c z y b c z x a F ,且),(t s F 二阶偏导连续,梯度处处不为零,(1)证明,曲面的切平面必过一定点;(2)()y x z z ,=,证明 .02 22222=??? ? ?????-?????y x z y z x z 三、0>n a ,01lim 1n >=??? ? ??-+∞→λa a n n n ,证明,()∑∞=--111n n n a 收敛. 四、求?????????????? ??--??-∞→t t y x t dxdy y x e e e 00t lim 的极限,或证明它不存在。 五、(1)、求积分()??+ππ 00cos dxdy y x 的值,(2)、10<<α,求积分()d t t f ?1 α的上确界,其中)t (f 是连续函数, ().110 ≤?dt t f 六、已知()dt x tx f ?∞+=0 21cos t ,证明, (1)、()x f 在()∞+∞, -上一致收敛; (2)()0lim =∞→t f t (3)()x f 在()∞+∞, -上一致连续; (4)()0dt sin 0 ≤?∞ t t f ;

应用数理统计(武汉大学研究生)2009-2010试题

武汉大学2009-2010年度上学期研究生公共课 《应用数理统计》期末考试试题 (每题25分,共计100分) (请将答案写在答题纸上) 1设X 服从),0(θ上的均匀分布,其密度函数为 ?????<<=其它0 01)(θθx x f n X X X ,,,21" 为样本, (1)求θ的矩估计量1?θ和最大似然估计量2 ?θ; (2)讨论1?θ、2?θ的无偏性,1?θ、2?θ是否为θ的无偏估计量?若不是,求使得i c ?i i c θ为θ的无偏估计量,; 1,2i =(3)讨论1?θ、2 ?θ的相合性; (4)比较11?c θ和22?c θ的有效性. 2. 假设某种产品来自甲、乙两个厂家,为考查产品性能的差异,现从甲乙两厂产品中分别抽取了8件和9件产品,测其性能指标X 得到两组数据,经对其作相应运算得 2110.190,0.006,x s == 2220.238,0.008x s == 假设测定结果服从正态分布()()2~,1,2i i X i μσ=, (1).在显著性水平0.10α=下,能否认为2212σσ=? (2).求12μμ?的置信度为90%的置信区间,并从置信区间和假设检验的关系角度分析甲乙两厂生产产品的性能指标有无显著差异。 3.设是来自正态总体的样本, 总体均值n X X X ,,,21"),(2 σμN μ和方差未知,样本均值和方差分别记为2σ2211 11,(1n n i i i i )X X S X X n n ====?∑∑?

(1) 求2211 (n i i X )μσ=?∑的分布; (2)若0μ=,求212212()() X X X X +?的分布; (3)方差的置信度为12σα?的置信区间的长度记为L ,求()E L ; (4)1n X + 的分布。 4.为进行病虫害预报, 考察一只红铃虫一代产卵量Y (单位:粒)与温度x (单位:)的关系, 得到资料如下: C 0x 18 20 24 26 30 32 35 Y 7 11 21 24 66 115 325 假设Y 与x 之间有关系 bx Y ae ε+=, . ),0(~2σεN 经计算:26.43x =,ln 3.612y =,,, 7215125i i x ==∑721(ln )102.43i i y ==∑7 1ln 718.64i i i x y ==∑(1)求Y 对x 的曲线回归方程; x b e a y ???=(2)求的无偏估计; 2σ2?σ (3)对回归方程的显著性进行检验(05.0=α); (4)求当温度0x =33时,产卵量的点估计。 0Y 可能用到的数据: 0.02282z =,()()0.050.057,8 3.50,8,7 3.73F F ==,()0.0515 1.7531t =,,,,0.025(5) 2.5706t =0.05(5) 2.015t =0.025(7) 2.3646t =0.05(7) 1.8946t =,0.05(1,5) 6.61F =, 0.05(1,7) 5.59F =

武汉大学2003-2004线性代数试题(54工)

备用试题 武汉大学数学与统计学院2003-2004学年第1学期 《线性代数》试题 (工科54学时) 姓名 学号 班号 专业 成绩 说明:一共九道题目,第一至第四题每题10分,第五至第九题每题12分。 一、计算n 阶行列式D = 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 a a a a ????????????????????? ??? 的值 。 二、若矩阵A 和B 满足关系:2242A B A B A =+-。其中A = 12 3012001?? ? ? ??? ---,求矩阵B 。 三、给定矩阵A = ?????? ? ??------11011111100222021110,求()R A 。 四、已知1(1 0 2 3)α=, ,,,2(1 1 3 5)α=,,,,3(1 1 2 1)a α=+,-,,,4(1 2 4 8)a α=+,,,, 且(1 1 +3 5)b β=,,,, 1) a b , 为何值时,β不能表示成1α,2α,3α,4α的线性组合? 2)、 a b , 为何值时,β有1α,2α,3α,4α的唯一线性表达式?并写出该表达式。 五、若A ,B 是同阶可逆矩阵,请证明()AB B A ***=,其中A *是A 的伴随矩阵,()A B *和B *具同样意义。 六、求线性方程组?????=++=++=++43322 321 321321x x x x x x x x x 的通解。 七、已知1,1,-1是三阶实对称矩阵A 的三个特征值,向量T 1(1, 1, 1)α=,T 2(2, 2, 1)α=是A 的 对应于121λλ==的特征向量, 1) 能否求得A 的属于31λ=-的特征向量?若能,请求出该特征向量,若不能,也请说明理由。 2) 能否由此求得实对称阵A ?若能则请求之,若不能则请说明理由。 八、设222 (,,)2422f x y z x y z axy yz =++++为正定二次型,试确定实数a 的最大取值范围。 九、给定3R 的基?????===.)1,0,0(,)0,1,0(,)0,0,1(321ξξξ 和 ?????--=-=-=).1,1,2(,)1,2,2(,)1,2,1(321ηηη若定义线性变换)3,2,1(,)(==T i i i ηξ, 试求: 1)求由基321,,ξξξ到基321,,ηηη的过渡矩阵X ; 2)求T 关于基321,,ηηη的变换矩阵A 。

武汉大学2019-2020第二学期高等数学A2期末试卷(A卷)

武汉大学2019-2020学年 第二学期期末《高等数学A2》考试试卷(A 卷) 一、试解下列各题(每小题5分,共50分)1.讨论二重极限00 11lim()sin x y x y x y →→+的存在性。2.设级数11()n n n a a ∞-=-∑收敛,1(0)n n n b b ∞=≥∑收敛,证明:1n n n a b ∞ =∑绝对收敛。 3.设(,,)u f x y z =有连续偏导数,函数(,)z z x y =由方程x y z xe ye ze -=所确定,函数()y y x =由0sin x y x t e dt t -=?确定,求du dx .4.设2[,()]z f x y xy ?=-,其中(,)f u v 具有二阶连续偏导数,)(u ?二阶可导,求y x z ???2.5.已知全微分()()y y xy x x y xy x y x f d 2d 2),(d 2222--+-+=,求),(y x f 的表达式。 6.设曲面方程为0),(=--by z ax z F (b a ,为正常数),(,)F u v 具有一阶连续的偏导数,且02 2≠+v u F F ,试证明此曲面上任一点处法线恒垂直于一常向量。7.求22(,)f x y x y y =++在区域222 22:4,12x D x y y +≤+≥上的平均值。8.求2(,,)F x y z yzi z k =+ 穿出曲面∑的通量,∑为柱面:221,0y z z +=≥被平面 0,1x x ==截下部分。9.计算积分333x dydz y dzdx z dxdy ∑ ++?? ,其中∑为球面:2222x y z R ++=的外侧。10.设∑ 为半球面z =(23)x y z dS ∑++??. 二、(10分)已知空间曲线Γ:22223620 x y z x y z ?+-=?--=?,且空间曲线Γ在xoy 坐标面的投影曲线为L ,若取L 为顺时针方向,求曲线积分22 223L ydx xdy x y -+?.三、(8分)考察两直线111: 213 x y z l +-==-和2:42,3,24l x t y t z t =+=-+=-,是否相交?如相交,求出其交点,如不相交,求出两直线之间的距离d . 四、(本题24分,其中(1)8分,(2)8分,(3)4分,(4)4分,)已知某座小山的表面形状曲面方程为2275z x y xy =--+,取它的底面所在的平面为xoy 坐标面。(1)设点00(,)M x y 为这座小山底部所占的区域D 内的一点,问高函数(,)h x y ,在该点沿平面

武汉大学数学分析考试解答

武汉大学2004年攻读硕士学位研究生入学考试试题 科目名称:数学分析 科目代码:369 一、计算下列各题: 1. 2. 2212lim(...),(1)11()1lim()11(1)1n n n n n n a a a a n a a a a a a →∞→∞+++>-=-=---lim(sin 1sin ) 11lim 2sin()cos 2211lim 2sin cos 22(1) x x x x x x x x x x x x x →∞ →∞→∞+-+-++=++=++= 3. 4. 20 30 220sin()lim sin()lim (')313x x x t dt x x L Hospital x →→==?法则2 1 11 arctan 2arctan(21)arctan(21)244 k k k k k πππ∞ =∞ ==+--=-=∑∑ 5. 4812 4812323 3 1... ()59!13!1()...3!11!15! ()()sin ()4()()()24x x A B e e A x B x x A e e e e B A x B x π π πππππππππππππππππππ---+ +++= ++++-?-=??==?--+= ??!7! 6. " '2"22' 2(,)()(),()(,) (,)()()()() (,)()(23)()(1)()xy x xy y xy x y y xy F x y x yz f z dz f z F x y F x y z f z dz x xy xf xy x x F x y f x y f xy xy y f xy y y =-=-+-= +-+-??设:其中为可微函数,求

武汉大学2004年线性代数解答

武汉大学 2004年攻读硕士学位研究生入学考试试题 科目:高等代数 科目代码:804 一、设A 为3阶矩阵,*A 为其伴随矩阵,1det 2 A = ,求11 det(()10*)3 A A --.(10分) 二、计算n 阶行列式12 121 21 2 00 n n n n n a a a a a a a a D a a a a ++++= ++ ,其中0,1,2,,j a j n ≠= .(10分) 三、设A 为m n ?矩阵,A 的秩()R A Y =,证明存在m Y ?矩阵B 和Y n ?矩阵C 且 ()()R B R C Y ==,使A BC =.(10分) 四、已知322,22A E B A A E ==-+,证明B 可逆,并求出其逆.(15分) 五、A 为n 阶矩阵,*A 为其A 的伴随矩阵,证明:1det *(det )n A A -=.(20分) 六、设,A B 都是n 阶正定矩阵,证明: (1) A B 的特征值全大于零;(10分) (2) 若AB BA =,则A B 是正定矩阵.(5分) 七、求矩阵1111m n A ??? ?= ? ?? ? (即A 中的每个元素都为1)的最小多项式.(15分) 八、设V 是复数域上的n 维线性空间,,f g 是V 的线性变换,且fg gf =,证明: (1)如果λ是f 的特征值,那么V λ(λ的特征子空间)是g 的不变子空间;(8分) (2),f g 至少有一个公共的特征向量.(7分) 九、设A 为n 阶方阵,证明:如果()()R A R A E n +-=,则A 可对角化.(20分) 十、 设,A B 是数域K 上的m n ?矩阵,且()()R A R B =(()R A 是矩阵A 的秩)。设齐次线性方程组 0A X =和0B X =的解空间分别是,U V 。证明存在K 上的n 阶可逆矩阵T ,使得 ()()f y T y y U =?∈是U 到V 的同构映射.(20分)

武大统计学模拟题

模拟题一 一、单选题(每题2分,共40分) 1. 在同一总体中作样本含量相等的随机抽样,有99%的样本均数在下列哪项范围内_____。 A x ±2.58x s B x ±1.96x s C μ±2.58x σ D μ±1.96x σ E μ±2.58x s 2.对于一组呈非正态分布的资料,反映其平均水平应使用哪个指标_______。 A 几何均数 B 中位数 C 上四分位数 D 四分位数间距 E 算术均数 3. 关于构成比,不正确的是____。 A 构成比中某一部分比重的增减相应地会影响其他部分的比重 B 构成比说明某现象发生的强度大小 C 构成比说明某一事物内部各组成部分所占的分布 D 若内部构成不同,可对率进行标准化 E 构成比之和必为100% 4. 以下属于分类变量的是_____。 A IQ 得分 B 心率 C 住院天数 D 性别 E 胸围 5.在两样本均数比较的t 检验中,无效假设是 。 A 两样本均数不等 B 两样本均数相等 C 两总体均数不等 D 两总体均数相等 E 样本均数等于总体均数 6. 由两样本均数的差别推断两总体均数的差别,所谓差别有显著性是指_____。 A 两总体均数不等 B 两样本均数不等 C 两样本均数和两总体均数都不等 D 其中一个样本均数和总体均数不等 E 以上都不是

7.在同一总体中作样本含量相等的随机抽样,有95%的样本均数在下列哪项范围内 。 A x ±2.58x s B x ±1.96x s C μ±2.58x σ D μ±1.96x σ E μ±2.58x s 8.已知肺活量越大,表示人体肺功能越强,假设肺活量呈正态分布,现测定了200例正常人的肺活量值,则其95%正常值范围为_____。 A < x +1.65s B > x -1.65s C x -1.96s ~ x +1.96s D < P 5 E > P 95 9.以下不属于方差分析前提条件的是_____。 A 正态性 B 要求3组方差齐性 C 要求3组均数相等 D 要求各组数据独立 E 要求是数值型变量资料 10.用某药治疗某病患者,5例中有4例治愈,宜写作4/5,而不计算治愈率为4/5×100%=80%,这是由于_____。 A 总体治愈率的可信区间太窄 B 样本治愈率的可信区间太宽 C 样本治愈率的可信区间太窄 D 总体治愈率的可信区间太宽 E 计算治愈率的方法不正确 11.单因素方差分析的目的是检验 。 A 多个样本均数是否相同 B 多个总体均数是否相同 C 多个样本方差的差别有无统计学意义 D 多个总体方差的差别有无统计学意义 E 以上都不对 12.两样本均数比较,t 检验结果差别有统计学意义时,P 值越小,说明____。 A 两总体均数差别越大 B 两总体均数差别越小 C 越有理由认为两总体均数不同 D 越有理由认为两样本均数不同 E 拒绝1H 时犯错误的概率越小 13.2χ值的取值范围是_____。

[考试必备]武汉大学数学分析考研试题集锦(1992,1994-2012年)

武汉大学数学分析1992 1.给定数列如下: }{n x 00>x ,?? ? ???+?=?+11)1(1k n n n x a x k k x ,",2,1,0=n (1)证明数列收敛。 }{n x (2)求出其极限值。 2.设函数定义在区间)(x f I 上,试对“函数在)(x f I 上不一致连续”的含义作一肯定语气的(即不用否定词的)叙述,并且证明:函数在区间x x ln ),0(+∞上不一致连续。 3.设函数在区间上严格递增且连续,)(x f ],0[a 0)0(=f ,为的反函数,试证明成立等式: 。 )(x g )(x f []x x g a x x f a f a d )(d )()(0 0∫ ∫?=4.给定级数∑+∞ =+01 n n n x 。 (1)求它的和函数。 )(x S (2)证明广义积分 x x S d )(10 ∫ 收敛,交写出它的值。 5.对于函数??? ????=+≠++=0,00,),(222 22 22y x y x y x y x y x f ,证明: (1)处处对),(y x f x ,对可导; y (2)偏导函数,有界; ),(y x f x ′),(y x f y ′(3)在点不可微。 ),(y x f )0,0((4)一阶偏导函数,中至少有一个在点不连续。 ),(y x f x ′),(y x f y ′)0,0(6.计算下列积分: (1)x x x x a b d ln 10 ?∫ ,其中为常数,b a ,b a <<0。 (2),其中为平面上由直线∫∫?D y y x e d d 2 D x y =及曲线31 x y =围成的有界闭区域。 武汉大学数学分析1994 1.设正无穷大数列(即对于任意正数}{n x M ,存在自然数,当时,成立), N N n >M x n >E 为的一切项组成的数集。试证必存在自然数}{n x p ,使得E x p inf =。 2.设函数在点的某空心邻域内有定义,对于任意以为极限且含于的数列 ,极限都存在(有限数)。 )(x f 0x 0 U 0x 0 U }{n x )(lim n n x f ∞ →(1)试证:相对于一切满足上述条件的数列来说,数列的极限是唯一确定的, 即如果和是任意两个以为极限且含于的数列,那么总有 }{n x )}({n x f }{n x }{n x ′0x 0 U )(lim )(lim n n n n x f x f ′=∞ →∞ →。 (2)记(1)中的唯一确定的极限为,试证:)}({n x f A A x f x x =→)(lim 0 。 3.设函数在点的邻域)(x f 0x I 内有定义,证明:导数)(0x f ′存在的充要条件是存在这样的函数,它在)(x g I 内有定义,在点连续,且使得在0x I 内成立等式:

武汉大学2010-2011第一学期《高等数学B1》期末考试试题解

2010-2011第一学期《高等数学B1》期末考试试题解 一、计算题(7?8分) 1、求由方程ln()x y xy e +=确定的隐函数()y y x =的导数dy dx 。 2 、求x →3、求3002 0sin lim cos x x x t dt t dt →??。 4、求1242lim n n x x x n n n n →∞????????++++++ ? ? ???? ??????? 。 5 、求不定积分 。 6、求定积分2 0(1sin )x x dx π-?。 7、求方程22x y xy xe -'+=的通解。 8、设2(),lim ()0x x f x e f x -→+∞'==求20()x f x dx +∞?。 解、1、(1),x y x y x y y xy dy y xye e y xy dx xye x +++'+-'=+=-。 2 、 0000222184lim lim lim 111222 x x x x x x x →→→→??==== 3、330200 20sin sin lim lim 0cos cos x x x x t dt x x t dt →→==??。 4、101242lim (2)1n n x x x x t dt x n n n n →∞????????++++++=+=+ ? ? ???? ???????? 。 5 、) 2212(1)11ln ln 121x e t t u v v dt dv v v v C x C v ====--=+=-++?。

6、2222 00 (1sin )cos sin 128x x x dx x x x π ππ??-=+-=- ????。 7、222 2,,,,2Pdx x x P x Q xe Pdx x Qe dx -?====??通解:222x x y e C -??=+ ???。 8、2 344()()lim lim lim 0939x x x x x f x f x x e x -→+∞→+∞→+∞'==-=-,()22 3233000000()11()()333111(1)666 x x t t t x f x x f x dx x f x dx x e dx te dt t e +∞+∞ +∞+∞-=+∞+∞--'=-=-=-=---=-????。 二、(7分)证明当02x π<<时2sin x x π >。 证、记sin ()12x f x x π=-。2(cos sin )()2x x x f x x π-'=。记()c o s s i n g x x x x =-。()sin 0(0)2g x x x x π'=-<<<,()g x 在02 x π≤≤严格单调下降。()(0)0,()0(0)2g x g f x x π'<=<<<。()f x 在02x π≤≤严格单调下降。()0(0)22f x f x ππ??>=<< ???。故当02x π<<时2sin x x π>。 三、(10分)设抛物线2y ax bx c =++过原点,当01x ≤≤时0y ≥,又已知该抛物线与x 轴及直线1x =所围成图形的面积为 13 。试确定,,a b c 使此图形绕x 轴旋转一周而成的旋转体的体积V 最小。 解、由抛物线2 y ax bx c =++过原点得0c =。 120 ()32a b A ax bx dx =+=+?。令13A =得223a b -=。 2222120224(1)4()()352712a a a a a V a ax x dx ππ??---??=+=++ ? ????? ?。 28(1)12()5 273a a a V a π--??'=-+ ???。()V a 有唯一聚点54a =-。根据问题的实际,54a =-时旋转体的体积V 最小。 53,,042 a b c =-==。

武汉大学2004-2005线性代数试题(54工)

备用试题 武汉大学数学与统计学院2004-2005学年第2学期 《线性代数》试题 (工科54学时) 姓名 学号 班号 专业 成绩 一、 是非题(本题满分12分,每小题4分.请在正确命题前的括号内填上“√”,否则填上“×”) ( ) 1)设A 是n m ?实矩阵,x 为1?n 实矩阵,则?=0Ax A T 0=Ax ; ( ) 2)设向量321,,βββ都可由向量21,αα线性表示,则321,,βββ线性相关; ( ) 3)设n 阶方阵A 满足022=--E A A ,则A 和E A 2+皆可逆; 二、填空题(本题满分12分,每空4分.将正确结果填入题中横线上的空白处). 1)排列7564132的逆序数为 ; 2)设A 是3阶矩阵,R(A) = 2,若矩阵B =???? ? ??201010101,则R(AB) = _______; 3)设B A ,为可逆方阵,则=???? ??-1O B A O . 三、(10分)求矩阵A =?????? ? ??------11011111100222021110的秩。 四、(10分)若向量αm 是向量 121, ,, m ααα- 的线性组合,但不是122, ,, m ααα- 的线 性组合,证明:αm -1是122, , , m ααα- , αm 的线性组合。 五、(10分)设1λ、2λ和3λ是三阶实对称矩阵A 的三个不同的特征值,其中 T 1) 3 1, 1, (ξ=、T 2) 5, 4, (ξa = 依次是A 的属于特征值1λ、2λ的特征向量,求实常数a 以及3λ所对应的特征向量。 六、(15分)就λ取值讨论?? ???=++++=+-+=+++λλλλλλλλλ3)3()1(32)1(2)3(321321321x x x x x x x x x 的解的情况,在有无穷多解时, 求出其通解。 七、(10分)设A 为三阶矩阵,A *是A 的伴随矩阵,则 1 ()2()0 ()1R A R A R A *=?=? =? ,试证明之。 八、(12分) 已知二次型为)0(2332),(3 21232221321>+++=a x x a x x x x x x f ,且通过正交变换可将f 化为标准形:2 3222152y y y f ++=。 1)求参数a; 2)写出该二次型的矩阵,并求它的秩; 3)写出该二次型的标准形所用正交变换P . 九、(12分)给定3R 的两个基?????===.)1,7,3(,)3,3,2(,)1,2,1(321ξξξ 和 ?????-===).6,1,1(,)1,2,5(,)4,1,3(3 21ηηη试求: 1)求由基321,,ξξξ到基321,,ηηη的过渡矩阵X ; 2)写出向量α在两基下的坐标变换公式。

相关主题
文本预览
相关文档 最新文档