DC_AC逆变器技术及其应用综述
- 格式:pdf
- 大小:119.06 KB
- 文档页数:5
DC/AC逆变器,DC/AC逆变器的基本原理背景知识:DC/AC逆变技术能够实现直流电能到交流电能的转换,可以从蓄电池、太阳能电池等直流电能变换得到质量较高的、能满足负载对电压和频率要求的交流电能。
DC/AC逆变技术在交流电机的传动、不间断电源(UPS)、变频电源、有源滤波器、电网无功补偿器等许多场合得到了广泛的应用。
DC/AC逆变技术的基本原理是通过半导体功率开关器件(例如SCR,GTO,GTR,IGBT 和功率MOSFET模块等)的开通和关断作用,把直流电能变换成交流电能,因此是一种电能变换装置。
由子是通过半导体功率开关器件的开通和关断来实现电能转换的,因此转换效率比较高。
但转换输出的波形却很差,是含有相当多谐波成分的方波。
而多数应用场合要求逆变器输出的是理想的正弦波,因此如何利用半导体功率开关器件的开通和关断的转换,使逆变器输出正弦波和准正弦波就成了DC/AC逆变器技术发展中的一个主要问题。
基本原理:常用逆变器主电路的基本形式有两种分类方法:按照相数分类,可以分为单相和三相;按照直流侧波形和交流侧波形分类,可以分为电压型逆变器和电流型逆变器。
具体如下:DC/AC逆变器按拓扑结构划分,分为Buck型DC/AC逆变器,Boost型DC/AC逆变器,Buck-Boost型DC/AC逆变器。
1,Buck型DC/AC逆变器Buck型DC/AC逆变器电路基本拓扑如图所示。
采用了两组对称的Buck电路,负载跨接在两个Buck变换器的输出端,并以正弦的方式调节Buck变换器的输出电压,进行DC/AC的变换。
它包括直流供电电源Vm,输出滤波电感L1和L2,功率开关管S1-S4 。
滤波电容C1和C2,续流二极管D1-D4,以及负载电阻R。
通过滑模控制,使输出电容电压V1和V2随参考电压的变化而变化,从而使两个Buck变换器各产生一个有相同直流偏置的正弦波输出电压,并且V1和V2在相位上互差180度。
由于负载跨接在K和代的两端,则DC/AC变换器的输出电压玲为如下式所示的正弦波,图2所示即为逆变器的基本工作原理。
第三章逆变控制器的组成及工作原理DC-AC变换结构:DC-AC全桥变换的基本原理如上图所示,Ud为直流电压,V1,V2,V3,V4为可控开关。
当V1,V4导通V2,V3断开时,负载端电压Us为上正下负。
反之,当V2,V3导通V1,V4断开时,负载端电压Us为下正上负。
Spwm调制介绍随着逆变器控制技术的发展,电压型逆变器出现了多种变压、变频控制方法。
目前采用较多的是正弦脉宽调制调制技术,即 SPWM 控制技术。
SPWM(Sinusoidal Pulse Width Modulation)技术,是指调制信号正弦化的 PWM技术。
由于其具有开关频率固定、输出电压只含有固定频率的高次谐波分量、滤波器设计简单等一系列优点,SPWM 技术已成为目前应用最为广泛的逆变用 PWM 技术。
SPWM (正弦脉宽调制)应用于正弦波逆变器主要基于采样控制理论中的一个结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上,效果基本相同。
图3-1是将正弦波的半个周期分成等宽(π/N)的 N个脉冲,(b)是N个宽度不等的矩形脉冲,但矩形中点与正弦等分脉冲中点重合,并且矩形脉冲的面积和相应正弦脉冲面积相等。
图3-1 数字PWM控制基本原理SPWM 技术按工作原理可以分为单极性调制和双极性调制。
单极性调制的原理如图 3-2(a),其特点是在一个开关周期内两只功率管以较高的开关频率互补开关,保证可以得到理想的正弦输出电压;另两只功率管以较低的输出电压基波频率工作,从而在很大程度上减少了开关损耗。
但并不是固定其中以个桥臂始终工作在低频,而是每半个周期切换工作,即同一桥臂在前半个周期工作在低频,而后半个周期工作在高频。
这样可以使两个桥臂的工作状态均衡,器件使用寿命更均衡,有利于增加可靠性。
2) 双极性调制双极性调制的原理如3-2(b),其特点是四个功率管都工作在较高的频率(载波频率),虽然能够=得到较好的输出电压波形,但是其代价是产生了较大的开关损耗。
dc转ac逆变器与柴油发电机的配合直流转交流逆变器(DC to AC Inverter)与柴油发电机的配合是一种常见的发电系统配置,特别适用于需要备用电源的场合,如露天采矿、建筑工地等。
本文将从配合方式、工作原理、优缺点以及应用实例等方面,一步一步地回答这个主题。
一、配合方式DC转AC逆变器与柴油发电机的配合方式主要有两种:并联式和串联式。
并联式配置是将多个逆变器与柴油发电机并联输出,提供更大的输出功率;串联式配置则是将逆变器与柴油发电机串联,逆变器将柴油发电机输出的直流电转换为交流电供电使用。
两种方式各有优劣,根据实际需求选择适合的配合方式。
二、工作原理1. DC到AC逆变器工作原理:逆变器是一种电子装置,可将直流电能转换为交流电能。
它将直流输入电源通过电子开关器件(如MOSFET、IGBT等)进行开关调制,并经过滤波、放大等过程形成纯正弦波的交流输出电流。
2. 柴油发电机工作原理:柴油发电机是将燃油燃烧产生的热能转换为机械能,再经过发电机部分将机械能转换为电能。
柴油发电机通过燃烧室内的柴油燃料,利用内燃机的工作原理,通过活塞的上下运动引起曲轴旋转,进而带动发电机旋转产生电能。
3. 配合原理:配合时,柴油发电机先将燃油转化为机械能,输出交流电,然后通过逆变器将柴油发电机输出的直流电转换为交流电,实现电能的稳定供应。
三、优缺点1. 优点:(1)稳定可靠:柴油发电机作为主要的供电设备具备稳定的输出功率和可靠性,逆变器通过稳定直流转换为交流输出,进一步提高了供电的稳定性。
(2)燃油经济性:柴油发电机可以使用廉价的柴油燃料,经济性较高。
(3)环保节能:逆变器可以将柴油发电机输出的直流电转换为交流电,减少了能源的浪费,并减少了对环境的污染。
2. 缺点:(1)成本较高:与单一柴油发电机相比,DC转AC逆变器的价格较高,增加了系统的成本。
(2)功率限制:逆变器的输出功率有一定限制,无法应对大功率设备的需求。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。