LCL型三相并网逆变器控制策略综述
- 格式:pdf
- 大小:401.45 KB
- 文档页数:6
分布式发电系统中LCL滤波并网逆变器电流控制研究综述一、本文概述随着全球能源危机和环境问题的日益严重,分布式发电系统以其清洁、高效、灵活的特点,正逐渐受到人们的广泛关注。
其中,并网逆变器作为分布式发电系统中的重要组成部分,其性能直接影响到整个系统的稳定性和效率。
因此,对并网逆变器的控制策略进行研究,具有重要的理论和现实意义。
本文旨在对分布式发电系统中LCL滤波并网逆变器的电流控制策略进行综述。
介绍了分布式发电系统和并网逆变器的基本概念和发展现状,阐述了LCL滤波器在并网逆变器中的应用及其优势。
然后,重点分析了LCL滤波并网逆变器的电流控制策略,包括传统控制策略和现代控制策略,如PI控制、PR控制、无差拍控制、重复控制、滑模控制以及基于智能算法的控制策略等。
对各类控制策略的特点、优缺点进行了详细比较和评价,指出了未来研究的方向和趋势。
通过本文的综述,旨在为读者提供一个全面、深入的理解分布式发电系统中LCL滤波并网逆变器电流控制策略的知识平台,为相关研究和应用提供有益的参考。
二、分布式发电系统概述分布式发电系统(Distributed Generation,DG)是一种新型的电力供应模式,它强调将小型的、模块化的发电单元分散布置在用户附近,与用户直接相连或通过短距离的电网相连。
这种发电模式与传统的集中供电模式相比,具有更高的灵活性、可靠性和环保性。
DG系统通常采用的发电技术包括风力发电、光伏发电、生物质能发电、小水电、燃料电池等可再生能源发电技术,也有天然气发电、微型燃气轮机等清洁高效的发电技术。
分布式发电系统的优点主要体现在以下几个方面:它可以有效缓解电网的供电压力,提高电力系统的稳定性;由于DG系统通常靠近用户,因此可以减少电能在长距离输送过程中的损失,提高能源利用效率;DG系统使用的多为可再生能源,符合绿色、低碳、可持续的能源发展趋势,对保护环境、减少温室气体排放具有重要意义。
然而,分布式发电系统也面临着一些挑战和问题。
三相并网逆变器LCL滤波特性分析及控制探究摘要:随着新能源的快速进步,光伏发电在能源领域得到了广泛应用。
三相并网逆变器作为光伏发电系统中的关键设备之一,在发电系统中起到了将直流能量转换为沟通能量并并网供电的关键作用。
然而,由于逆变器产生的谐波和滞后因素,不行防止地会对电网和其他电气设备造成不良影响。
因此,本文针对三相并网逆变器的LCL滤波特性进行了分析,并对其控制策略进行了探究。
关键词:三相并网逆变器;LCL滤波器;谐波;滞后;控制策略1. 引言光伏发电系统是目前广泛应用于新能源领域的一种发电方式,其具有环保、可再生等优点。
而三相并网逆变器则是实现光伏发电系统与电网毗连的核心设备之一。
然而,逆变器产生的谐波和滞后问题对电网及其他电气设备等造成了一定的负面影响。
因此,提高逆变器的滤波特性并探究相应的控制策略具有重要的理论和实际意义。
2. LCL滤波器原理及特性LCL滤波器由电感L、电容C和电感L组成,其结构简易、成本相对较低,并且能够较好地抑止谐波和滞后现象。
在逆变器中引入LCL滤波器可以有效改善电流波形,减小谐波含量,保卫电网和其他电气设备的稳定性。
3. 三相并网逆变器LCL滤波特性分析本文建立了三相并网逆变器与LCL滤波器的数学模型,并通过数值仿真和试验验证,分析了LCL滤波器在不同工作频率下的谐波衰减特性和电压波形。
4. 三相并网逆变器LCL滤波器控制策略探究针对三相并网逆变器LCL滤波器的工作特点和需求,本文提出了一种基于模糊控制的滤波器控制策略。
该策略依据电网电压和逆变器输出电压的差值,通过模糊控制器调整滤波器的谐波衰减能力,以实现对电网电压的高质量输出。
5. 试验及结果分析本文设计了试验平台,并对所提出的控制策略进行了验证。
试验结果表明,接受LCL滤波器和基于模糊控制的控制策略,能够有效抑止谐波并保持电网电压的稳定性。
6. 结论本文对三相并网逆变器的LCL滤波特性进行了分析,并提出了基于模糊控制的滤波器控制策略。
技术应用TECHNOLOGYANDMARKETVol.27,No.9,2020LCL型并网逆变器优化控制策略刘 洋,张运波,张 红(长春工程学院电气与信息工程学院,吉林长春130012)摘 要:以LCL型三相并网逆变器为研究对象,系统地分析了LCL型并网逆变器的动态特性和耦合机理,在此基础上提出一种基于LCL滤波的并网逆变器优化控制策略,该控制策略通过并网逆变器的直流电压环、电容电流环和网侧电流环组成的三环逆变控制器来实现。
最后通过搭建样机验证性能,实验结果表明,该控制策略能够有效地抑制LCL型滤波器对并网逆变器的影响,输出谐波THD值和功率因数都能够符合国家标准要求。
关键词:并网逆变器;控制策略;LCL滤波器doi:10.3969/j.issn.1006-8554.2020.09.033 概述滤波器通常被用于将并网逆变器与公用电网相连接,以过滤并网逆变器交流侧产生的谐波。
LCL型滤波器的谐波衰减率可以达到-60dB/dec左右,其性能远超过L型滤波器而倍受青睐。
本文提出一种新型LCL型并网逆变器控制策略,旨在解决LCL型并网逆变器的高频谐振和稳定性问题。
% %型并网逆变器控制策略的优化设计LCL型三相并网逆变器的基本拓扑结构如图1所示。
图1 LCL型并网逆变器的基本拓扑结构 图1中并网逆变器直流侧电压为Udc,直流源电流为Idc,直流侧电容为C1,逆变器交流侧电压为USN(N=a,b,c),逆变器交流输出侧电感为L1N(N=a,b,c),滤波电容为CN(N=a,b,c),CN的电压和电流分别为ucN(N=a,b,c)和icN(N=a,b,c),交流电网侧滤波电感为L2N(N=a,b,c),由上述拓扑结构可以推导出LCL型滤波器拓扑结构的传递函数为:GLCL(s)=i2N(s)uSN(s)=1S3L1NL2NCN+S(L1N+L2N)(1)由式(1)可计算出系统发生谐振时的角频率为:W=L1N+L2NL1NL2NC槡N(2)本文提出一种基于逆变器直流侧电压环、滤波电容电流环和逆变器交流侧电流环的三闭环控制策略。
采用LCL滤波器的三相三电平并网逆变器控制技术郭小强, 王宝诚, 孙孝峰, 吴俊娟(电力电子节能与传动控制河北省重点实验室(燕山大学),河北省秦皇岛市 066004)摘要:并网逆变器输出采用LCL滤波器可以有效抑制高频谐波,从而满足IEEE标准对并网电流谐波的要求。
然而,LCL滤波器的引入导致系统稳定性降低。
为了解决该问题,提出一种基于并联无源阻尼的控制方案。
首先介绍了三相三电平并网逆变器的工作原理,然后建立了系统数学模型,在此基础上根据Routh–Hurwitz稳定判据进行系统稳定性分析,得出并联电阻值和系统参数之间的关系,最后在MATLAB/Simulink环境下对控制方案进行验证。
仿真结果表明,该方案可有效解决LCL谐振引起的不稳定问题,同时保证并网电流谐波含量满足IEEE标准。
关键词:三相三电平;并网逆变器;LCL滤波器;稳定性;无源阻尼0 引言全球经济增长引发的能源消耗达到了前所未有的程度。
传统化石燃料过度消耗引起的全球变暖以及生态环境失衡等问题给人类带来了更大的生存威胁。
世界各国纷纷开始可再生能源的利用.通过可再生能源来改变人类的能源结构,实现长远的可持续发展。
太阳能作为一种分布广泛、取之不尽、用之不竭的绿色无污染清洁能源,日益受到人们的关注。
据国际能源机构IEA (International Energy Agency) 统计数据[1],1992年至2009年之间,光伏发电系统容量呈逐年递增趋势,如图1所示。
其并网型光伏系统增长趋势较快,是目前广泛采用的发电方式。
为了实现光伏系统并网运行,需要通过电力电子装置进行功率变换[2]。
其中,逆变器作为光伏系统和电网之间的接口,起着至关重要的作用[3]。
通过逆变器的控制不仅可以保证光伏并网系统高质量地向电网输送功率,在电网故障时还可以实现有效的孤岛保护[4]。
传统并网逆变器输出端一般安装滤波电感衰减PWM产生的高频谐波。
为了满足谐波注入标准,通常需要选取较大的滤波电感,体积大,成本高,且影响系统的动态性能。