课程设计 脉冲激光测距仪
- 格式:pdf
- 大小:338.78 KB
- 文档页数:15
脉冲激光测距接收电路的设计脉冲激光测距技术是一种常见的测量距离的方法,广泛应用于工业、环境监测和机器人领域。
而脉冲激光测距接收电路是实现这一测量方法的关键部分。
脉冲激光测距接收电路的设计旨在实现精确、稳定地捕捉激光脉冲信号,并将其转化为数字信号以进行距离计算。
下面将介绍几个关键要素,以帮助您理解脉冲激光测距接收电路的设计。
第一个要素是接收器设计。
脉冲激光测距接收电路通常采用光电二极管或光电二极管阵列来接收激光脉冲信号。
这些接收器需要具备高灵敏度和快速响应的特点,以确保准确地接收到激光信号。
第二个要素是前置放大器。
由于激光脉冲信号很弱,需要通过前置放大器将信号放大到适合后续处理的水平。
前置放大器还需要具备低噪声特性,以确保测量结果的精确性和稳定性。
第三个要素是时间测量电路。
脉冲激光测距需要测量激光从发射到接收的时间差,因此时间测量电路是脉冲激光测距接收电路的核心部分。
常用的时间测量电路包括计数器、时钟和触发器等组件,用于精确测量时间差并将其转化为数字信号输出。
第四个要素是滤波器。
为了去除噪声和干扰信号,脉冲激光测距接收电路通常需要加入适当的滤波器。
滤波器可以是低通滤波器或带通滤波器,具体根据实际应用需求来选择。
最后一个要素是模数转换器。
脉冲激光测距接收电路需要将模拟信号转换为数字信号进行距离计算。
模数转换器可以是单通道或多通道的,具体选择取决于系统的要求和设计目标。
综上所述,脉冲激光测距接收电路的设计涉及到接收器设计、前置放大器、时间测量电路、滤波器和模数转换器等要素。
合理地设计这些要素,可以实现精确、稳定的脉冲激光测距功能。
激光测长仪课程设计一、教学目标本课程旨在通过学习激光测长仪的相关知识,让学生掌握激光测长的基本原理、仪器的使用和维护方法,以及相关应用领域的知识。
在知识目标上,要求学生了解激光的特性、激光测长的原理和方法,以及激光测长仪在不同领域的应用。
在技能目标上,要求学生能够熟练操作激光测长仪,进行长度测量,并能够分析测量结果。
在情感态度价值观目标上,要求学生培养对科学实验的兴趣和好奇心,提高对科学技术的认同感和自豪感。
二、教学内容本课程的教学内容主要包括激光测长仪的基本原理、使用和维护方法,以及相关应用领域的知识。
首先,介绍激光的特性,包括激光的产生、传播和接收等方面。
然后,讲解激光测长的原理和方法,包括干涉法、衍射法和脉冲法等。
接着,介绍激光测长仪的使用和维护方法,包括仪器的组装和调试、测量操作和数据处理等。
最后,介绍激光测长仪在不同领域的应用,如精密制造、航空航天和生物医学等。
三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法。
首先,通过讲授法,向学生传授激光测长仪的相关知识和原理。
然后,通过讨论法,引导学生进行思考和交流,培养学生的分析和解决问题的能力。
接着,通过案例分析法,结合实际案例,让学生了解激光测长仪在实际应用中的具体情况和效果。
最后,通过实验法,让学生亲自动手操作激光测长仪,进行长度测量,提高学生的实践能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备适当的教学资源。
首先,教材《激光测长仪原理与应用》将作为主要的学习材料,为学生提供系统的理论知识。
然后,参考书如《激光技术》和《测长技术》将为学生提供更深入的背景知识。
同时,多媒体资料如实验视频和演示软件将为学生提供直观的视觉体验。
最后,实验设备如激光测长仪和相关的测量工具将为学生提供实践操作的机会。
五、教学评估本课程的评估方式将包括平时表现、作业和考试等几个方面,以保证评估的客观性和公正性,并全面反映学生的学习成果。
tof激光测距课程设计一、课程目标知识目标:1. 理解TOF激光测距的原理,掌握测距的基本公式和计算方法;2. 了解激光的特性,以及其在测距技术中的应用;3. 掌握影响激光测距精度的因素,并能进行分析和解释。
技能目标:1. 能够运用TOF激光测距技术进行实际距离测量,并准确记录数据;2. 能够操作激光测距设备,进行基本的维护和故障排查;3. 能够运用所学知识解决实际测距问题,具备一定的创新能力和实践能力。
情感态度价值观目标:1. 培养学生对物理学科的兴趣,激发其探索精神和求知欲;2. 增强学生的团队合作意识,培养其在实验和探究过程中的沟通与协作能力;3. 培养学生严谨的科学态度,使其具备良好的实验习惯和安全意识;4. 引导学生关注科技发展,认识到物理学在现实生活和工业领域中的应用价值。
分析课程性质、学生特点和教学要求,本课程目标旨在帮助学生掌握TOF激光测距的相关知识,提高实践操作能力,培养科学素养和创新能力。
通过具体的学习成果分解,为教学设计和评估提供明确依据,使学生在学习过程中达到预期的知识、技能和情感态度价值观目标。
二、教学内容1. TOF激光测距原理:讲解时间飞行(Time of Flight)测距的基本原理,介绍激光发射、反射及接收的过程,引导学生理解测距公式的推导。
教材章节:第二章“光学测距原理”2. 激光特性及其在测距中的应用:介绍激光的波长、频率、相位等特性,分析激光在测距技术中的应用优势。
教材章节:第三章“激光的特性与应用”3. 影响激光测距精度的因素:分析光源、探测器、环境等对测距精度的影响,探讨提高测距精度的方法。
教材章节:第四章“激光测距的误差分析与控制”4. 激光测距设备操作与维护:讲解激光测距设备的结构、功能及操作方法,介绍基本的设备维护和故障排查技巧。
教材章节:第五章“激光测距设备及其应用”5. 实践操作:组织学生进行TOF激光测距实验,让学生动手操作设备,完成实际距离测量,并分析数据。
基于单脉冲激光的测距研究摘要该设计采用单脉冲激光进行距离的测量。
在光电检测系统中,采用了可以控制的激光光源作为信号的发射装置,配以光电倍增管(PMT)作为接收装置和信号处理电路,通过获取激光发射到激光反射回接收装置的时间来计算出所测目标的距离。
该测距系统通过发送单个脉冲的激光进行测量,具有速度快、精度高的特点,通过电子门的精确控制计数器的开始和停止,极大减小了系统的误差。
关键词:单脉冲激光;光电检测 ;光电倍增管(PMT)Research about range finder based on single pulse laserAbstractThis design USES single pulse laser to distance measurement. In photoelectric detection system, using the can control laser sources as a signal transmitting devices, match with photoelectric acceptance device(PMT)and signal processing circuit, through to get laser pulse laser reflected back to receiving devices of time to calculate the distance of the target. The measurement system by sending a single pulse laser measurement, high speed, high precision, the characteristics of electronic door through the precise control counter the start and stop, greatly reducing the error of the system.Keywords: single pulse laser; Photoelectric detection;PMT目录一、引言光学测距在气象研究、大地测量和科学研究,军事,宇航探测等众多领域中有着广泛的应用,激光技术用于测距,具有速度快,精度高,不受地形限制的优点。
激光测距仪方案设计激光测距仪用途多用于精密测量距离,能够完美替代卷尺、皮尺、盒尺。
广泛应用在家居测量、家电安装、室内装潢、测绘勘测、工业测控等行业。
不过在之前,多用于军事,用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。
它是提高坦克、飞机、舰艇和火炮精度的重要技术装备。
一、产品特色:1、长距离测量:500米,高精度:±1.5毫米(0.06英寸),高分辨率:1毫米2、多次测量距离加减自动计算。
3、3、面积、体积自动计算。
4、勾股法二次、三次间接测量。
5、20组测量数据存储读取。
6、多达100次的连续测量。
7、仪器顶部、底部测量切换。
8、操作错误代码提示。
9、超大屏幕LCD背光、四行显示(最后4次测量结果同时显示在屏幕上)、操作图标指示及蜂鸣音提示、单位符号全显示,直观明了。
10、米、英寸、英尺三种转速单位选择。
11、电池电量指示、电源手动/自动关机(3分钟)。
12、采用最新科技的微处理器技术和激光技术相结合,仪表更智能、更可靠。
二、技术参数:1、测量范围:0.1-80米2、分辨力:1毫米3、准确度:±1.5毫米4、激光等级:Ⅱ级5、激光类型:635nm,<1mW6、电源:1.5V(AAA)7号电池3节7、产品尺寸:113x56x30mm8、产品重量:140g(包括电池)9、标准配件:7号电池3节、保修卡、说明书10、标准包装:便携包+双吸塑三、操作提示:1、测量时将测距仪指向太阳或其他强光光源以及在测量浅色液体(如:水等)、透明玻璃、泡沫塑料或其他半透明、低密度物质时会导致错误、测量不准确。
2、在日光下或者目标反光过弱的情况下,建议使用反射板。
3、测试过程中请小心仪表发射的激光不要直射眼睛,测试结束后请即时套上保护套,仪表须放置在小孩接触不到的地方。
脉冲激光测距的设计与研究的开题报告一、研究背景和意义脉冲激光测距技术是一种利用激光束测量目标距离的高精度技术。
它广泛应用于建筑、工业、航空、军事等领域,例如测量建筑物、桥梁、隧道等的尺寸,以及导航、制导和火控系统中的测距。
因此,研究脉冲激光测距的设计和优化,对于提高测量精度和实现自动化测量具有重要意义。
二、研究目的和内容本文旨在设计并研究一套脉冲激光测距系统,包括激光器、调制器、接收器、信号处理和距离计算等模块。
具体内容包括:1. 设计一种高功率、相位稳定的激光器,满足距离测量的要求。
2. 设计合适的调制器,实现脉冲激光发射和接收。
3. 设计接收器和信号处理模块,对接收到的信号进行放大、滤波和数字化等处理,提取出目标信号的时间和强度信息。
4. 根据接收到的信号数据,计算目标距离,并对系统进行校准、优化和测试。
三、研究方案和方法1. 激光器设计采用半导体激光器,运用多模斜率效应抑制单模振荡,采用反馈控制保持激光的相位稳定。
2. 调制器选用脉冲调制器,通过控制脉冲宽度和重复频率产生合适的激光脉冲。
3. 接收器部分采用 PIN 光电二极管和高增益的前放电路,滤波器采用数字滤波器,实现信号处理的高效和精确。
4. 利用 TOF(Time of Flight)原理计算目标距离,通过对系统进行校准和优化,提高系统的测距精度和稳定性。
最后,对系统进行测距测试和与其他系统对比测试。
四、研究计划和进度1. 第一阶段(1-2周):调研相关文献,了解脉冲激光测距的基础理论和现有研究进展。
2. 第二阶段(3-4周):设计和制作激光器、调制器、接收器,以及信号处理和距离计算模块。
3. 第三阶段(5-6周):对系统进行校准和优化,测试系统的性能,包括测距精度、稳定性和响应时间等指标。
4. 第四阶段(7-8周):优化系统的设计,比较实验结果并对系统进行改进和完善。
五、预期结果和成果通过设计和研究脉冲激光测距系统,预期能够获得以下成果:1. 实现一套高精度、高稳定性的脉冲激光测距系统。
有关“激光测距”的实验报告有关“激光测距”的实验报告如下:一、实验目的本实验旨在通过激光测距的方法,测量目标物体与测距仪之间的距离,并验证激光测距的原理及精度。
二、实验原理1.激光测距的基本原理是利用激光的快速、单色、相干性好等特点,通过测量激光发射器发出激光信号到目标物体再反射回来的时间,计算出目标物体与测距仪之间的距离。
具体而言,激光测距仪通常采用脉冲法或相位法进行测距。
2.脉冲法测距是通过测量激光发射器发出激光脉冲信号到目标物体再反射回来的时间,计算出目标物体与测距仪之间的距离。
其计算公式为:d=2c×t,其中d为目标物体与测距仪之间的距离,c为光速,t为激光脉冲信号往返时间。
3.相位法测距则是通过测量调制后的激光信号在目标物体上反射后与原信号的相位差,计算出目标物体与测距仪之间的距离。
其计算公式为:d=2×Δφλ,其中λ为调制波长,Δφ为相位差。
三、实验步骤1.准备实验器材:激光测距仪、标定板、尺子、三脚架等。
2.将标定板放置在平整的地面上,用三脚架固定激光测距仪,调整激光测距仪的高度和角度,使激光束对准标定板中心。
3.按下激光测距仪的测量按钮,记录标定板的距离读数。
4.用尺子测量标定板的实际距离,并与激光测距仪的读数进行比较。
5.重复步骤3和4多次,记录数据并分析误差。
四、实验结果与分析1.激光测距仪的测量精度较高,误差在±1cm以内。
2.在不同距离下,激光测距仪的误差略有不同,但总体来说表现良好。
3.在实际应用中,需要注意环境因素对激光测距的影响,如烟雾、尘埃等可能会影响激光信号的传播和反射。
五、结论与展望本实验通过激光测距的方法测量了目标物体与测距仪之间的距离,验证了激光测距的原理及精度。
实验结果表明,激光测距仪具有较高的测量精度和可靠性,适用于各种需要高精度距离测量的场合。
未来,随着技术的不断发展,激光测距的应用领域将更加广泛,如无人驾驶、机器人导航、地形测绘等。
毕业设计(论文)题目激光测距的研究目录摘要 (1)关键词 (3)前言 (2)一脉冲激光测距的研究状况 (3)1.1国外研究状况 (3)1.2国内研究状况 (3)二激光测距原理 (3)2.1相位法激光测距 (4)2.2相位法优缺点 (6)2.3脉冲激光测距的基本原理 (7)2.4脉冲激光测距仪的测距性能指标 (15)2.5激光脉冲飞行时间法的关键技术 (17)2.6小结 (20)三激光发射电路设计 (21)3.1M ULTISIM简介 (21)3.2M ULTISIM的界面 (21)3.3激光脉冲发射电路设计 (22)四脉冲激光接收电路设计 (24)4.1基本要求 (24)4.2前放设计分析 (24)4.3整形电路 (27)4.4计数电路 (28)4.5接收电路 (29)4.6PCB板 (30)五结束语 (31)致谢 (31)参考文献: (31)激光测距的研究摘要:论文中讨论了相位激光测距和脉冲激光测距的基本原理,并就两种方法的优缺点做了对比分析。
本论文就脉冲激光测距的方法进行了深入分析和研究,分析了脉冲激光测距系统工作的基本特征,分析了相关的一些主要参数,并依据原理设计了相关的电路,设计过程中优化了电路参数,并做了仿真分析和实践验证,文中也提供了系统的PCB图,系统工作稳定可靠。
Abstract:In this paper, the principles of laser range based on phase and pulse were discussed in this paper, and the advantages and disadvantages were compared and analyzed. The typical characteristics of pulse laser range finder were studied with the theory, the circuit graph was deigned and optimized by analyzing the main parameters, the laser range finder system was stable and reliable by simulation and verification, and, the PCB of the circuit was shown in it.关键词: 激光测距;脉冲;相位;PCBkey words:Laser Ranging Finder ;Pulse;Phase;Printed circuit board 前言脉冲半导体激光测距技术研究的目标是增大作用距离,提高测距精度,并在解决二维光学扫描的基础上,实现对目标的三维测量。
目 录第一章 引言………………………………………………………………21.1激光测距技术…………………………………………………………21.2激光测距的发展状况…………………………………………………2第二章 脉冲测距仪的工作原理…………………………………………42.1测距仪的基本工作原理………………………………………………42.2脉冲激光测距实现的原理及光电读数的实现方法…………………5第三章 部件分析…………………………………………………………73.1激光器…………………………………………………………………73.2光电器件………………………………………………………………7第四章 激光测距系统性能分析…………………………………………84.1光脉冲对测距仪的影响………………………………………………84.2发散角对测距仪的影响………………………………………………84.3测距系统信噪比分析…………………………………………………9第五章 测距仪的精度分析………………………………………………105.1精度分析………………………………………………………………105.2提高脉冲激光测距精度的措施………………………………………10第六章 激光测距仪总体设计……………………………………………14总结…………………………………………………………………………16
第一章 引言1.1 激光测距技术激光测距是指根据激光往返待测距离的时间来测定距离的方法,激光测距技术是随着激光技术的出现而发展起来的一种精密测量技术,因其良好的测距性能而广泛应用在军事和民用领域。自1960年美国T.H.Maiman博士制成世界上第一台红宝石激光器开始,激光优异的单色性、方向性和高亮度性就引起了人们的普遍关注。激光的这些特性,决定着它成为理想的测距光源。国内外均大力开展了激光测距系统的研制工作。1961年美国就成功的研制了世界上最早的红宝石激光测距系统,1969年美国又首次将激光测距系统应用于坦克火控系统。从此,激光测距技术发展迅猛,广泛的应用于战场上。激光测距方法从原理上分主要有相位测距法和脉冲测距法两种。由于相位测量技术较为成熟,因此测距精度较高,目前的测距技术大多采用此法,但相位测距电路较为复杂,技术难度较大,测程短。脉冲式测距方法结构简单,信号易于处理,并且易于实现实时测量,具有测程长的优点,因此发展潜力很大。1.2激光测距的发展状况激光测距技术与其它测距技术相比,具有测量距离远、抗干扰能力强、非接触目标、测量速度快、测距精度高等特点。目前,脉冲激光测距已获得了广泛的应用,如地形测量、战术前沿测距、导弹运行轨道跟踪、以及人造卫星、地球到月球距离的测量等。随着激光技术、数字电子技术、计算技术和集成电路的发展,激光脉冲测距正朝着低成本、模块化、小型化方向发展。脉冲半导体激光测距技术的研究起始于20世纪60年代末,到80年代中期陆续解决了激光器件、光学系统以及信号处理电路中的关键技术,80年代后期转入应用研究阶段并研制出了各种不同样机,90年代中期各种成熟的产品不断出现,近期半导体激光测距发展迅速,在中、近激光测距方面有取代YAG激光的趋势。2008年,中国计量学院余向东、张在宣、王剑锋等人研制了一种能有效地减少因接收信号幅度变化而引起的漂移误差和晶振时钟计时误差的小型高精度脉冲式半导体激光测距仪,当接收脉冲信号幅度在11倍范围变化时,该测距仪可获得优于±7cm的单次测量精度。2009年,军事交通学院李志勇、李长安、李良洪等人基于TDC-GP2设计了一款测量时间间隔最小可达65ps,平均误差小于65ps的高精度时间间隔测量仪。航天科工集团第三研究院第八三五八所研制出测程200,精度0.5,分辨能力为100的激光测距机。中科院上海光机所研制出便携式激光测距机,无合作目标时对漫反射水泥墙的测距达100,采用300计数方式,测距精度0.5,重复频率1kHz。中国计量学院与国外合作开发了低成本、便携式半导体激光测距机,作用测距l,精度术。常州莱赛公司研制了测量距离为200,测距精度为0. 5的半导体激光测距机【1】。国外有许多大学、研究机构和公司都开展了脉冲半导体激光测距系统的研究。Schwartz Electro-Optics公司为美国国家数据中心研制了激光海浪测量装置,用于无人看守的海浪测量站;为美国联邦政府高速公路管理局研制了激光自动传感系统,用于车辆速度和高度的测量,从而提高了交通效率;还为军方研制了直升机激光防撞告警装置。EXXON公司研制了脉冲半导体激光角度距离测量系统,用于海上石油勘测。1992年美国亚特兰大激光公司为警方专门设计的手持式人眼安全激光二极管测距仪,用于对车辆的测距和测速。Lecia公司展出了实用的小型LD测距仪,测量距离0.2-30m。1995年以来国际上对人眼安全的半导体激光测距技术发展十分迅速,已开展了波长在800-900nm范围内、峰值功率为10W、脉冲宽度为20-50ns、重复频率为1-10kHz、测量距离10m-1km无合作目标的激光测距系统研究。1996年下半年,美国Bushnell公司推出了测距能力约365m的400型小型、轻便、省电、对人眼安全、低价LD的激光测距仪Yardage400。1997年Bushnell公司推出测距700米的800型激光测距仪。1998年美国Tasco公司推出测距能力为700米的摄像机型Lasersite LD激光测距仪。美国SACMFCSⅡ侧轻武器通用模块火控系统,具有测距和瞄准双重功能,据报道其测距能力大于2km。2000年以来,各种性能极好的激光测距仪更如雨后春笋般不断涌现,如专为室内应用而设计徕卡手持测距仪D2,测程 0.05至60 米,典型精度±1.5mm,不仅小巧便携,测量速度也很快且非常可靠。德国喜利得手持激光测距仪PD42型测量范围0.05 m- 200 m,精度为 ± 1.0mm,不仅可以测量距离,还可以进行面积、体积及面积累加等计算。
第二章 脉冲激光测距原理2.1测距仪的基本工作原理激光测距广泛采用飞行时间法,飞行时间法是根据直接或者间接获得的激光飞行时间来得到目标物距离【4】。其基本原理如图2-1所示:即分别在A、B两点架设测距机和反射器,测距机向B处发射一束激光,激光在被测距离A、B之间传播,到达B点后,激光被反射器反射。反射回的激光被测距机接收,如果激光测距机能测出激光从发射到接收这一段时间间隔,那么,在A、B之间的距离就可以计算出来【5】。根据光速c,则距离D为: (2. 1)图2-1 激光测距基本原理图2-2 测距仪光学原理框图
D——测站点A、B两点间距离; ——光往返A、B一次所需的时
间。2.2脉冲激光测距实现的原理及光电读数的实现方法脉冲激光测距是利用激光脉冲持续时间短,能量在时间上相对集中,瞬时功率很大(一般可达兆瓦)的特点进行测距,在有合作目标的情况下脉冲激光测距可达到极远的测程。脉冲激光测距以其测程远、测距精度高等优点获得了广泛的应用【6】。脉冲激光测距原理如图2-3所示。图2- 3 脉冲激光测距原理激光器对目标发射一个或一列很窄的光脉冲(脉冲宽度一般小于
50ns),经取样棱镜,光脉冲接收器输出一个电脉冲信号, 打开电子门让时标脉冲通过,计数电路开始进行计数。光脉冲被目标反射后回到接收器,接收器同样产生一个电脉冲,关闭电子门终止时标脉冲通过。通过测量光脉冲到达目标并由目标漫反射返回到接收系统的脉冲数就能计算出相应的时间间隔,从而计算出目标距离。设目标距离为D,光脉冲往返时间为t,光在真空中的传播速度为c(c ≈2.99 ×m /s,光速c在空气中传输受介质、气压、温度、湿度的影响可忽略),则有下列公式成立: (2. 2)在脉冲激光测距中,t通常是通过测距计数器对从发射脉冲到目标并从目标返回到接收系统期间进入计数器的时钟脉冲个数的累计来测量的,具体如图2-3所示。图2-3 计时波形图设在t时间内,有N个时钟脉冲进入计数器,时钟脉冲周期为T,振
荡频率为。
(2. 3)
式中,,表示每一个时钟脉冲所代表的距离增量。如计数器计数N个时钟脉冲,则由公式(2.3)可得到目标距离R 。L的大小决定了脉冲测距的测量计数精度。即:
(2. 4)
若要距离分辨率≤30cm,则要求≤2×10-9s,即要求时标脉冲的频率最低为500MHz。距离测量的精度主要取决于发射激光脉冲的上升沿、接收通道的带宽、探测器的信噪比、时间间隔测量的分辨率等因素有关。TOF(飞行时间)测距系统构成相对简单,因而获得了普遍的应用。军用的作用距离大于1km的测距机基本上全都是基于TOF的。当前,采用精密的时间间隔测量方法,脉冲飞行时间激光测距的单次测量精度可以达到厘米量级。为获得更高精度,可以采取多次测量平均的方法,但是这需要更长的测量时间,从而限制了它的应用范围。自触发脉冲飞行时间激光测距法,其原理利用激光接收单元的输出信号自行控制激光发射单元,进而触发激光脉冲向测距目标发射,即激光接收单元接收到激光脉冲之后,去触发激光发射单元产生下一个激光脉冲。激光脉