数理统计课后习题答案 刘韶跃 彭向阳
- 格式:docx
- 大小:894.51 KB
- 文档页数:20
习题一、基本概念1.解: 设12345,,,,X X X X X 为总体的样本1)51151~(1,) (,,)(1)i ix x i X B p f x x p p -==-∏555(1)11(1),5x x i i p p x x -==-=∑2)λλλλλ55155151!!),,( )(~-==-∏∏==e x ex x x f P X i ixi i xi3)5155111~(,) (,,),,1,...,5()i X U a b f x x a xi b i b a b a ===≤≤=--∏所以5151,,1,...,5()(,,)0,a xi b i b a f x x ⎧≤≤=⎪-=⎨⎪⎩其他 4)()⎪⎭⎫ ⎝⎛-==∑∏=-=-5122/55125121exp 221),,( )1,(~2i i i x x e x x f N X i ππμ 2.解: 由题意得:因为0110,(),1,n k k k x x k F x x x x n x x ++<⎧⎪⎪≤<⎨⎪≥⎪⎩,所以40,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩3.解:它近似服从均值为172,方差为5.64的正态分布,即(172,5.64)N 4.解:()55-5 510/2- -⎪⎪⎭⎫ ⎝⎛<<-=⎪⎪⎭⎫ ⎝⎛<=<k X k P k X P k X P μμμ 因k 较大()()()()()()()-555(15)2510.950.95P X k k k k k k k μ<≈Φ-Φ-=Φ--Φ=Φ-=Φ=,5 1.65,0.33k k ==查表1 0.9 0.8 0.7 0.6 0.5 0.4 0.30.2 0.11 2 3 4 xy5.解:()-5250.853.8 1.1429 1.7143(1.7143)( 1.14296.3/6X P X P ⎛⎫<<=-<<=Φ-Φ- ⎪⎝⎭)0.9564(10.8729)0.8293=--=6.解:()()()~(20,0.3),~(20,0.2),~(0,0.5),0.3 0.30.3Y N Z N Y Z Y Z N P Y Z P Y Z P Y Z -->=->+-<-设与相互独立,0.42430.42431(0.4243)(1(0.4243))22(0.4243)P P ⎫⎫=>=+<-⎪⎪⎭⎭=-Φ+-Φ=-Φ220.66280.6744=-⨯= 7.解:101010222111~(0,4),~(0,1),2111 10.05,0.95444444ii i i i i i i X X N N c c c P X P X P X ===⎛⎫⎛⎫⎛⎫>=-≤=≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑则查卡方分位数表 c/4=18.31,c=73.24 8.解:由已知条件得:(1,),1()iX Y B p p F μ=-由i X 互相独立,知i Y 也互相独立,所以1(,),1().niX i Y B n p p F μ==-∑9.解: 1))1(,)1(,2p Np DX ES np Np n DX X D Np EX X E -==-==== 2)λλλ======DX ES nn DX X D EX X E 2,, 3)()()12,12,2222a b DX ES n a b n DX X D b a EX X E -==-==+==4)1,1,2======DX ES nn DX X D EX X E μ 10.解:1)()22212)1()1()1()1(σ-=-=-=-=-∑=n DX n ES n S n E X X E ni i2)()222242221(1)(1)(1), ~(1)nii n S n S DXX D n S D n σχσσ=⎛⎫---=-=- ⎪⎝⎭∑ ()2412(1)nii DXX n σ=∴-=-∑ 11.解:ππππππn X E dt e dy ey dy ey X nE Y E nn DY X E EY N X n Y n N X t y y 2)(,2)1(222222||21)(),11,0(),1,0(~),/1,0(~)102222==Γ==========-∞+-∞+-∞+∞-⎰⎰⎰ 令ππππππ211,2)1(222222||21),1,0(~)21102222===Γ====∑∑⎰⎰⎰==-∞+-∞+-∞+∞-n i i n i i t x x X E n X n E dt e dx ex dx ex X E N X12.解:1)()2224X E X E X E n μμ-=-=()244100.1X X D E n n⎡⎤=+=+≤⎢⎥⎣⎦ 40n ∴≥2)2222,2u u X u E u e du u du +∞+∞---∞===⎰⎰222220022002(1)0.1,80010,254.6,255u uutue du ue duue d e dtE X En nμπ+∞+∞--+∞+∞--===Γ=-==≤≥≥=∴≥⎰⎰⎰⎰3) ()()111P X P X Pμμ⎛-≤=-≤-≤=≤≤⎝⎭0.975210.95,2221.96,15.36,162u n n⎛⎛⎫⎛=Φ-Φ-=Φ-≥⎪⎪⎝⎭⎝⎭⎝⎭≥=≥≥13.解:()()()112221111111,n ni ii iY XY X a X na X an b b n bEY EX a S Sb b==⎛⎫=-=-=-⎪⎝⎭=-=∑∑14.解:1)12345~(0,2),~(0,3)X X N X X X N+++~~(0,1)N N1111,, 2.23c d n∴===2)()2345222212~(2),~(1)3X X XX Xχχ+++()()22122234523~(2,1),,2,123XX F c m n X X X +===++15.解: 设1(1,)p F n α-=,即()1(1P F p P p α≤=-⇔≤≤=-((12(2(12P T P T pP T p p P T ⇔≤-≤=-⇔≤=-⇔≤=-122112()()(1,)p p p t n tn F n α---=∴==16.解:()()()()()()()()()121222222221212222212121212212221212~(0,2),~(0,~~(0,1)~~(2)2210.1,2X X N X X N N N X X X X t P t P X X X X X X X X X X t P X X X X c χχ+-+⎛⎫⎛⎫++>=> ⎪ ⎪ ⎪ ⎪++-++-⎝⎭⎝⎭⎧⎫+⎪⎪=-≤=⎨⎬++-⎪⎪⎩⎭=0.9(1,2)8.532tF ==17.证明: 1)2211122211()0,(),(0,)1(1)(1)n n n n n E X X D X X X X N nnn S n t n σσχσ+++++-=-=∴---=-又2)2211111()0,(),(0,)n n n n n E XX D X X X X N nnσσ+++++-=-=∴- 3)2211111()0,(),(0,)n n E X X D X X X X N nnσσ---=-=∴- 18. 解:()()()62,47.61,96.125.0,975.025.0,95.0125.0225.0/25.025.0975.0≥≥=≥≥Φ≥-Φ=⎪⎪⎭⎫ ⎝⎛≤-≤-=≤-n n u n n n n n X n P X P σμσμ 19.解[,]0,1,[,](),(),0,[,]1,X U a b x a x a b x af x F x a x b b a b a x a b x b ≤⎧⎧⎪∈-⎪⎪∴==<≤-⎨⎨-⎪⎪∉⎩>⎪⎩1(1)()(1())()n f x n F x f x -∴=-111()1(),[,]0,[,]1(),[,]()(())()0,[,]n n n n b a n x a b b a b a x a b x a n x a b f x n F x f x b a b ax a b ----⎧∈⎪=--⎨⎪∉⎩-⎧∈⎪==--⎨⎪∉⎩20.解:()()()()()()()55(1)(1)11515555555(5)111011011011101211121(1(1))1(11(1))1(1)0.5785121515 1.5(1.5)0.93320.70772i i i i i i i i i i P X P X P X P X X P X P XP X P =====<=-≥=-≥=--≤⎛-⎫⎛⎫=--≤- ⎪⎪⎝⎭⎝⎭=--Φ-=--+Φ=-Φ=-⎛⎫<==<=<=Φ== ⎪⎝⎭∏∏∏∏∏21. 解:1)因为21~(0,)mii XN m σ=∑,从而~(0,1)miXN ∑2221~()m ni i m Xn χσ+=+∑,所以~()miX t n ξ=2)因为22211~()mii Xm χσ=∑,22211~()m n i i m X n χσ+=+∑所以2121~(,)mi i m ni i m n X F m n m X =+=+∑∑3)因为21~(0,)m i i X N m σ=∑,21~(0,)m n i i m X N n σ+=+∑所以2212()~(1)mi i X m χσ=∑,2212()~(1)m ni i m X n χσ+=+∑故222221111~(2)m m n i i i i m X X m n χσσ+==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∑∑ 22.解:由Th1.4.1 (2)()(),95.047.321),1(~122222=⎪⎪⎭⎫⎝⎛≤---σχσS n P n S n查表:n 121,n 22-==23.解: 由推论1.4.3(2)05.095.0139.2139.2),14,19(~222122212221=-=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>S S P S S P F S S 24.解: 1)()()94.005.099.057.3785.10)20(~),1,0(~),,0(~2201222220122=-=≤≤=⎪⎭⎫ ⎝⎛-=---∑∑==χχχσμσμσμσμP X XN X N X i i i ii i2)()895.01.0995.058.381965.11),19(~192222222012=-=⎪⎪⎭⎫ ⎝⎛≤≤=-∑=σχσσS P S X Xi i25. 解: 1)()4532.07734.0221)75.0(21431435/2080380=⨯-=+Φ-=⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=>-U P X P X P2)()()05.01975.021064.21064.25/2674.780380=+⨯-=≤-=⎪⎪⎭⎫ ⎝⎛>-=>-T P X P X P 26.解: 1)8413.0120472.4472.4=⎪⎪⎭⎫ ⎝⎛<-=⎪⎪⎭⎫ ⎝⎛<-=⎪⎭⎫ ⎝⎛+<σσσa X P a X P a XP 2)2222222222223132222222S P S P S P S P σσσσσσσσ⎛⎫⎛⎫⎛⎫⎛⎫-<=-<-<=<<=<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22199.528.50.950.050.9S P σ⎛⎫=<<=-= ⎪⎝⎭3)3676.3,328.120,1.020,9.02012020/1===⎪⎪⎭⎫ ⎝⎛≤=⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫ ⎝⎛>-c c c T P c T P c S X P c S X P c X S P μμμ27.解:22cov(,)(,))(1()()1cov(,)()1(,)1j i j j i j i j i j i j i j X X X X r X X X X D X n D X X D X X nX X X X E X X X X X X X X nr X X X X n σσ----=---=-=--=---=-∴--=--28.解:()2221212)1(2)1(,)1(,21),2,2(~σσμ-=-=-=-===+=∑∑==+n ES n ET S n Y Y T X Y n Y N X X Y Y Y ni i ni i in i i 令习题二、参数估计1.解:矩估计()1 3.40.10.20.90.80.70.766X =+++++=()()11111ln ln(1)ln nnni i i i nii L x x L n x αααααα===⎡⎤=+=+⎣⎦=++∏∏∑121ln ln 01ˆ10.2112ln n i i n ii d n L x d n x αααα====+=+=--=∑∑3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X XX x dx x EX αααααααα所以12112ˆˆ,11ln n ii X nX X αα=⎛⎫⎪- ⎪==-+-⎪ ⎪⎝⎭∑,12ˆˆ0.3079,0.2112αα≈≈ 2.解: 1)3077.02ˆ,21====X X EX θθ111ln 0nni L nL θθθ====-=∏无解,依定义:21ˆmax ii nX θ≤≤= 2)矩法:211ˆˆ1.2,0.472212EX DX θθ====极大似然估计:22ˆˆ1.1,0.1833212EX DX θθ====3. 1)解:矩法估计:111ˆ,EX X Xλλ===最大似然估计:111,ln ln niii nnx x ni i i L eeL n L x λλλλλ=--==∑===-∑∏2111ˆln 0,ni ni ii d n nL x d Xxλλλ===-===∑∑2)解:~()X P λ矩估计:X X EX ===1ˆ,λλ最大似然估计:1,ln ln ixnxnn i i iiL eeL n nx x x xλλλλλλ--====-+-∑∏∏2ˆln 0,d nx L n X d λλλ=-+==3)解:矩估计:()2,212b a a bEX DX -+==联立方程:()2*221ˆ2ˆa X b X a bX b a M ⎧=-⎪→+⎧=⎪⎪⎨-⎪=⎪⎩⎨=+⎪⎩极大似然估计:依照定义,11ˆˆmin ,max i ii ni na Xb X ≤≤≤≤== 4) 解: 矩估计:00ln EX dx xxθθ+∞+∞==⎰,不存在22111,ln ln 2ln nnni i i i iL L n x x x θθθ=====-∑∏∏ln 0n L αθ∂==∂,无解;故,依照定义,(1)ˆX θ= 5)解: 矩法:()/0()(1)(2)x txEX edx t e dt αβααβαββ+∞+∞---==+=Γ+Γ⎰⎰ Xαβ=+=2222()(1)2(2)(3)t EX t e dt αβααββ+∞-=+=Γ+Γ+Γ⎰ 222222122()i M X nααββαββ=++=++==∑22222*2111ˆˆi M X X X M nX βαβ=-=-==-=∑即11ˆˆX X αβ====极大似然估计:()()/1111exp ,ln ln i nx ni n L enx n L n nx αβαβαβββββ---=⎡⎤==--=--+⎢⎥⎣⎦∏2ln 0,ln ()0n n nL L x ααββββ∂∂===-+-=∂∂ α无解,依定义有:(1)(1)ˆˆ,L L X X X X αβα==-=- 7)解: 矩法:22223222(2)x x tx EX dx dte dt Xθθθ+∞+∞+∞---=====⎰⎰⎰ˆMθ=极大似然估计:22222211iixnxn ni ii iL x eθθ--==∑⎛⎫⎛== ⎪⎝⎝⎭∏222ln ln43ln ln iixL n n n xθθ=---∑∑233ˆln20,iLxnLθθθθ∂=-+==∂∑8)解:矩法:2222222222022222223(1)(1)[(1)](1)(1)(1)1221x x x x x xxxd dEX x xd dd dq Xdq dq qθθθθθθθθθθθθθ∞∞∞-===∞==--=-=---=====-∑∑∑∑2ˆM Xθ=极大似然估计:22221(1)(1)(1)(1)ln2ln(2)ln(1)ln(1)inx n nx ni iiiL x xL n nx n xθθθθθθ--==--=--=+--+-∏∏∑222ˆln0,1Ln nx nLXθθθθ∂-=-==∂-4解:11112112(,,)(1)(1)ln(,,)ln(1)ln(1)n ni ii i i iy yny y nninL p y y y p p p pL p y y y ny p n y p==--=∑∑=-=-=+--∏12(,,)0(1)ny pd L p y y y ndp p p-==-ˆp Y=记001,;0,i i i iy x a y x a=≥=<则(1,)iY B p;5.解:1,ln lninx n nxiL e e L n nxλλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05Xλ== 6解:因为其寿命服从正态分布,所以极大似然估计为:2211ˆˆ,()ni i x x n μσμ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.811μσ==。
统计学理论与实务潘向阳课后习题答案第一章一、单项选择题1.C2. C3. B4. D5. D6. B7. B8. A9. B 10. A 11. D12. B 13. D 14. D 15. B二、多项选择题1.ABCD2. ACD3. ACD4. AC5. ABC6. ABCD7. ABCD8. ABD9. ABC 10. BCD 11.ACD 12.CD 13. AD 14. BCD15. ABCD三、判断题1. ×2. ×3.√4. ×5. √6. ×7. ×8. ×9. √10. √11. ×12. ×13. ×14. √15. √第二章一、单项选择题1.C2. B3. D4. C5. B6. C7. A8. A9. C 10. D11. B 12. D 13. C 14. C 15. A二、多项选择题1.AC2. ABD3. AC4. ABCD5. BD6. BCD三、判断题1. ×2. √3. ×4. ×5. ×6.√7. √8. ×9. √10. √第三章一、单项选择题1.A2. D3. B4. C5. B6. B7. D8. A9. C 10. B 11. A12. C 13. B 14. A 15. B 16. A 17. B 18. B 19. B 20. B二、多项选择题1.ABC2. AB3. AC4. ABD5. CD6. ACD7. BCD8. BCD 9. CD 10. ABD三、判断题1. ×2. ×3. ×4. ×5. √6. ×7. ×8. √9. ×10. ×第四章一、单项选择题1.A2. B3. D4. A5. D6. C7. C8. C9. C 10. D11. B 12. B 13. B 14. C 15. C 16. C 17. B 18. C19. B 20. C 21. B 22. A 23. B 24. C 25. B 26. C 27. B 28. D 29. C 30. B 31. A 32. C 33. B 34. B 35. B 36. A37. D 38. D 39. C 40. D二、多项选择题1.DE2. ABC3. ACD4. AD5. ACD6. BCD7. ABC8. ADE 9. CD 10. ACD 11.ABD 12. ABCDE 13. ABCDE14. ABC 15. BD三、判断题1. ×2. ×3. ×4. ×5. ×6.√7. √8. √9. ×10. ×11. ×12. √13. ×14.√15. ×第五章一、单项选择题1.B2. D3. B4.B5. A6. C7. A8.A9. D 10. A11. A 12. A 13. D 14. C 15. C 16.D 17. C 18. B19. A 20. C 21. A 22. C 23. D 24. A 25. D 26. C 27. A28. A 29. C 30. B二、多项选择题1.AD2. AB3. BD4. ACD5. ACD6. CD7. BC8. BD 9. ABD 10. BD 11.ABD 12. BC 13. BC 14. BD15. ABCD三、判断题1. ×2. ×3.√4. ×5. ×6. ×7. √8. ×9. ×10. √11.√12. ×13. ×14.√15.√第六章一、单项选择题1.D2. C3. C4.B5. B6. B7. A8.C9. B 10. B11. A 12. D 13. C 14. C 15.B 16.C 17. D 18. C19. D 20. A 21. C 22. B 23. C 24. B 25. C 26. C 27. B28. B 29. C 30.C二、多项选择题1.ABD2. CD3. CD4. AD5.BC6. ACD7. ABCD8. CD 9. ABCD 10. ABD 11.ABCD 12. AD 13. BCD 14.ABCD 15. ABC三、判断题1. ×2. ×3.√4. √5. ×6. ×7. √8. ×9. √10. √11.√12. ×13.√14.√15. × 16. × 17. × 18.√19.√20.√第七章一、单项选择题1.C2. C3. D4.B5. C6. C7. A8.C9. B 10. A 11. D 12.C 13. B 14. B 15.D 16.D 17.B 18. B19. C 20. B二、多项选择题1.BD2. BC3.AC4. ABC5.BCD6. ABCD7. AB8. BC 9. BC 10. ABCD三、判断题1. ×2. √3.√4. ×5. ×6. √7. √8. ×9. ×10. √第八章一、单项选择题1.C2. B3. B4.D5. A6. B7. D8.A9. D 10. B 11. A 12.A 13. D 14. A 15.B 16.C 17.A 18. A 19. C 20. C 21. C 22.D 23. C 24. A 25.C 26.B 27.C 28. B29. A 30. B二、多项选择题1.ABCD2. AD3.ABD4. AD5.BCD6. AB7. ABCD8. CD 9. AD 10. BD三、判断题1. ×2. √3. ×4. √5. ×6. √7. ×8. ×9. ×10. √11.√12. ×13.√14. ×15. ×16. √17. √18.√19. √20. √。
第1章抽样分布第2章 参数估计 课后习题1. 设总体~(,)X B n p ,试用来自总体X 的样本12(,,,)n X X X 求n 与p 的矩估计量。
解:由p EX X n ==,2n (1)DX S p p ==-得,222n ,X X S p X S S-==- 2.设总体X 服从几何分布,其分布列为1()(1)(1,2,)k P X k p p k -==-=试用来自X 的样本12(,,,)n X X X 求p 的矩估计量和最大似然估计量。
解:#(1) 求矩估计量:由1pEX X ==得,1p X=(2) 求最大似然估计量:设样本12(,,,)n X X X 的观察值为12(,,,)n k k k ,则似然函数为1(1)(;)(1)ni i k n L k p p p =-∑=-,1ln (;)ln ln(1)(1)ni i L k p n p p k ==+--∑,1ln(;)1(1)1ni i d k p n k dp p p ==---∑, 令ln(;)0d k p dp =得,11n ii n p Xk===∑.3.设12(,,,)N X X X 为独立同分布样本,X 1服从泊松分布()(0)P λλ>。
若仅观察到12(,,,)N X X X 中前n 个样本12,,,n X X X 的值,以及后面N-n 个样本的和1Nii n XT =+=∑,求λ的极大似然估计。
解:依照题意,得{}!i x λi i λe P X x x -==,似然函数为1(;)!ix NN λi iλL x λex -==∏, 111ln (;)(ln ln )ln ln NN Ni i i i i i i L x λN λx λx N λλx x ====-+-=-+-∑∑∑。
1111xx xx(;)Nn Nnii iii i i n i TdL x λN N N d λλλλ===+=++=-+=-+=-+∑∑∑∑,令(;)0dL x λd λ=,得1=ni i x TλN=+∑4.设总体X 的分布密度函数为(1),01(;)0,其他θθx x f x θ⎧+<<=⎨⎩ 其中θ>-1。
第一章 思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A (5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC (7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB (9)“三人均未中靶”: ;C B A (10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A 3 .设,A B 是两随机事件,化简事件 (1)()()AB A B (2) ()()A B A B解:(1)()()AB A B AB AB B B ==,(2) ()()AB AB ()A BA B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.解:51050.302410P P ==.5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。
习题2.11.设随机变量X 的分布律为P{X=k}=,k=1, 2,N,求常数a.aN 解:由分布律的性质=1得∑∞k =1p kP(X=1) + P(X=2) +…..+ P(X=N) =1N*=1,即a=1aN 2.设随机变量X 只能取-1,0,1,2这4个值,且取这4个值相应的概率依次为,,求常数c.12c 34c ,58c ,716c 解:12c +34c +58c +716c =1C=37163.将一枚骰子连掷两次,以X 表示两次所得的点数之和,以Y 表示两次出现的最小点数,分别求X,Y 的分布律.注: 可知X 为从2到12的所有整数值.可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36,故P(X=2)=(1/6)*(1/6)=1/36(第一次和第二次都是1)P(X=3)=2*(1/36)=1/18(两种组合(1,2)(2,1))P(X=4)=3*(1/36)=1/12(三种组合(1,3)(3,1)(2,2))P(X=5)=4*(1/36)=1/9(四种组合(1,4)(4,1)(2,3)(3,2))P(X=6)=5*(1/36=5/36(五种组合(1,5)(5,1)(2,4)(4,2)(3,3))P(X=7)=6*(1/36)=1/6(这里就不写了,应该明白吧)P(X=8)=5*(1/36)=5/36P(X=9)=4*(1/36)=1/9P(X=10)=3*(1/36)=1/12P(X=11)=2*(1/36)=1/18P(X=12)=1*(1/36)=1/36以上是X 的分布律投两次最小的点数可以是1到6里任意一个整数,即Y 的取值了.P(Y=1)=(1/6)*1=1/6 一个要是1,另一个可以是任何值P(Y=2)=(1/6)*(5/6)=5/36 一个是2,另一个是大于等于2的5个值P(Y=3)=(1/6)*(4/6)=1/9 一个是3,另一个是大于等于3的4个值P(Y=4)=(1/6)*(3/6)=1/12一个是4,另一个是大于等于4的3个值P(Y=5)=(1/6)*(2/6)=1/18一个是5,另一个是大于等于5的2个值P(Y=6)=(1/6)*(1/6)=1/36一个是6,另一个只能是6以上是Y 的分布律了.4.设在15个同类型的零件中有2个是次品,从中任取3次,每次取一个,取后不放回.以X 表示取出的次品的个数,求X 的分布律.解:X=0,1,2X=0时,P=C 313C 315=2235X=1时,P=C 213∗C 12C 315=1235X=2时,P=C 013∗C 22C 315=1355.抛掷一枚质地不均匀的硬币,每次出现正面的概率为,连续抛掷8次,以X 表示出现正面的次数,求23X 的分布律.解:P{X=k}=, k=1, 2, 3, 8C k 8(23)k (13)8‒k 6.设离散型随机变量X 的分布律为X -123P141214解:求P {X ≤12}, P {23<X ≤52}, P {2≤X ≤3}, P {2≤X <3}P {X ≤12}=14P {23<X ≤52}=12P {2≤X ≤3}=12+14=34P {2≤X <3}=127.设事件A 在每一次试验中发生的概率分别为0.3.当A 发生不少于3次时,指示灯发出信号,求:(1)进行5次独立试验,求指示灯发出信号的概率;(2)进行7次独立试验,求指示灯发出信号的概率.解:设X 为事件A 发生的次数,(1)P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=C 35(0.3)3(0.7)2+C 45(0.3)4(0.7)1+C 55(0.3)5(0.7)0=0.1323+0.02835+0.00243=0.163(2) P{X≥3}=1‒P{X=0}‒P{X=1}‒P{X=2}=1‒C07(0.3)0(0.7)7‒C17(0.3)1(0.7)6‒C27(0.3)2(0.7)5=1‒0.0824‒0.2471‒0.3177=0.3538.甲乙两人投篮,投中的概率分别为0.6,0.7.现各投3次,求两人投中次数相等的概率.解:设X表示各自投中的次数P{X=0}=C03(0.6)0(0.4)3∗C03(0.7)0(0.3)3=0.064∗0.027=0.002P{X=1}=C13(0.6)1(0.4)2∗C13(0.7)1(0.3)2=0.288∗0.189=0.054P{X=2}=C23(0.6)2(0.4)1∗C23(0.7)2(0.3)1=0.432∗0.441=0.191P{X=3}=C33(0.6)3(0.4)0∗C33(0.7)3(0.3)0=0.216∗0.343=0.074投中次数相等的概率= P{X=0}+P{X=1}+P{X=2}+P{X=3}=0.3219.有一繁忙的汽车站,每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事故的概率为0.0001.在某天的该段时间内有1000辆汽车经过,问出事故的次数不小于2的概率是多少?(利用泊松分布定理计算)解:设X表示该段时间出事故的次数,则X~B(1000,0.0001),用泊松定理近似计算=1000*0.0001=0.1λP{X≥2}=1‒P{X=0}‒P{X=1}=1‒C01000(0.0001)0(0.9999)1000‒C11000(0.0001)1(0.9999)999=1‒e‒0.1‒0.1e‒0.1=1‒0.9048‒0.0905=0.004710.一电话交换台每分钟收到的呼唤次数服从参数为4的泊松分别,求:(1)每分钟恰有8次呼唤的概率;(2)每分钟的呼唤次数大于10的概率.解: (1) P{X=8}=P{X≥8}‒P{X≥9}=0.051134‒0.021363=0.029771(2) P{X>10}=P{X≥11}=0.002840习题2.21.求0-1分布的分布函数.解:F(x)={0, x<0q, 0≤x<11,x≥12.设离散型随机变量X的分布律为:3 OF 18X -123P0.250.50.25求X 的分布函数,以及概率,.P {1.5<X ≤2.5} P {X ≥0.5}解:當x <‒1時,F (x )=P {X ≤x }=0;當‒1≤x <2時,F (x )=P {X ≤x }=P {X =‒1}=0.25;當2≤x <3時,F (x )=P {X ≤x }=P {X =‒1}+P {X =2}=0.25+0.5=0.75;當x ≥3時,F (x )=P {X ≤x }=P {X =‒1}+P {X =2}+P {X =3}=0.25+0.5+0.25=1;则X 的分布函数F(x)为:F (x )={0, x <‒10.25, ‒1≤x <20.75, 2≤x <31, x ≥3P {1.5<X ≤2.5}=F (2.5)‒F (1.5)=0.75‒0.25=0.5 P {X ≥0.5}=1‒F (0.5)=1‒0.25=0.753.设F 1(x),F 2(x)分别为随机变量X 1和X 2的分布函数,且F(x)=a F 1(x)-bF 2(x)也是某一随机变量的分布函数,证明a-b=1.证: F (+∞)=aF (+∞)‒bF (+∞)=1,即a ‒b =14.如下4个函数,哪个是随机变量的分布函数:(1)F 1(x )={0, x <‒212, ‒2≤x <02, x ≥0(2)F 2(x )={0, x <0sinx, 0≤x <π1, x ≥π(3)F 3(x )={0, x <0sinx, 0≤x <π21, x ≥π2(4)F 4(x )={0, x <0x +13, 0<x <121, x ≥125.设随机变量X 的分布函数为F(x) =a+b arctanx ,‒∞<x <+∞,求(1)常数a,b;(2) P {‒1<X ≤1}解: (1)由分布函数的基本性质 得:F (‒∞)=0,F (+∞)=1{a +b ∗(‒π2)=0a +b ∗(π2)=1of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy5 OF 18解之a=, b=121π(2)P {‒1<X ≤1}=F (1)‒F (‒1)=a +b ∗π4‒(a +b ∗‒π4)=b ∗π2=12(将x=1带入F(x) =a+b arctanx )注: arctan 为反正切函数,值域(), arctan1=‒π2,π2 π46.设随机变量X 的分布函数为F (x )={0, x <1lnx, 1≤x <e1, x ≥e求P {X ≤2},P {0<X ≤3},P {2<X ≤2.5}解: 注: P {X ≤2}=F(2)=ln2 F(x)=P {X ≤x }P {0<X ≤3}=F (3)‒F (0)=1‒0=1;P {2<X ≤2.5}=F (2.5)‒F (2)=ln2.5‒ln2=ln2.52=ln1.25习题2.31.设随机变量X 的概率密度为:f (x )={acosx, |x |≤π20, 其他.求: (1)常数a; (2);(3)X 的分布函数F(x).P {0<X <π4}解:(1)由概率密度的性质∫+∞‒∞f (x )dx =1,∫π2‒π2acosxdx =a sinx |π2‒π2=asin π2‒asin (‒π2)=asin π2+asin π2=a +a =1A =12(2)P {0<X <π4}=(12)sin(π4)‒(12)sin (0)=12∗22+12∗0=24一些常用特殊角的三角函数值正弦余弦正切余切0010不存在π/61/2√3/2√3/3√3π/4√2/2√2/211of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, full of humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy(3)X 的概率分布为:F (x )={0, x <‒π212(1+sinx ), ‒π2≤x <π21, x ≥π2 2.设随机变量X 的概率密度为f (x )=ae ‒|x |, ‒∞<x <+∞,求: (1)常数a; (2); (3)X 的分布函数. P {0≤X ≤1}解:(1),即a=∫+∞‒∞f(x)dx =∫0‒∞ae x dx +∫+∞ae ‒x dx =a +a =112(2)P {0≤X ≤1}=F (1)‒F (0)=12(1‒e ‒1)(3)X 的分布函数F (x )={12e x, x ≤01‒12e ‒x, x >03.求下列分布函数所对应的概率密度:(1)F 1(x )=12+1πarctanx , ‒∞<x <+∞;解:(柯西分布)f 1(x )=1π(1+x 2)(2)F 2(x )={1‒e ‒x 22, x >00, x ≤0π/3√3/21/2√3√3/3π/210不存在0π-1不存在7 OF 18解:(指数分布) f 2(x )={x e ‒x 22, x >00, x ≤0(3)F 3(x )={0, x <0sinx , 0≤ x ≤π21, x >π2解: (均匀分布)f 3(x )={cosx , 0≤ x ≤π20, 其他4.设随机变量X 的概率密度为f (x )={x, 0≤x <12‒x, 1≤ x <20, 其他.求: (1); (2)P {X ≥12} P {12<X <32}.解:(1)P {X ≥12}=1‒F (12)=1‒1222=1‒18=78(2)(2)P {12<X <32}=F(32)‒F(12)=(2∗32‒1‒3222)‒(3222)=345.设K 在(0,5)上服从均匀分布,求方程(利用二次式的判别式)4x 2+4Kx +K +2=0有实根的概率.解: K~U(0,5)f (K )={15 , 0≤x ≤50, 其他方程式有实数根,则Δ≥0,即(4K)2‒4∗4∗(K +2)=16K 2‒16(K +2)≥02≤K ≤‒1故方程有实根的概率为:P {K ≤‒1}+P {K ≥2}=∫5215dx =0.66.设X ~ U(2,5),现在对X 进行3次独立观测,求至少有两次观测值大于3的概率.解:P {K >3}=1‒F (3)=1‒3‒25‒2=23至少有两次观测值大于3的概率为:C 23(23)2(13)1+C 33(23)3(13)0=20277.设修理某机器所用的时间X 服从参数为λ=0.5(小时)指数分布,求在机器出现故障时,在一小时内可以修好的概率.解: P {X ≤1}=F (1)=1‒e‒0.58.设顾客在某银行的窗口等待服务的时间X(以分计)服从参数为λ=的指数分布,某顾客在窗口等待159 OF 18服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.写出Y 的分布律,并求P {Y ≥1}.解:“未等到服务而离开的概率”为P {X ≥10}=1‒F (10)=1‒(1‒e‒15∗10)=e ‒2P {Y =k }=C k 5(e ‒2)k(1‒e ‒2)5‒k , (k =0,1,2,3,4,5)Y 的分布律:Y 012345P0.4840.3780.1180.0180.0010.00004P {Y ≥1}=1‒P {Y =0}=1‒0.484=0.5169.设X ~ N(3,),求:22(1);P {2<X ≤5}, P {‒4<X ≤10}, P {|X |>2}, P {X >3}(2).常数c,使P {X >c }=P {X ≤c }解: (1)P {2<X ≤5}=Φ(5‒32)‒Φ(2‒32)=Φ(1)‒[1‒Φ(12)]=0.8413‒(1‒0.6915)=0.5328P {‒4<X ≤10}=Φ(10‒32)‒Φ(‒4‒32)=Φ(3.5)‒[1‒Φ(3.5)]=0.9998‒0.0002=0.9996 P {|X |>2}= 1‒P {‒2≤X ≤2}=1‒[Φ(2‒32)‒Φ(‒2‒32)]=1‒(0.3085‒0.0062)=0.6977P {X >3}= P {X ≥3}=1‒Φ(3‒32)=1‒Φ(0)=1‒0.5=0.5(2)P {X >c }=P {X ≤c }P {X >c }=1‒P {X ≥c }P {X >c }+P {X ≥c }=1Φ(c ‒32)+Φ(c ‒32)=1Φ(c ‒32)=0.5经查表,即C=3c ‒32=010.设X ~ N(0,1),设x 满足P {|X |>x }<0.1.求x 的取值范围.解:P {|X |>x }<0.12[1‒Φ(x )]<0.1‒Φ(x )<‒1920Φ(x )≥1920Φ(x )≥0.95经查表当 1.65时x ≥Φ(x )≥0.95即 1.65时x ≥P {|X |>x }<0.111.X ~ N(10,),求:22(1)P {7<X ≤15};(2)常数d,使P {|X ‒10|<d }<0.9.解: (1)P {7<X ≤15}=Φ(15‒102)‒Φ(7‒102)=Φ(2.5)‒[1‒Φ(1.5)]=0.9938‒0.0668=0.927(2)P {|X ‒10|<d }=P {10‒d <X <10+d }<0.9=Φ(10+d ‒102)‒Φ(10‒d ‒102)<0.9=Φ(d2)<0.95经查表,即d=3.3d2=1.6512.某机器生产的螺栓长度X(单位:cm)服从正态分布N(10.05,),规定长度在范围10.050.12内 0.062±为合格,求一螺栓不合格的概率.解:螺栓合格的概率为:P {10.05‒0.12<X <10.05+0.12}=P {9.93<X <10.17}=Φ(10.17‒10.050.06)‒Φ(9.93‒10.050.06)=Φ(2)‒[1‒Φ(2)]=0.9772∗2‒1=0.9544螺栓不合格的概率为1-0.9544=0.045613.测量距离时产生的随机误差X(单位:m)服从正态分布N(20,).进行3次独立测量.求:402(1)至少有一次误差绝对值不超过30m 的概率;(2)只有一次误差绝对值不超过30m的概率.解:(1)绝对值不超过30m的概率为:P{‒30<X<30}=Φ(30‒2040)‒Φ(‒30‒2040)=Φ(0.25)‒[1‒Φ(1.25)]=0.4931至少有一次误差绝对值不超过30m的概率为:1−C 03(0.4931)0(1‒0.4931)3=1‒0.1302=0.8698(2)只有一次误差绝对值不超过30m的概率为:C13(0.4931)1(1‒0.4931)2=0.3801习题2.41.设X的分布律为X-2023P0.20.20.30.3求(1)的分布律.Y1=‒2X+1的分布律; (2)Y2=|X|解: (1)的可能取值为5,1,-3,-5.Y1由于P{Y1=5}=P{‒2X+1=5}=P{X=‒2}=0.2P{Y1=1}=P{‒2X+1=1}=P{X=‒2}=0.2P{Y1=‒3}=P{‒2X+1=‒3}=P{X=2}=0.3P{Y1=‒5}=P{‒2X+1=‒5}=P{X=3}=0.3从而的分布律为:Y1X-5-315Y10.30.30.20.2(2)的可能取值为0,2,3.Y2由于P{Y2=0}=P{|X|=0}=P{X=0}=0.2P{Y2=2}=P{|X|=0}=P{X=‒2}+P{X=2}=0.2+0.3=0.5P{Y2=3}=P{|X|=3}=P{X=3}=0.3从而的分布律为:Y2X023Y20.20.50.32.设X的分布律为X-1012P0.20.30.10.411 OF 18求Y=(X‒1)2的分布律.解:Y的可能取值为0,1,4.由于P{Y=0}=P{(X‒1)2=0}=P{X=1}=0.1P{Y=1}=P{(X‒1)2=1}=P{X=0}+P{X=2}=0.7P{Y=4}=P{(X‒1)2=4}=P{X=‒1}=0.2从而的分布律为:YX014Y0.10.70.23.X~U(0,1),求以下Y的概率密度:(1)Y=‒2lnX; (2)Y=3X+1; (3)Y=e x.解: (1) Y=g(x)=‒2lnX, 值域為(0,+∞),X=ℎ(y)=e‒Y2, ℎ'(y)=12e‒Y2 f Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗12e‒Y2=12e‒Y2.即f Y(y)={12e‒Y2, y>0,0, y≤0(2) Y=g(x)=3X+1,值域為(‒∞,+∞), X=ℎ(y)=Y‒13, ℎ'(y)=13f Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗13=13即f Y(y)={13, 1< y<4,0, 其他注: 由X~U(0,1),,当X=0时,Y=3*0+1=1; ,当X=1时,Y=3*1+1=4 Y=3X+1(3) Y=g(x)=e x, X=ℎ(y)=lny, ℎ'(y)=1yf Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗1y=1y即f Y(y)={1y, 0< y<e,0, 其他注: ,当X=0时,; ,当X=1时,Y=e0=0 Y=e1=e4.设随机变量X的概率密度为f X(x)={32x2, ‒1<x<00, 其他.of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy13 OF 18求以下Y 的概率密度:(1)Y=3X; (2) Y=3-X; (3)Y =X 2.解: (1) Y=g(x)=3X,X =ℎ(y )=Y 3, ℎ'(y)=13f Y (y )=f x (ℎ(y ))| ℎ'(y)|=Y 26∗13=Y218即f Y (y )={Y 218, ‒3< y <0,0, 其他(2)Y=g(x) =3-X, X=h(y) =3-Y,-1ℎ'(y)=f Y (y )=f x (ℎ(y ))| ℎ'(y)|=32∗(3‒Y)2+1=3(3‒Y)22即f Y (y )={3(3‒Y)22, 3< y <4,0, 其他(3), X=h(y)=,Y =g(x)=X 2Y ℎ'(y)=12Y,即f Y (y )=f x (ℎ(y ))| ℎ'(y)|=3Y 22∗1 2Y=3Y4f Y (y )={3Y4, 0< y <1,0, 其他5.设X 服从参数为λ=1的指数分布,求以下Y 的概率密度:(1)Y=2X+1; (2)(3) Y =e x; Y =X 2.解: (1) Y=g(x)=2X+1,X =ℎ(y )=Y ‒12, ℎ'(y )=12X 的概率密度为:f X (x )={λe ‒λx, x >0,0, x ≤0f Y (y )=f x (ℎ(y ))| ℎ'(y)|=λe ‒λ∗Y ‒12∗12=12e ‒Y ‒12即f Y (y )={12e ‒Y ‒12, y >00, 其他(2)Y =g (x )=e x , X =ℎ(y )=lnY,ℎ'(y )= 1Y注意是绝对值 ℎ'(y)of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, full of humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happyf Y (y )=f x (ℎ(y ))| ℎ'(y)|=e‒lnY∗1Y =1e lnY ∗1Y =1Y ∗1Y =1Y 2即f Y (y )={1Y2, y >10, 其他(3)Y =g (x )=X 2,X =ℎ(y )=Y , ℎ'(y )=12Y,,f Y (y )=f x (ℎ(y ))| ℎ'(y)|=e ‒Y∗12Y=12Ye ‒Y即f Y (y )={12Ye ‒Y, y >00, 其他6.X~N(0,1),求以下Y 的概率密度:(1) Y =|X |; (2)Y =2X 2+1解: (1) Y =g (x )=|X |, X =ℎ(y )=±Y, ℎ'(y )=1f X (x )=12πσe‒(x ‒μ)22σ2‒∞<x <+∞当X=+Y 时:f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒y 22当X=-Y 时: f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe ‒y 22故f Y (y )=12πe ‒y 22+12πe‒y 22=22πe ‒y 22=42πe‒y 22=2πe ‒y 22f Y (y )={2πe ‒y 22, y >00, y ≤0(2)Y =g (x )=2X 2+1, X =ℎ(y )=Y ‒12,ℎ'(y )=12Y ‒12永远大于0.e x 当x>0是,>1e xof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy15 OF 18f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒(Y ‒12)22∗12Y ‒12=12π(y ‒1)e‒y ‒14即f Y (y )={12π(y ‒1)e ‒y ‒14, y >10, y ≤1自测题一,选择题1,设一批产品共有1000件,其中有50件次品,从中随机地,有放回地抽取500件产品,X 表示抽到次品的件数,则P{X=3}= C .A. B.C. D.C 350C 497950C 5001000A 350A 497950A 5001000C 3500(0.05)3(0.95)497 35002.设随机变量X~B(4,0.2),则P{X>3}= A .A. 0.0016B. 0.0272C. 0.4096D. 0.8192解:P{X>3}= P{X=4}= (二项分布)C 44(0.2)4(1‒0.2)03.设随机变量X 的分布函数为F(x),下列结论中不一定成立的是D .A. B. C. D. F(x) 为连续函数F (+∞)=1 F (‒∞)=00≤F (x )≤14.下列各函数中是随机变量分布函数的为 B .A. B.F 1(x )=11+x 2, ‒∞<x <+∞F 2(x )={0, x ≤0x 1+x , x >0C.D.F 3(x )=e ‒x, ‒∞<x <+∞F 4(x )=34+12πarctanx, ‒∞<x <+∞5.设随机变量X 的概率密度为 则常数a= A .f (x )={a x 2, x >100, x ≤10A. -10B.C.D. 10解: F(x) =‒15001500∫+∞‒∞a x2dx =‒ax =16.如果函数是某连续型随机变量X 的概率密度,则区间[a,b]可以是 C f (x )={x, a<x <b0, 其他A. [0, 1]B. [0, 2]C. D. [1, 2][0,2]不晓得为何课后答案为Dof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy7.设随机变量X 的取值范围是[-1,1],以下函数可以作为X 的概率密度的是 A A. B. {12, ‒1< x <10, 其他{2, ‒1< x <10, 其他C.D. {x, ‒1< x <10, 其他{x 2, ‒1< x <10, 其他8.设连续型随机变量X 的概率密度为 则= B .f (x )={x2, 0< x <20, 其他P{‒1≤ X ≤1}A. 0 B. 0.25 C. 0.5 D. 1解:P {‒1≤ X ≤1}=∫1‒1x2dx =x 24|1‒1=149.设随机变量X~U(2,4),则= A . (需在区间2,4内)P{3< x <4}A. B. P{2.25< x <3.25}P{1.5< x <2.5}C. D. P{3.5< x <4.5}P{4.5< x <5.5}10. 设随机变量X 的概率密度为 则X~ A .f (x )=122πe ‒(x ‒1)28A. N (-1, 2)B. N (-1, 4)C. N (-1, 8)D. N (-1, 16)11.已知随机变量X 的概率密度为fx(x),令Y=-2X,则Y 的概率密度fy(y)为 D .A.B.C.D. 2f X (‒2y)f X (‒y2)12f X(‒y2)12f X (y 2)二,填空题1.已知随机变量X 的分布律为X 12345P2a0.10.3a0.3则常数a= 0.1 .解:2a+0.1+0.3+a+0.3=12.设随机变量X 的分布律为X 123P162636记X 的分布函数为F(x)则F(2)=.解: 1216+263.抛硬币5次,记其中正面向上的次数为X,则=.P{ X ≤4}3132解:P { X ≤4}=1‒P { X =5}=1‒C 55(12)5(12)自己算的结果是12f X(‒y2)17 OF 184.设X 服从参数为λ(λ>0)的泊松分布,且,则λ= 2 .P { X =0}=12P { X =2}解:分别将.P { X =0},P { X =2}帶入P k =P { X =k }=λk k!e ‒λ5.设随机变量X 的分布函数为F (x )={0, x <a0.4, a ≤x <b1, x ≥b其中0<a<b,则= 0.4.P {a2<X <a +b 2}解:P { a 2<X <a +b 2}=F (a +b 2)‒F (a 2)=0.4‒0=0.46.设X 为连续型随机变量,c 是一个常数,则= 0.P { X =c }7. 设连续型随机变量X 的分布函数为F (x )={13e x, x <013(x +1), 0≤x <21, x ≥2则X 的概率密度为f(x),则当x<0是f(x)=.13e x 8. 设连续型随机变量X 的分布函数为其中概率密度为f(x),F (x )={1‒e ‒2x , x >00, x ≤0则f(1)= .2e ‒29. 设连续型随机变量X 的概率密度为其中a>0.要使,则常数a=f (x )={12a, ‒a < x <a 0, 其他P { X >1}=13 3 .解:P { X >1}=1‒P { X ≤1}=13,P { X ≤1}=23=12a10.设随机变量X~N(0,1),为其分布函数,则= 1 .Φ(x)Φ(x )+Φ(‒x)11.设X~N ,其分布函数为为标准正态分布函数,则F(x)与之间的关系是(μ,σ2)F (x ),Φ(x)Φ(x)=.F (x )Φ(x ‒μσ)12.设X~N(2,4),则= 0.5 .P { X ≤2}13.设X~N(5,9),已知标准正态分布函数值,为使,则Φ(0.5)=0.6915P { X <a }<0.6915常数a< 6.5. 解:, F (a )=Φ(a ‒μσ)=a ‒53a ‒53<0.514. 设X~N(0,1),则Y=2X+1的概率密度= .f Y (y )122πe‒(Y ‒1)28解:Y =g (x )=2X +1, X =ℎ(y )=Y ‒12,ℎ'(y )=12f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒(Y ‒12)22∗12=122πe‒(Y ‒1)28三.袋中有2个白球3个红球,现从袋中随机地抽取2个球,以X 表示取到红球的数,求X 的分布律.解: X=0,1,2当X=0时,P { X =0}=C 03∗C 22C 25=110当X=1时,P { X =1}=C 13∗C 12C 25=610当X=2时,P { X =2}=C 23∗C 02C 25=310X 的分布律为:X 012P110610310四.设X 的概率密度为求: (1)X 的分布函数F(x);(2).f (x )={|x|, ‒1≤ x ≤10, 其他 P { X <0.5},P { X >‒0.5}解: (1)当x <-1时. F(x)=0;;当‒1≤x <0时,F(x)=∫x‒1‒x dx =‒x 22|x ‒1=12‒x 22当0≤x <1时,F (x )=1‒ 1∫xx dx =1‒x 22|1x =12+x 22当x ≥1时. F(x)=1F (X )={0, X <‒112‒x22, ‒1≤X <012+x22, 0≤X <11, X ≥1(2)P { X <0.5}=F (0.5)=12+0.522=58;P { X >‒0.5}=1‒F (‒0.5)=1‒(12‒0.522)=58五.已知某种类型电子组件的寿命X(单位:小时)服从指数分布,它的概率密度为f (x )={12000e ‒x 2000, x >00, x ≤0We will continue to improve the company's internal control system, and steady improvement in ability to manage and control, optimize business processes, to ensure smooth processes, responsibilities in place; to further strengthen internal controls, play a control post independent oversight role of evaluation complying with third-party responsibility; to actively make use of internal audit tools detect potential management, streamline, standardize related transactions, strengthening operations in accordance with law. Deepening the information management to ensure full communication "zero resistance". To constantly perfect ERP, and BFS++, and PI, and MIS, and SCM, information system based construction, full integration information system, achieved information resources shared; to expand Portal system application of breadth and depth, play information system on enterprise of Assistant role; to perfect daily run maintenance operation of records, promote problem reasons analysis and system handover; to strengthening BFS++, and ERP, and SCM, technology application of training, improve employees application information system of capacity and level. Humanistic care to ensure "zero." To strengthening Humanities care,continues to foster company wind clear, and gas are, and heart Shun of culture atmosphere; strengthening love helped trapped, care difficult employees; carried out style activities, rich employees life; strengthening health and labour protection, organization career health medical, control career against; continues to implementation psychological warning prevention system, training employees health of character, and stable of mood and enterprising of attitude, created friendly fraternity of Humanities environment. To strengthen risk management, ensure that the business of "zero risk". To strengthened business plans management, will business business plans cover to all level, ensure the business can control in control; to close concern financial, and coal electric linkage, and energy-saving scheduling, national policy trends, strengthening track, active should; to implementation State-owned assets method, further specification business financial management; to perfect risk tube control system, achieved risk recognition, and measure, and assessment, and report, and control feedback of closed ring management, improve risk prevention capacity. To further standardize trading, and strive to achieve "according to law, standardize and fair." Innovation of performance management, to ensure that potential employees "zero fly". To strengthen performance management, process control, enhance employee evaluation and levels of effective communication to improve performance management. To further quantify and refine employee standards ... Work, full play party, and branch, and members in "five type Enterprise" construction in the of core role, and fighting fortress role and pioneer model role; to continues to strengthening "four good" leadership construction, full play levels cadres in enterprise development in theof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy19 OF 18一台仪器装有4个此种类型的电子组件,其中任意一个损坏时仪器便不能正常工作,假设4个电子组件损坏与否相互独立.试求: (1)一个此种类型电子组件能工作2000小时以上的概率;(2)一台仪器能正p 1常工作2000小时以上的概率.p 2解: (1)P 1=P {X ≥2000}=∫+∞200012000e‒x 2000dx=12000∗‒2000∗e‒x2000|+∞2000=‒e‒x 2000|+∞2000=0‒(‒e ‒1)=e ‒1(2)因4个电子组件损坏与否相互独立,故:P 2=P 14=(e ‒1)4=e ‒4当+∞带入‒x2000时变成负无穷大,e ‒∞=0。
习题五1试检验不同日期生产的钢锭的平均重量有无显著差异?(α=0.05) 解 根据问题,因素A 表示日期,试验指标为钢锭重量,水平为5.假设样本观测值(1,2,3,4)ij y j =来源于正态总体2~(,),1,2,...,5i i Y N i μσ= .检验的问题:01251:,:i H H μμμμ===L 不全相等 .计算结果:表5.1 单因素方差分析表注释: 当=0.001表示非常显著,标记为 ‘***’,类似地,= 0.01,0.05,分别标记为 ‘**’ ,‘*’ .查表0.95(4,15) 3.06F =,因为0.953.9496(4,15)F F =>,或p = 0.02199<0.05, 所以拒绝0H ,认为不同日期生产的钢锭的平均重量有显著差异.2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 试检验在四种不同催化剂下平均得率有无显著差异?(α=0.05)解根据问题,设因素A 表示催化剂,试验指标为化工产品的得率,水平为4 .假设样本观测值(1,2,...,)ij i y j n =来源于正态总体2~(,),1,2,...,5i i Y N i μσ= .其中样本容量不等,i n 分别取值为6,5,3,4 .检验的问题:012341:,:i H H μμμμμ===不全相等 .计算结果:表5.2 单因素方差分析表查表0.95(3,14) 3.34F =,因为0.952.4264(3,14)F F =<,或p = 0.1089 > 0.05,所以接受0H ,认为在四种不同催化剂下平均得率无显著差异 .3 试验某种钢的冲击值(kg ×m/cm2),影响该指标的因素有两个,一是含铜量A ,另试检验含铜量和试验温度是否会对钢的冲击值产生显著差异?(α=0.05) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用.设因素,A B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为12.假设样本观测值(1,2,3,1,2,3,4)ij yi j ==来源于正态总体2~(,),1,2,3,ij ij Y N i μσ=1,2,3,4j = .记i α⋅为对应于i A 的主效应;记j β⋅为对应于j B 的主效应;检验的问题:(1)10:i H α⋅全部等于零,11:i H α⋅不全等于零;(2)20:j H β⋅全部等于零,21:j H β⋅不全等于零; 计算结果:表5.3 双因素无重复试验的方差分析表查表0.95(2,6) 5.143F =,0.95(3,6) 4.757F =,显然计算值,A B F F 分别大于查表值,或p = 0.0005,0.0009 均显著小于0.05,所以拒绝1020,H H ,认为含铜量和试验温度都会对钢的冲击值产生显著影响作用.设每个工人在每台机器上的日产量都服从正态分布且方差相同 .试检验:(α=0.05)1) 操作工之间的差异是否显著? 2) 机器之间的差异是否显著?3) 它们的交互作用是否显著?解 根据问题,这是一个双因素等重复(3次)试验的问题,要考虑交互作用.设因素,A B 分别表示为机器和操作,试验指标为日产量,水平为12. 假设样本观测值(1,2,3,1,2,3,4)ijk y i j ==来源于正态总体2~(,),1,2,3,ij ij Y N i μσ= 1,2,3,4j =,1,2,3k = .记i α⋅为对应于i A 的主效应;记j β⋅为对应于j B 的主效应;记ij γ为对应于交互作用A B ⨯的主效应; 检验的问题:(1)10:i H α⋅全部等于零,11:i H α⋅不全等于零; (2)20:j H β⋅全部等于零,21:j H β⋅不全等于零; (3)30:ij H γ全部等于零,31:ij H γ不全等于零;计算结果:表5.4 双因素无重复试验的方差分析表查表0.95(3,24) 3.01F =,0.95(2,24) 3.4F =,0.95(6,24) 2.51F =,计算值 3.01,A F <3.4, 2.51B A B F F ⨯>>,或0.05A p >>,而,B A B p p ⨯均显著小于0.05,所以拒绝2030,H H ,接受10H ,认为操作工之间的差异显著,机器之间的差异不显著,它们之间的交互作用显著 . 5 某轴承厂为了提高轴承圈退火的质量,制定因素水平分级如下表所示因素 上升温度℃ 保温时间(h)出炉温度℃水平1 800 6 400 水平28208500试填好正交试验结果分析表并对试验结果进行直观分析和方差分析 .解 根据题意,这是一个3因素2水平的试验问题 .试验指标为硬度的合格率 .应选择正交表44(2)L 来安排试验,随机生成正交试验表如下:方差来源 自由度 平方和 均方 F 值 P 值 因素A 因素B 相互效应A ×B误差 总和3 2 6 24 352.750 27.167 73.5 41.333 144.750.917 13.583 12.250 1.7220.5323 7.8871 7.11290.6645 0.00233** 0.00192**由此可见第三号试验条件为:上升温度800℃、保温时间6h 、出炉温度500℃ . 直观分析需要计算K 值,计算结果如下:直观分析 由计算的K 值知,因素A 、B 、C 的极差分别为70,40,40,因此主次关系为A B C >=,B ,C 相当 .由于试验指标为硬度的合格率,应该是越大越好,所以各确定因素的水平分别是121,,A B C ,即最佳的水平组合是121A B C ,即最佳搭配为:上升温度800℃、保温时间8h 、出炉温度400℃.采用方差分析法,计算得下表:表5.7 方差分析表方差来源平方和 自由度 均方差 F 值 A 1225 1 1225 1 B 400 1 400 0.33 C 400 1 400 0.33 误差 1225 1 1225 总和32504如果显著性检验水平取0.1α=,则查表得0.9(1,1)39.9F =,显然计算的F 值1,0.33A B C F F F ===均小于查表值,所以认为三个因素对结果影响都显著 .6问应选用哪张正交表安排试验,并写出第8号试验的条件;如果9组试验结果为(单位:kg/100m 2):62.925,57.075,51.6,55.05,58.05,56.55,63.225,50.7,54.45,试对该正交试验结果进行直观分析和方差分析.解 该问题属于3因素3水平的试验问题,试验指标为水稻产量 .根据题意应选择正交表49(3)L 来安排试验,随机生成正交表如下:由表可知,第8号试验的条件:品种(A 3)珍珠矮11号,插值密度(B 2)3.75棵/100m 2,施肥量(C 1)0.75kg/100m 2纯氨; 直观分析需要计算K 值,计算结果如下:同上题进行直观分析,得出K 值的大小关系为:111312212223333132,,K K K K K K K K K >>>>>>由直观分析看出:本例较好的水平搭配是:113A B C 采用方差分析法,计算得下表:表5.10 方差分析表方差来源平方和自由度 均方差F 值A 1.759 2 0.879 0.0223B 65.861 2 32.931 0.8361C 6.660 2 3.330 0.0845 误差78.776 239.388 39.3880.9(2,2)9F =,所以认为三个因素对结果影响都不显著.7 在阿魏酸的合成工艺考察中,为了提高产量,选取了原料配比A ,吡啶量B 和反应时间C 三个因素,它们各取了7个水平如下:原料配比A :1.0,1.4,1.8,2.2,2.6,3.0,3.4 吡啶量B :10,13,16,19,22,25,28 反应时间C :0.5,1.0,1.5,2.0,2.5,3.0,3.5试选用合适的均匀设计表安排试验,并写出第7号试验的条件;如果7组试验的结果(收率)为:0.33,0.336,0.294,0.476,0.209,0.451,0.482,试对该均匀试验结果进行直观分析并通过回归分析发现可能更好的工艺条件.解 根据题意选择均匀设计表47(7)U 来安排试验,有3个因素,根据使用表,实验安排如:表5.11 试验安排表6 6 5 4 0.4517 7 7 7 0.482 所以第7号实验的条件为:原配料比3.4,吡啶量28ml,反应时间3.5h.通过直观分析,最好的实验条件是:原配料比3.4,吡啶量28ml,反应时间3.5h. 通过回归分析,最合适的实验条件是:原配料比2.6,吡啶量16ml,反应时间0.5h.习题六1 从某中学高二女生中随机选取8名,测得其升高、体重如下:1 2 3 4 5 6 78身高(cm)160 159 160 157 169 162 165 154体重(kg)49 46 53 41 49 50 48 43在绝对距离下,试用最短距离法和离差平方和法对其进行聚类分析.解由R软件,用最短距离(左)和差离平方和法(右)对题目进行聚类分析如下图6.1,表6.1和表6.2:最短距离法离差平方和法图6.1 聚类树形图表6.1 聚类附表(最短距离法)步骤聚类合并系数首次出现的阶段类别下一步组1 组2 组1 组21 1 6 5.000 0 0 22 1 2 10.000 1 0 43 4 8 13.000 0 0 74 1 7 13.000 2 0 55 1 3 13.000 4 0 66 1 5 17.000 5 0 7表6.2 聚类附表(离差平方和法)2 已知五个变量的距离矩阵为03674012340444401592343331).;2);3)036034022020401000⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭试用最短距离法和最长距离法对这些变量进行聚类,并画出聚类图和二分树.解 针对距离矩阵1),采用两种方法计算如下. ①最短距离法的聚类步骤如下:12345036740159036020w w w w w ⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭a )将()236,1w w f h =合并为一类,,{}11456,,,,H w w w h =距离矩阵如下0743023060⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭{}()457457),,,2b w w h w w f h ==合并为一类,{}2167,,,H w h h =距离矩阵如下:034030⎛⎫ ⎪⎪ ⎪⎝⎭{}()()1681689),,3,3c w h h w h f h f h ===合并为一类,最后,,聚类图和树状图如图6.2:图6.2 聚类图(左)与树状图(右)②最长距离法与最短距离法类似,步骤如下: a )()236,1w w f h =合并为一类,{}11456,,,,H w w w h =距离矩阵如下0746025090⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ {}(){}4574572167),,,2,,,b w w h w w f h H w h h ===合并为一类,距离矩阵如下:067090⎛⎫⎪⎪ ⎪⎝⎭{}()()1681689),,69c w h h w h f h f h ===合并为一类,最后,,,聚类图和树状图如图6.3:图6.3 聚类图(左)与树状图(右)(2)针对距离矩阵2)012340234034040⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭①最短距离法的聚类步骤如下 a )()216,1w w f h =合并为一类,{}13456,,,,0342043040H w w w h =⎛⎫⎪⎪ ⎪ ⎪⎝⎭距离矩阵如下{}()367367),,,2b w h h w h f h ==合并为一类,{}24567,,,,H w w h h =聚类矩阵如下:043040⎛⎫⎪⎪ ⎪⎝⎭{}(){}()4784789879),,3,,4c w h h w h f h h w h f h ====合并为一类,最后,,聚类图和树状图如图6.4:图6.4 聚类图(左)与树状图(右)②由于本题数据的特殊性,最长距离法与最短距离法结果相同(略). (3)044440333022010⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭最短距离法的聚类步骤如下a ) ()456,1w w f h =合并为一类,{}11236,,,,H w w w h =距离矩阵如下0444033020⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭{}(){}36736724567),,,2,,,,b w h h w h f h H w w h h ===合并为一类,距离矩阵如下:044030⎛⎫⎪⎪ ⎪⎝⎭{}(){}()4784789879),,3,,4c w h h w h f h h w h f h ====合并为一类,最后,,,聚类图和树状图如图6.5:图6.5 聚类图(左)与树状图(右)由于本题数据的特殊性,最长距离法与最短距离法结果相同(略).3 在一项关于作物对土壤营养的反应的研究中,要测定土壤的总磷量和总氮量(占干物质重的百分比),今对10份土样测得数据如下:总氮量(%)0.120.63 1.19 2.30 1.29 0.73 0.52 0.33 0.61 0.470.66在绝对距离下,试用重心法对其进行聚类分析.解由R软件得到重心法聚类分析的结果如图6.6与表6.3:图6.6 聚类树形图表6.3 聚类过程记录表步骤聚类合并系数首次出现的阶段类别下一步组1 组2 组1 组21 1 8 .001 0 0 22 1 10 .002 1 0 43 6 9 .005 0 0 64 15 .010 2 0 75 2 4 .010 0 0 86 67 .027 3 0 77 1 6 .048 4 6 88 1 2 .459 7 5 99 1 3 2.572 8 0 04 1975年Dagnelie收集了11年的气象数据资料如下表变量年序x1x2x3x4其中:x 1—前一年11月12日的降水量;x 2—7月均温;x 3—7月降雨量;x 4—月日辐射,试对这四个气象因子进行主成分分析. 解 由R 软件分析得到如下表6.4,6.5:表6.4 各主成分的重要性:主成分1 主成分2 主成分3 主成分4 标准差 1.6103349 0.9890848 0.53407741 0.37854199 方差贡献率 0.6482947 0.2445722 0.07130967 0.03582351 累积贡献率0.64829470.89286680.964176491.00000000表6.5 因子荷载:主成分1 主成分2 主成分3 主成分4 X1 0.291 0.871 0.332 -0.214 X2 -0.506 0.425 -0.742 -0.111 X3 0.577 0.136 -0.418 0.688 X4-0.5710.2050.4040.685由于前两个主成分对应的累积贡献率已经达到89.287,因此选取主成分的数目为2.5 对某初中12岁的女生进行体检,测量其身高x 1、体重x 2、胸围x 3和坐高x 4,共测得58个样本,并算得1234(,,,)x x x x x ='的样本协方差为19.9410.5023.566.5919.7120.958.637.97 3.937.55S ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ 试进行样本主成分分析.解 首先计算样本的相关系数矩阵:10.484410.32240.887210.70330.59760.31251⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭设相关系数矩阵的特征值和特征向量分别为d 和v 阵,计算得到0.0546000 0 0.312600= 000.96470 000 2.6681d ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭即四个特征值依次为:2.6681,0.9647,0.3126,0.0546,前两个主成分的累计贡献率为:90.8471%,因此提取主成分为2.四个特征根相应的特征向量为0.06000.70600.5333 0.4620 0.7317 0.17430.34040.5642=0.60570.19320.60400.48060.30690.65870.48460.4870v -⎛⎫ ⎪-⎪ ⎪--- ⎪-⎝⎭ 因此,两个主成分的表达式为:112340.060.73170.60570.3069z x x x x =+-- 212340.7060.17430.19320.6587z x x x x =-+-+6 比较因子分析和主成分分析模型的异同,阐明两者的关系. 解(1)提取公因子的方法主要有主成分法和公因子法.若采取主成分法,则主成分分析和因子分析基本等价,该法从解释变量的变异的角度出发,尽量使变量的方差能被主成分解释;而公因子法主要从解释变量的相关性角度,尽量使变量的相关程度能被公因子解释,当因子分析目的重在确定结构时则用到该法.(2)主成分分析和因子分析都是在多个原始变量中通过他们之间的内部相关性来获得新的变量,达到既减少分析指标个数,又能概括原始指标主要信息的目的.但他们各有其特点:主成分分析是将n 个原始变量提取m 个支配原始变量的公因子,和1个特殊因子,各因子之间可以相关或不相关.(3)统用降维的方法,但差异也很明显:主成分分析把方差划分为不同的正交成分,而因子分析则把方差化分为不同的起因因子;因子分析中的特征值的计算只能从相关系数矩阵出发,且必须把主成分划分为因子.(4)因子分析提取的公因子比主成分分析提取的主成分更具有可解释性.(5)两者分析的实质及重点不同.主成分的数学模型为Y AX =,因子分析的数学模型为X AF ε=+.因而可知主成分分析是实际上是线性变换,无假设检验,而因子分析是统计模型,某些因子模型是可以得到假设检验的;主成分分析主要综合原始数据的信息,而因子分析重在解释原始变量之间的关系.(6)SPSS 数据的实现:两者都通过“analyzedata reduction Factor ···”过程实现,但主成分分析主要使用“descriptires ”,“extraction ”,“stores ”对话框,而因子分析处使用这些外,还可使用“rotaction ”对话框进行因子旋转.7 试对第4题的变量作因子分析,并将结果和上面的结果进行比较. 解 用SPSS 分析,计算结果如下表6.6-6.8:表6.6 反应压缩比情况表 提取方法: 主成分法计算的相关系数矩阵的特征值和方差贡献率:表6.7 方差解释度提取方法: 主成分法表6.8 主成分矩阵8 为研究某一树种的叶片形态,选取50片叶测量其长度x 1(mm )和宽度x 2(mm ),按样本数据求得其平均值和协方差矩阵为:129048134,92,4845x x S ⎛⎫=== ⎪⎝⎭求出相关系数阵R ,并由R 出发作因子分析;解1)求相关系数矩阵:904810.7303,48900.73031S R ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 2)用R 软件求R 的特征根及其相应的特征向量,软件输出结果如下:$values[1] 2.99393809 0.07273809 $vectors[,1] [,2] [1,] 0.7071068 -0.7071068 [2,] 0.7071068 0.7071068122.9939,0.0727,λλ∴==12(),()0.7071,0.7071-0.7071,0.7071T Tηη==3) 求载荷矩阵A :1.22350.19071.22350.1907A -⎛⎫= ⎪⎝⎭4)22121.5333, 1.5333,h h == 0.98810.154*0.98810.154A -⎛⎫= ⎪⎝⎭12121,1,0.3043,0.3043u u v v ===-=,222222000011112,0,()0.9074,20i i iii i i i i i A u B v C u v D u v =========-===∑∑∑∑9 1981年,生物学家Grogan 和Wirth 对两种蠓虫Af 和Apf 根据其触角长度x 1和翼长x 2进行了分类,分类的数据资料如下:Af 1 2 3 4 5 6 7 8 x 1 1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 x 2 1.27 1.74 1.64 1.82 1.90 1.70 1.82 1.82 Apf 1 2 3 4 5 6 x 1 1.14 1.18 1.20 1.26 1.28 1.30 x 2 1.78 1.96 1.86 2.00 2.00 1.96 (1)试建立Af 和Apf 的Fisher 判别模型;(2)对样本(1.24,1.80),(1.28,1.84),(1.40,2.04)进行判别分类. 解 (1)建立Fisher 判别模型991122121111(,)(1.42,1.75),(,)(1.23,1.93)99T TT T i i i i i i x x y y μμ======∑∑120.08480.1490.01980.0218,0.1490.39120.02180.039A A ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭12120.0080.0130.0130.0332A A n n ⎛⎫+== ⎪+-⎝⎭∑()120.19,0.18Tμμ-=-,()()121 1.325,1.842T μμ+= 1345.05135.42135.4283.33--⎛⎫= ⎪-⎝⎭∑, 带入Fisher 判别函数 ()12345.05135.42[(,)(1.325,1.84)]0.19,0.18135.4283.33Tx x -⎛⎫-- ⎪-⎝⎭1291.301741.336944.534x x =--(2)把三个样本(1.24,1.80),(1.28,1.84),(1.4,2.04)带入模型,得到结果:三个样本均属于Apf 类.10 在两个玉米品种之间进行判别:137玉米G 1和甜玉米G 2,选取的两个变量是:x 1—玉米果穗长;x 2—玉米果穗直径,两个类的样本容量为n 1=n 2=40,实际算得两个类的样本均值和样本协方差为:121218.5625.348.120 4.4589.661 3.720,,,5.98 4.12 4.458 4.350 3.720 3.410x x S S ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭试建立G 1,G 2的Bayes 类线性判别函数.解 因为已知两类的样本均值和样本协方差为:12(18.56,5.98),(25.34,4.12)T T x x ==,128.120 4.4589.661 3.720,4.458 4.350 3.720 3.410S S ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可计算得到修正的公共协方差矩阵和逆矩阵12120.2280.1450.1450.0992A A n n ⎛⎫+== ⎪+-⎝⎭∑,15.6393.738.25147.38--⎛⎫= ⎪-⎝⎭∑()()()121216.78,1.86,21.95,5.052TTμμμμ-=-+= 带入Fisher 判别函数()112121(())()2T W x x μμμμ-=-+-∑ ()()12 5.6393.73[(,)21.95,5.05] 6.78,1.868.25147.38Tx x -⎛⎫=-- ⎪-⎝⎭1274.396.951141.29x x =-+-。
=!A乙£ P=旷S奚報洱封去、09乙x9乙+ 0Lx9+ O^xC+ 8x U ——= L刊U]xu Z-= X 诲切去尅去:搦2A S 0 = x s乙乙乙(A-尸!U心Z~ =U K(A-尸!UAo+e =尸!u!A Z- +e = f十u(Ao- 尸!U(Ao 一8一=F!U广尸!U'Ao eu -= 、/丿L□ u(!Ao+e) m =U KI U!x 7 - = x;・-尸!U忆=001=9901+ 901+ CO 1+ >6+26T ! U=z Z/= x u i —i^ 童#说圧最新精品文档,知识共享 1!1-1 /6 1 -303 1 0 30 4 24 20 £ 09 1 85 20 3 1 0yy i 9n y=240.4441 2 2 _61 -240.444「吃—303-240.4441030-240.44492 2 2424 —240.444]亠[20 — 240.444]亠〔909 — 240.444 222 n(—185—240.444)+(20—240.444)+(310—240.444) = 197032.247利用3题的结果可知x 二 2000 y = 2240.444 s" =s y =197032.247i123 4 5678910 11 1213X79. 80. 80. 80. 80. 80. 80. 79. 80. 80. 80. 80. 80.09804 02 04 03 03 04 97 05 03 02 00 2 y-2424334-35322i1 2 3 4 5 6 7 8 9 X i193 169303242202 290 181 202 2397 0 49510 y i-30103 42-1831-6134209095204.解:变换y 二 N -2000i^ 盍#说曲'韓爼習黯堆窖g 乙 0"=920^ =[g9J + t^)+ 乙(9J + 乙 Jxt7+』9J+6—)>;£+ ^9L + 9S-)x2^ —=(H989乙二比+下=19'V- =「 OL (K + ^X 3L + C X 6-乙 x9£—)— = k尸!U!A !LU kP£ 乙 tuZV 6- 9£- !A17'0£乙8乙I/9乙9£2k*(z 乙-Moi 竭靠:搦-g0000 LAs =乙00 L乙 008= 08+ —圧巨畜彩轴雷£宙吐OOZ —乙)x£+ ( 00 3-3-)1 —= 乙 _ lx亍!U(A- !A)右=$ 乙— U L00乙= SL尸!U:<z(A-z —口U!A y !LU M _ = :S(HX ZZ0£'9 =00x乙ZZ0£'9 =最新精品文档,知识共享 1!2Ix 丄Fjxn i 41 156 10 160 14 164 26 172 12 168 28 176 8 180 2 100-166i二1' m i X j -xn i 11帀0 汉(156 —166 $ 2 2 214 160-16626 164-16628 168-1661002 2 2 112 172 -166 8 176 -166 2180 -166= 33.448解:将子样值重新排列(由小到大) -4, -2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2, 3.21 M^Xm =X 7 =0R = X n - X 1 - 3.21 - _4 - 7.21 M e =XX (8 厂1*2n i 9 解:1 11n x i n 2X j一n2 j mn 2最新精品文档,知识共享 1!n £2x 2 _x 2n i亠口 2 i 丄环数 109 87 6 54 频数2 30 942试写出子样的频数分布,再写出经验分布函数并作出其图形 解: 环数 10 9 8 7 6 5 4 频数 2 3 0 9 4 0 2 频率0.10.150.450.20.10.14^xc60.3 6兰xv7F20(X )=* 0.75 7 兰 x£9 0.99 兰 xv10Jx^10区间划分频数频率密度估计值154口158100.10.025ni n2X i --二’Xj i Aj 1n i X i亠 n 2 X 2n n 2m 亠n^i亠2222 比 s }亠x_, [亠n 2 s2)$ n i X i + n2 X 2|'u U 匸!U 口U-=^-= !xa m—!x Zr a=xaY "fU u L u L —u F ! U 芳! U7= =^<3 7 = 7 3= X30 / ? L - 飞=々]7 = !X3 ( ?)d q !x最新精品文档,知识共享 1!3.313•解:Xi L U a,b EXiDX i12i =12 ,n在此题中x 丄 U -1,11 Dx i3— 1 EX 二 E —'n i 4 _ 1n 丄Exn i £. 1 DX 二 D x i 八 Dx i~n i 二14.解:因为XiL N *2所以由2分布定义可知丫二'i -1X ii£I a所以 Y L 2 n15.解: 因为XiL N 0,1E X 1 X 2 X 3=°.3所以X1X2X 3L N0」.3iX +X 2 +X 3£V3.丿同理X 4 X 5 X 6b 2(1)由于2分布的可加性,故1YX 1 X 2 X 3 =I ----------- = -------可知16•解:(1)因为XiL N OF 2辿 N 0,1CT=3nE Xi —=0i =12 ,n服从2分布,12 ,n D X 1 X 2 X 3D X^.1X 1 X 2 X 3L N 0,3=1+ ['X4+X 5 + X 6j 2口i =1,2, ,n所以F”)”讣P弄韶y—JZx d xfY iy二 f y =因为所以(2)因为所以y2n /"2 "fY (y )=<2Z r '-L_ ye^2(3)因为x 0x _0x丄N 0,;「2i =1,辿N 0,1CT飞工L 2.i ■■-F Y2 y P nY2% y卡 2 y…学芈n2 2 _nx____ 戸nXjL N 0,二2y 0y乞02,…,nnyF.f 2 x dxy 0y乞01,2,…,n故17•解:因为所以故(4)因为所以21X亠一;F Y 3 y = p 沁匸罕二fY 3y=F Y 3y二x 0 x _ 0y 0 y _oX i L N Of 2i =1,2, ,n£ 非L N (o,1)i =1 •、n ;・yF Y 4 y =P 「Y 4 冷乞吕「f 21 xdx'f y ) 1 f 2 y二 F Y 4 y =f 217 77存在相互独立的u , VU L N 0,1VL 2 nUy 乞0xLt n19•解:用公式计算富01 (90)=90 +J2P0U 0.01查表得U 0.01 =2.33代入上式计算可得 鼻爲(90 ) = 90 + 31.26 = 121.2620.解:因为 XL 2 nE 2 = nD 2 由2分布的性质3可知则由定义可知 18解:因为所以(2)因为所以u 2L 21 u 221V n2L F 1,n、n X i i \ n ”_' XiL N 0—i =12 ,nL N 0,1V]2u i :n 1;-n\ m l : X ii 4Y = r . _____ 1n : D m丘「人2F i =n 1J Xi牙Lt mX^L N 0,1zf X .lL ;「m卷 2Li”二i =1,2, , n mnm l X i 2 Y 2 -n imn' x :i -1• j Xi_i.工n{ CT 丿n m z i士 1mL F n,m=2n最新精品文档,知识共享1!X -n |X - n c - nPXx ;=P —-lx/2n V2n Jc _nt2l n m[ V2n ^2^ J VV2n JP^X <c)1.x) x)0, x+□0f:::0 0 _OCixe -■x +□0+x)1xdx-,x d-xe从而有2. 1).E(x)i+oOoO、k(1、k -1p)p' k(1 -、k丄x =1P _1 一1 一p 令P= XL(P)汕(1-P)"p=p n(1-p)u nX i -n最新精品文档,知识共享 1!X解之得解:因为总体X 服从U( a , b )所以_a b D( X )( a-b )2 n!2 12 r ! (n _r ] X ) =X D ( X ) =S 2,n 2解之得:nnIn x i i 4nnIn x ii -1(2)母体X 的期望而样本均值为:-1 nX =—区 X in y令E(x)二X 得1 - X5•。
1一批出厂半年的人参营养丸的潮解率为8%,从中抽取20丸,求恰有一丸潮解的概率。
32816.0)1()1(,20,08.0=-====-k n kk n p p C k P n p2.设X ~N (μ,σ2),试求P{ |X-μ| ≤1.96σ}=?95.0025.0975.0)96.1()96.1()96.1()96.1()96.1()96.1()96.196.1(}96.1{=-=-Φ-Φ=--Φ--+Φ=--+=+≤≤-=≤-σμσμσμσμσμσμσμσμσμF F X P X P3.已知某药品中某成份的含量在正常情况下服从正态分布,标准差σ=0.108,现测定9个样本,其含量的均数X=4.484,试估计药品中某种成份含量的总体均数μ的置信区间(α=0.05)。
3、解:置信区间为)55456.4,41344.4(9108.096.1484.42_=⨯±=±nu x σα4.某合成车间的产品在正常情况下其收率X ~N (μ,σ2),通常收率的标准差σ=5%以内就可以认为生产是稳定的,现生产9批,得收率(%)为:73.2,78.6,75.4,75.7,74.1,76.3,72.8,74.5,76.6。
问此药的生产是否稳定?(α=0.01) 4、解:H 0:σ≤5 H 1:σ>5n=9,s=1.81873,选择统计量058489.125484.26)1(222==-=σχs n令α=0.01,查临界值表得6465.1)8(201.0=χ,0902.20)8(299.0=χ比较统计量的数值和临界值,1.<1.6465,从而不能否定原假设H 0,即总体的标准差在5%以内,生产是稳定的。
5 中药研究所,用中药青兰试验其在改变兔脑血流图所起的作用,测得数据如下: 用药前 2.0 5.0 4.0 5.0 6.0 用药后3.06.04.55.58.0试用配对比较的t 检验说明青兰对兔脑血流图的作用(α=0.05)。
1前言 (3)编写任务记录 (4)练习1-1 (5)练习1-2 (7)练习1-3 (8)练习1-4 (10)练习1-5 (13)习题一 (14)练习2-1 (16)练习2-2 (18)练习2-3 (19)练习2-4 (21)练习2-5 (24)习题二 (28)练习3-1 (31)练习3-2 (36)练习3-3 (41)练习3-4 (45)练习3-5 (49)练习4-1 (51)练习4-2 (51)练习4-3 (52)练习4-4 (54)练习5-1 (55)练习5-2 (56)练习5-3 (59)练习5-4 (60)练习5-5 (61)练习5-6 (63)练习5-7 (65)练习6-2 (65)练习7-1 (66)练习7-2 (66)23节次手写初稿录入校对更正1.1 周玉龙王骁王骁王骁1.2 周玉龙王骁王骁王骁1.3 周玉龙王骁王骁王骁1.4 周玉龙李政宵王骁王骁1.5 周玉龙李政宵王骁王骁习题一周玉龙李政宵王骁王骁2.1 周玉龙王骁王骁王骁2.2 周玉龙王骁王骁王骁2.3 周玉龙孙士慧王骁王骁2.4 周玉龙孙士慧王骁王骁2.5 周玉龙孙士慧王骁王骁习题二周玉龙孙士慧未校对3.1 周玉龙唐艺烨王骁部分校打3.2 周玉龙孙士慧王骁3.3 周玉龙唐艺烨王骁苏英彪3.4 周玉龙许彩灵王骁苏英彪3.5 周玉龙李政宵王骁苏英彪习题三4.1 周玉龙许彩灵王骁林家敏4.2 周玉龙许彩灵王骁林家敏4.3 周玉龙许彩灵王骁凌芝君4.4 周玉龙许彩灵王骁苏英彪习题四5.1 周玉龙唐艺烨王骁苏英彪5.2 周玉龙孙士慧王骁苏英彪5.3 周玉龙孙士慧王骁罗莘5.4 周玉龙孙士慧王骁罗莘5.5 周玉龙许彩灵孙士慧王骁苏英彪5.6 周玉龙许彩灵王骁苏英彪5.7 罗莘苏英彪习题五6.2 李欣苏英彪7.1 罗莘苏英彪7.2 罗莘苏英彪41-11、设样本空间为Ω .(1)Ω ={(i,j)|i=1,2…6;j=1,2...6}(2)Ω =(0,+∞)(3)Ω ={0,1,2,3}(4)Ω =N*2、(1)Ω ={1324,1342,3124,31421423,1432,4123,41322314,2341,3214,32412413,2431,4213,4231};(2)A={1324,1342,1423,1432};(3)B={1324,1342,3124,31421423,1432,4123,4132};(4) A B=B如前给出。
习题二 P441. 设总体X 的概率分布密度为:1(2), 01,(;)0, x x f x θθθ+⎧+≤≤=⎨⎩其他,其中2θ>-未知,12,,,n X X X 为其样本,求: (1)12,,,n X X X 的联合分布密度; (2)()E X ,()D X ,2()E S解:由题意知总体X 的概率分布密度为:1(2), 01,(;)0, x x f x θθθ+⎧+≤≤=⎨⎩其他,∴期望112()(;)(2)3E X xf x dx x x dx θθθθθ+∞+-∞+==+=+⎰⎰ []()12221022222()(;)(2)4222()()()43(4)3E X x f x dx x x dx D X E X E X θθθθθθθθθθθθ+∞+-∞+==+=++++⎛⎫∴=-=-= ⎪++⎝⎭++⎰⎰(1) 样本12,,,n X X X 相互独立,且与总体X 服从相同分布,即i X 的概率密度为:()(;),1,2,,.i f x f x i n θ==(1)121121,,, (2), 01(,,; ) () 0 , n nn n i i i n i i X X X x x f x x x f x θθθ+==∴⎧⎛⎫+∏≤≤⎪ ⎪==⎨⎝⎭⎪⎩∏ 的联合分布密度为:,其他,(2)()()1122221111122() () ()3311122()() () (4)3(4)3n n i i i i n n i i i i E X E X E X n n n n D X D X D X n n n n n θθθθθθθθθθ====++===⋅⋅=++++===⋅⋅=++++∑∑∑∑ ()2222222()()[()]422()()[()]3(4)3i i i E X D X E X E X D X E X n θθθθθθθ+=+=+++⎛⎫=+=+ ⎪+⎝⎭++()222211221211() () 111 () ()11222 143(4)32(4)n n i i i i ni i E S E X X E X nX n n E X nE X n n n n n θθθθθθθθθθ===⎡⎤⎡⎤⎛⎫=-=-⎢⎥⎪⎢⎥--⎣⎦⎝⎭⎣⎦⎡⎤=-⎢⎥-⎣⎦⎡⎤⎛⎫+++⎛⎫⎢⎥=⋅-⋅+ ⎪ ⎪ ⎪-++⎝⎭++⎢⎥⎝⎭⎣⎦+=+∑∑∑()23+注:这里补充一个更一般的结果:设总体X 的数学期望与方差都存在,且2(),()E X D X μσ==。
从总体X 中抽取样本12,,,n X X X ,证明:(1) 样本均值X 的数学期望()E X μ=,方差2()D X nσ=;(2) 样本方差2S 的数学期望22()E S σ= 简证:(1)11222211111() () () 111()() () n n ii i i n n i i i i E X E X E X n n n n D X D X D X n n n n nμμσσ=======⋅====⋅⋅=∑∑∑∑(2)22222222() ()[()] () ()[()]i i i E X D X E X E X D X E X nσμσμ=+=+=+=+2222112212222122211() () 111 () ()11 () ()11 () 1n n i i i i ni i ni E S E X X E X nX n n E X nE X n n n n n n n σσμμσμσ====⎡⎤⎡⎤⎛⎫∴=-=-⎢⎥ ⎪⎢⎥--⎣⎦⎝⎭⎣⎦⎡⎤=-⎢⎥-⎣⎦⎡⎤=+-+⎢⎥-⎣⎦=+---∑∑∑∑2221(1)1n n μσσ⎡⎤⎣⎦=⋅-=-2. 设总体X 服从泊松分布12(),,,,n P X X X λ 为其样本,求其样本均值X 的概率分布、数学期望()E X ,方差()D X 。
解:(1)已知总体() {} (0,1,2; 0)!kX P P X k e k k λλλλ-⎛⎫===> ⎪⎝⎭即:因为样本与总体服从相同的分布,所以有(), 1,2,,.i X P i n λ=又因为样本12,,,n X X X 相互独立,我们有结论:1() (*)nii XP n λ=∑用归纳法证明:(ⅰ)当1N =,结论显然成立;(ⅱ)假设当 (1,)N l l l =≥∈ 时结论成立,即:1()lii XP l λ=∑ ,记1li i Y X ==∑。
我们来求1l Z Y X +=+的分布,因为1l X +与(1)j X j l ≤≤相互独立,所以1l X Y +与相互独立,进而有:()11(1)l i i X P l λ+=∴+∑ ,即:1N l =+时结论亦成立;有归纳法知结论(*)成立。
由结论(*)知:1() , 0,1,2!k n n i i n P X k e k k λλ-=⎛⎫=== ⎪⎝⎭∑ 。
由此得的X 概率分布如下:() , 0,1,2!k n k n P X e k n k λλ-⎛⎫=== ⎪⎝⎭(2)101122110() =!(1)! () = !(1)!(1)! kk k k kk k k mm k m E X k e ee e k k E X k e ek k k em m λλλλλλλλλλλλλλλλλ-∞∞---==-∞∞--==∞=--==⋅=⋅=-=⋅-−−−→=+∑∑∑∑∑ []110222 = (1)!! =()=(+1)()()()(+1)()(), ()()m m m m i i e m m e e e D X E X E X E X E X D X D X λλλλλλλλλλλλλλλλλ-∞∞-==-⎡⎤+⎢⎥-⎣⎦+=-=-=∴===∑∑, i=1,2,,n.λ= 所以112211111() () () 111()() ()n n i i i i n n i i i i E X E X E X n n n n D X D X D X n n n n nλλλλ=======⋅⋅====⋅⋅=∑∑∑∑ 3.设随机变量X 服从自由度为n 的t 分布,求函数2X 的分布。
解:已知()X t n ,我们把随机变量X写成X =,并设随机变量U 与V 独立,且2(0,1), ()U N V n χ ,则按t ()t n 。
因为 (0,1)U N , 则按2χ分布的定义知22(1)U χ;因为U 与V 独立,所以2U 与V 也独立;则按F 分布的定义知:221(1,)U X F n V n=4.设总体2(,),X N μσ 121,,,,n n X X X X + 为其样本,记11 ni i X X n ==∑,()2211 1ni i S X Xn ==--∑(1).t n -证明:已知总体2(,),X N μσ 所以211~(,)n i i X X N n nσμ==∑ 因为211(,),n n X X X N μσ++ 与独立,且所以211(0,)n n X X N nσ++- 由此得到标准化的统计量(0,1)U N又由定理2.3.1(3)知,统计量222(1)(1)n S V n χσ-=-因为X 与2S 是独立的,所以统计量U 与V 也是独立的。
于是,按t 分布的定义可知,统计量(1).t n =-注:更一般地,可以证明:有限个相互独立的正态变量的线性组合仍然服从正态分布。
定理: 设随机变量12,,,n X X X 相互独立,并且都服从正态分布:2(,),1,2,i i i X N i n μσ=则它们的线性组合1ni ii c X=∑也服从正态分布,且有22111~ ( , )n n ni i i i i i i i i c X N c c μσ===∑∑∑;6. 设总体2(40,25),X N 从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于5的概率。
解:由题意知总体222(,),4025,100X N n μσμσ=== 其中,抽取的样本容量;由定理3.1(1(0,1)N ;所以{ || 5 }1{ || 5}1 12 1 2 2 P X P X P P P μμ->=--≤⎫⎧⎪⎪=-≤⎨⎬⎪⎪⎩⎭⎫⎧⎪⎪=-≤⎨⎬⎪⎪⎩⎭⎧⎪=--≤≤⎨⎩[]() 1(2)(2) 21(2) 2(10.9772)0.0456⎫⎪⎬⎪⎪⎭=-Φ-Φ-=-Φ=-=7. 设总体2(,3),X N μ 从中抽取一个容量为10的样本,其样本方差为2S ,且2{}0.1P S a >=,求a 的值。
解:由题意知总体222(,),3,10X N n μσσ== 其中抽取的样本容量; 由定理3.1(3)知222(1)(1)n S n χσ-- ,所以222222(1)(101){}3(1) 0.1n S P S a P a n S P a σσ⎧⎫-->=>⎨⎬⎩⎭⎧⎫-=>=⎨⎬⎩⎭查表知:2{(9)14.7}0.1P χ≥=。
所以14.7a =。
8. 设总体2(,),X N μσ 从总体X 中抽取一个容量为25的样本,求样本均值X 小于12.5的概率,如果(1)已知12,2μσ==;(2)已知12,μσ=未知,但样本方差25.57s =。
解:由题意知总体2(,),25X N n μσ= 抽取的样本容量(1) 已知12,2μσ==,由定理3.1(1)知(0,1)N ;所以{12.5}{0.5} 1.25 (1.25) 0.8944P X P X P P μ<=-<⎫⎧⎪⎪=<⎨⎬⎪⎪⎩⎭⎫⎧⎪⎪=<⎨⎬⎪⎪⎩⎭=Φ=(2)已知12,μ=由定理3.1(4)知(1)t n - ;所以(24){12.5} 1.059 1 1.059 1{ 1.059} 10.150.8P X P P P P T ⎫⎧⎪⎪<=<⎨⎬⎪⎪⎩⎭⎫⎧⎪⎪=<⎨⎬⎪⎪⎩⎭⎫⎧⎪⎪=-≥⎨⎬⎪⎪⎩⎭=-≥=-=59.设总体2(3,10),X N 从总体X 中抽取一个容量为25的样本,X 和2S 分别为其样本均值和样本方差,求2{06,0151.7}P X S <<<<。
解:由题意知总体222(,),310,25X N n μσμσ=== 其中,抽取的样本容量 由定理3.1(1)、(3)知(0,1)N ,222(1)(1)n S n χσ-- ,所以{06} 1.5 1.5 (1.5)( 1.5) 2(1.5)120.933210.8664P P P ⎧⎫<<=⎧⎫⎪⎪=-<<⎨⎬⎪⎪⎩⎭=Φ-Φ-=Φ-=⨯-=22222222(1)(251){0151.7}0151.710(1) 036.408(1) 136.408 10.050.95n S P S P n S P n S P σσσ⎧⎫--<<=<<⨯⎨⎬⎩⎭⎧⎫-=<<⎨⎬⎩⎭⎧⎫-=-≥⎨⎬⎩⎭=-= 因为X 和2S 相互独立,所以22{06,0151.7}{06}{0151.7}0.86440.950.8231P X S P X P S <<<<=<<⨯<<=⨯=10. 设总体21(,),X N μσ 总体22(,),Y N μσ 从正态总体X 中抽取容量为7n =的样本,其样本均值为X ,样本方差为21S ;从正态总体Y 中抽取容量为8m =的样本,其样本均值为Y ,样本方差为22S .(1)求21227.19;S P S ⎧⎫<⎨⎬⎩⎭(2)若已知22121254,116.7,42,85.7,{0.87.5}x s y s P μμ====<-<求解:由题意知总体2211(,),7,,X N n X S μσ= 抽取的样本容量样本均值为样本方差为2222(,),8,,Y N m Y S μσ= 抽取的样本容量样本均值为样本方差为 (1) 由定理3.2(1)知统计量2122(6,7)S F F S = ,所以有221122227.1917.1910.010.99S S P P S S ⎧⎫⎧⎫<=-≥=-=⎨⎬⎨⎬⎩⎭⎩⎭(2) 由定理3.2(2)知统计量22212(13)(1)(1)(2), , 2n S m S T t n m S S n m ωω-+-=+-=+- 其中所以12{0.87.5}P μμ<-<=P ⎧⎫⎪⎪{}{}{}(13)(13)(13)0.870 2.1640.870 2.1640.200.0250.175P T P T P T =<<=≥-≥=-=习题3 P691.证明:二阶样本中心矩2B 不是总体方差2σ的无偏估计。