二氧化钛的光催化性能及其应用
- 格式:doc
- 大小:372.00 KB
- 文档页数:11
纳米TiO2材料的制备及其光催化性能研究随着经济的发展,人们生活水平的提高,人们逐渐意识到可持续发展的重要。
环境问题已严重影响现代文明的发展,有机污染物具有持久性的特点而长期威胁人类健康,开发和设计仅利用太阳能即可完成对有机污染物降解的新材料将会是解决环境问题的有效方法之一。
纳米TiO2作为一种光催化材料,具有优异的物理和化学性质,因而被广泛应用和重点研究。
本文就纳米TiO2材料的制备及其光催化性能展开探讨。
标签:纳米TiO2;光催化;制备方法;光催化效能引言半导体光催化技术是解决环境污染与能源短缺等问题的有效途径之一。
以二氧化钛为代表的光催化剂在染料敏化太阳能电池、锂离子电池、光伏器件以及光催化领域表现出明显的使用优势.但是TiO2本身的弱可见光吸收、低电导率、高载流子复合速率限制了其在工业生产中的进一步使用。
科技工作者一般通过掺杂、半导体复合、燃料敏化、表界面性质改性等方法提高TiO2的光电化学性能,使其能在生产实践中广泛应用。
1、TiO2材料简介TiO2在自然界中的主要存在形态为金红石、锐钛矿和板钛矿三种晶型,其中金红石是TiO2的高温相,锐钛矿和板钛矿两种形态是TiO2的低温相。
在三种晶型中光催化活性最好的为锐钛矿型TiO2。
锐钛矿型TiO2的禁带宽度为3.2eV 与之对应的激发波长为387nm。
所以,TiO2作为光催化剂在紫外光条件下具有催化活性,在可见光下一般没有活性。
只有对它的结构进行改性,使它的禁带宽度得以缩小,才可以实现材料在可见光条件下的催化降解反应。
改性的方式目前主要有以下几种方法:通过改变晶体内部结构来改变催化剂禁带宽度的离子掺杂方法,通过形成异质结改变能带结构的半导体复合法,提高催化剂对光的吸收能力的表面光敏化法,增大催化剂比表面积使晶粒细化的负载载体法等。
光催化材料中电子e一和空穴h十的浓度会影响有机物的降解速度。
粒径的减小能够使表面原子增加,使光催化剂吸收光的效率显著提高,使其表面e一和h十的浓度增大,从而提高光催化剂的催化活性。
《基于二氧化钛的催化剂光催化甲醇直接脱氢性能及反应机理研究》篇一一、引言随着能源危机和环境问题的日益突出,开发高效、清洁、可持续的能源转化技术已成为当前研究的热点。
甲醇作为一种潜在的生物质能源,其直接脱氢制备甲醛或氢气等高附加值化学品,具有重要的应用价值。
其中,基于二氧化钛(TiO2)的催化剂光催化甲醇直接脱氢技术因其环境友好、操作简便等优点备受关注。
本文旨在研究基于二氧化钛的催化剂光催化甲醇直接脱氢的性能及反应机理,为该领域的研究提供理论依据。
二、研究方法本研究采用二氧化钛为催化剂,对甲醇进行光催化直接脱氢。
通过改变二氧化钛的晶体结构、晶粒尺寸及表面性质等因素,考察其对甲醇脱氢性能的影响。
采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对催化剂的微观结构进行表征。
通过光谱分析、质谱分析等手段,对反应过程进行监测和分析。
三、基于二氧化钛的催化剂光催化甲醇直接脱氢性能(一)催化剂性质对甲醇脱氢性能的影响研究发现,二氧化钛的晶体结构、晶粒尺寸及表面性质对甲醇脱氢性能具有显著影响。
其中,锐钛矿型二氧化钛具有较高的光催化活性,有利于甲醇的脱氢反应。
此外,较小的晶粒尺寸和较高的比表面积也有助于提高催化剂的活性。
在光照条件下,二氧化钛表面的光生电子和空穴能够有效激活甲醇分子,促进其脱氢反应。
(二)反应条件对甲醇脱氢性能的影响反应条件如光照强度、温度、压力等也会对甲醇脱氢性能产生影响。
实验结果表明,适当的光照强度和温度有利于提高甲醇的脱氢速率和产物选择性。
过高或过低的温度和光照强度均会导致催化剂活性降低,甚至使催化剂失活。
此外,反应压力对甲醇脱氢性能的影响较小,但在高压下有利于提高产物的收集效率。
四、反应机理研究(一)催化剂表面反应过程在光照条件下,二氧化钛表面的光生电子和空穴能够激活甲醇分子,使其发生断键和重排等反应。
其中,光生电子主要参与甲醇分子的还原反应,而空穴则参与氧化反应。
绿色建筑光催化材料二氧化钛研究进展随着社会经济的发展和人们对环境保护意识的提高,绿色建筑已成为一种趋势。
绿色建筑是一种可持续性建筑,其设计和建造考虑了减少对环境的影响,提高建筑能源效率,提高室内环境质量等因素。
绿色建筑需要使用环保、健康的建筑材料,而光催化材料二氧化钛是一种很有潜力的材料,能够用于室内和室外环境的净化。
二氧化钛具有很高的光催化活性,在受到紫外线或可见光照射时能够吸收水中的氧和有机物质、微生物,将其分解为CO2和H2O,从而达到清洁水和空气的目的。
二氧化钛的光催化能力是由于其表面具有活性位点,通过吸附反应活化两种物质,从而产生自由基,进而分解有机污染物,因此用于绿色建筑中的光催化材料是探索和应用的热点。
二氧化钛的催化性能可以通过修饰或改性来提高。
硫化二氧化钛、掺杂二氧化钛、纳米二氧化钛和复合二氧化钛等是目前研究的热点。
硫化二氧化钛的光催化性能比纯的二氧化钛更优秀,因为硫是一种与光催化反应有关的活性物质。
掺杂二氧化钛一般通过在其晶格中引入其他金属离子,从而形成掺杂二氧化钛。
掺杂的离子会影响二氧化钛的电子结构及其表面性质,可以提高催化性能,让其可使用于室内环境净化中。
纳米二氧化钛的光催化性能也比纯的二氧化钛更优秀,因为小尺寸的纳米颗粒有更大的比表面积和更短的电子传输路径。
在光照区域内,纳米二氧化钛能较好地吸收光线,提高了催化效率。
复合二氧化钛材料是指将二氧化钛复合到另一种材料中,如氧化锌、氧化铜等,可以增强催化性能,同时还可以对催化剂的电子能级结构有所调整,改进催化剂在光催化中的性能。
此外,改进二氧化钛的制备方法也为提高其光催化性能提供了新途径。
目前常使用的方法有溶胶-凝胶法、沉淀法和水热法等。
溶胶-凝胶法是一种干燥和烧结过程多的制备方法,可控性较好,且可以制备出更细致的二氧化钛微粒,通常能够得到更高的催化性能。
水热法是指以水为溶媒将反应物反应时制备二氧化钛的方法,该方法不需要多次烧结和洗涤,工艺简单,适用于制备较小颗粒的二氧化钛,并且可制备出不同形貌的二氧化钛粒子,如球形、链形、管状等。
二氧化钛在建筑中的应用二氧化钛是一种广泛应用于建筑行业的材料,其独特的光学和化学性能使其成为建筑材料中的重要成分。
本文将介绍二氧化钛在建筑中的应用。
二氧化钛被广泛应用于建筑外墙涂料中。
由于其具有优异的耐候性和抗污染性能,二氧化钛可以有效保护建筑物外墙不受紫外线、酸雨等环境因素的侵蚀。
同时,二氧化钛还具有自洁能力,可以降解空气中的有机物和污染物,使建筑外墙保持清洁。
二氧化钛还被应用于建筑玻璃中。
通过在玻璃表面涂覆一层二氧化钛薄膜,可以使玻璃具有高效的自洁能力和防紫外线功效。
这种二氧化钛涂层可以吸收紫外线并将其转化为热能,从而减少紫外线对建筑内部的照射,保护建筑内部物品和人员的安全。
二氧化钛还可以应用于建筑材料中的抗菌涂料。
二氧化钛具有优异的抗菌性能,可以抑制细菌、霉菌等微生物的生长,保持建筑材料的卫生和清洁。
在医院、食品加工厂等对卫生要求较高的场所,使用含有二氧化钛的抗菌涂料可以有效减少病菌传播和交叉感染的风险。
二氧化钛还可以应用于建筑材料中的空气净化装置。
通过将二氧化钛涂覆在建筑材料表面,如墙壁、地板等,可以利用二氧化钛的光催化性能吸附和分解空气中的有害物质,如甲醛、苯等有机物和氮氧化物等。
这种空气净化装置不仅可以改善室内空气质量,还可以减少空调系统的负荷,节约能源。
二氧化钛还可以应用于建筑中的防污涂料。
在城市环境中,建筑物经常会受到污染物的侵蚀,如大气污染物、车辆尾气等。
通过在建筑表面涂覆一层含有二氧化钛的防污涂料,可以形成一层保护膜,防止污染物附着在建筑表面,从而保持建筑物的美观和清洁。
二氧化钛还可以应用于建筑中的光催化杀菌装置。
通过将二氧化钛涂覆在建筑材料表面,如门把手、开关等,可以利用二氧化钛的光催化性能杀灭细菌和病毒。
这种光催化杀菌装置可以有效防止病菌传播,提高建筑物的卫生水平。
二氧化钛在建筑中具有广泛的应用。
通过其优异的光学和化学性能,二氧化钛可以应用于建筑外墙涂料、建筑玻璃、抗菌涂料、空气净化装置、防污涂料和光催化杀菌装置等方面,提高建筑物的耐候性、抗污染性、抗菌性和空气质量。
二氧化钛紫外吸收光谱二氧化钛是一种常见的光催化剂,具有优异的光催化性能和广泛的应用前景。
在二氧化钛的光催化反应中,紫外吸收光谱扮演着重要的角色。
下面将详细介绍二氧化钛的紫外吸收光谱。
一、二氧化钛的能带结构二氧化钛的能带结构是由导带、价带和禁带组成的。
禁带是指导带和价带之间的能量差距,是二氧化钛的显著特征之一。
二氧化钛的禁带宽度一般在3.0-3.2eV之间,这使得它能够吸收波长小于387nm的紫外光。
二、二氧化钛的紫外吸收光谱二氧化钛的紫外吸收光谱通常采用光吸收系数来表征。
光吸收系数是指物质在单位浓度、单位波长下的光吸收度。
二氧化钛在紫外区域的吸收系数较高,而在可见光区域的吸收系数较低。
其紫外吸收峰位于387nm左右,属于锐钛型二氧化钛的特征吸收峰。
三、紫外吸收光谱与二氧化钛光催化活性的关系紫外吸收光谱可以反映二氧化钛的光催化活性。
一般来说,具有较大光吸收系数的二氧化钛具有较高的光催化活性。
这是因为在紫外光的照射下,二氧化钛能够激发电子从价带跃迁到导带,形成光生电子-空穴对。
这些光生电子-空穴对能够与水分子和氧气分子发生反应,生成具有强氧化性的羟基自由基和超氧自由基,从而降解有机物和无机物。
四、影响二氧化钛紫外吸收光谱的因素1.晶型:不同晶型的二氧化钛具有不同的紫外吸收光谱。
锐钛型二氧化钛的紫外吸收峰位于387nm左右,而金红石型二氧化钛的紫外吸收峰则位于400nm左右。
2.粒径:二氧化钛的粒径越小,其紫外吸收系数越高。
这是因为随着粒径的减小,二氧化钛的比表面积增大,从而增加了光生电子-空穴对的数量,提高了光催化活性。
3.表面处理:表面处理可以改变二氧化钛的表面性质和结构,从而影响其紫外吸收光谱。
例如,通过表面羟基化处理可以增加二氧化钛的光催化活性,同时使其紫外吸收峰向长波方向移动。
4.杂质:杂质也会对二氧化钛的紫外吸收光谱产生影响。
例如,掺杂金属离子或非金属元素可以改变二氧化钛的能带结构和电子分布,从而影响其光催化活性和紫外吸收光谱。
改性纳米二氧化钛的光催化性能研究一、本文概述随着全球环境问题的日益严峻,光催化技术以其独特的优势在环境保护和能源转换领域受到了广泛关注。
作为光催化领域的重要研究对象,纳米二氧化钛(TiO₂)因其优良的光催化性能、稳定性以及低廉的成本,被广泛应用于太阳能光解水制氢、空气净化、污水处理等领域。
然而,传统的纳米二氧化钛存在光生电子-空穴对复合速率快、可见光响应范围窄等问题,限制了其在实际应用中的性能。
因此,对纳米二氧化钛进行改性,提高其光催化性能,具有重要的研究意义和应用价值。
本文旨在研究改性纳米二氧化钛的光催化性能,通过对其改性方法的探索,以期提高其在可见光下的光催化活性,拓宽其应用范围。
文章将介绍纳米二氧化钛的基本性质、光催化原理以及改性方法的研究进展。
将详细阐述本文所采用的改性方法,包括掺杂、负载贵金属、构建异质结等,以及改性后的纳米二氧化钛的表征手段。
通过对比实验,分析改性前后纳米二氧化钛在光催化性能上的差异,探讨改性方法对光催化性能的影响机制。
通过本文的研究,期望能为纳米二氧化钛的光催化性能改性提供新的思路和方法,推动其在环境保护和能源转换领域的应用发展。
也希望为相关领域的研究人员提供有益的参考和借鉴。
二、改性纳米二氧化钛的制备方法改性纳米二氧化钛的制备方法众多,各有其独特的优势和应用场景。
以下是几种常见的改性纳米二氧化钛制备方法:溶胶-凝胶法:溶胶-凝胶法是一种通过无机物或金属醇盐的水解和缩聚反应制备纳米材料的方法。
在这种方法中,通过控制水解和缩聚的条件,可以得到均匀稳定的溶胶,进一步通过热处理,溶胶转化为凝胶,最终得到改性纳米二氧化钛。
水热法:水热法是一种在高温高压下进行化学反应的方法。
通过将反应物置于特制的高压反应釜中,加热至一定温度,使反应物在水热条件下进行反应,从而制备出改性纳米二氧化钛。
微乳液法:微乳液法是利用两种互不相溶的溶剂在表面活性剂的作用下形成微乳液,然后在微乳液中进行化学反应的方法。
二氧化钛光催化原理二氧化钛光催化是一种常见的光催化反应,指的是当二氧化钛表面受到紫外光照射时,产生的电子-空穴对(e^-/h^+)与溶液中的物质发生反应,从而实现催化剂的功能。
该反应在环境保护、能源转化、有机合成等领域具有重要的应用价值。
本文将从二氧化钛光催化的基础原理、光催化机理和光催化反应的应用等方面进行介绍。
首先,二氧化钛光催化的基础原理是建立在二氧化钛的半导体特性上。
二氧化钛是一种宽禁带半导体,其导带带底下为空带,导带和空带之间隔着禁带。
当二氧化钛受到紫外光照射时,光子的能量可以使得一部分价带中的电子被激发到导带中,形成电子-空穴对。
这些电子-空穴对可以参与光催化反应。
其次,二氧化钛光催化的机理可以分为直接和间接机理。
直接机理是指光子激发电子跃迁到导带中,并与溶液中的物质直接发生反应。
例如,当溶液中存在有机物时,激发的电子可以与有机物发生氧化反应,将其降解为无害的物质。
间接机理则是指激发的电子在导带中发生一系列的电子迁移过程,最终转移到表面吸附的氧分子上,与溶液中的水分子发生反应生成羟基自由基(•OH),这些自由基可以氧化有机物质。
此外,二氧化钛光催化的反应速率还受到多种因素的影响。
一是溶液的pH值,强酸或强碱条件下不利于电子与空穴的重新组合,从而有利于电子和空穴的产生。
酸性条件下,电子常与H^+结合形成羟基自由基(•OH),从而增强催化效果。
二是反应物的浓度,浓度越高,反应速率越快。
三是二氧化钛的晶型和表面形貌,具有良好的晶体结构和表面积的二氧化钛对光催化反应具有更好的催化效果。
四是反应温度,温度上升可以加速反应速率。
最后,二氧化钛光催化反应在环境保护、能源转化和有机合成等领域具有广泛的应用。
在环境保护方面,可以应用于废水处理、大气治理等。
在能源转化方面,可以应用于光电催化水分解、光电池等。
在有机合成方面,可以应用于有机物催化合成、有机废弃物转化等。
总之,二氧化钛光催化是一种基于二氧化钛的半导体特性和光催化机理实现的高效催化反应。
TiO2的改性及其光催化去除NOx机理研究TiO2的改性及其光催化去除NOx机理研究摘要:近年来,由于工业活动和汽车尾气的排放,大气中的氮氧化物(NOx)浓度急剧增加,给人们的健康和环境造成了严重威胁。
因此,寻找高效、环境友好的NOx去除方法具有重要意义。
其中,光催化技术由于其高效、低成本和无二次污染等特点而备受关注。
TiO2作为一种重要的光催化材料,其光催化性能可以通过改性来进一步提升。
本文综述了TiO2的几种常见改性方法,并重点介绍了改性后的TiO2在光催化去除NOx中的应用和相应的机理研究。
关键词:TiO2,改性,光催化,NOx,机理1. 引言大气中NOx的来源主要包括工业排放、汽车尾气和燃料燃烧等。
NOx对人体健康和环境造成了严重威胁,如导致呼吸系统病变、光化学烟雾和酸雨的发生等。
传统的NOx去除方法包括吸收、氧化和催化还原等,但存在着成本较高、操作复杂和生成二次污染物等问题。
相比之下,光催化去除NOx技术具有高效、低成本和无二次污染等特点,因此备受关注。
2. TiO2的常见改性方法TiO2的改性可以通过不同的方法进行,如掺杂、复合和表面修饰等。
其中,掺杂是指通过将其他金属或非金属元素掺入TiO2晶格中来改变其物理和化学性质。
复合则是将其他纳米材料与TiO2进行混合,形成复合光催化材料。
表面修饰是指通过在TiO2表面引入功能性物质,如金属氧化物、有机染料和聚合物等。
这些改性方法可以提高TiO2的光吸收能力、光生电子-空穴对的分离效率和光催化活性,进而提高其去除NOx的效率。
3. TiO2改性在光催化去除NOx中的应用通过改性,TiO2的光催化性能可以得到明显提升,进而应用于光催化去除NOx反应中。
以掺杂为例,金属离子(如N、Fe、Ag等)的掺杂可以改变TiO2的能带结构,增强其光吸收能力,并提高光生电子-空穴对的分离效率。
复合材料(如TiO2/SiO2、TiO2/ZnO等)的制备能够形成异质结构,提高光生电子-空穴对的利用效率,并增强光催化活性。
二氧化钛光催化剂表面酸碱位点构筑及性能探究引言:二氧化钛(TiO2)是一种常用的光催化剂,因其卓越的光催化性能在环境净化、有机污染物降解和可见光催化等领域具有广泛应用。
然而,传统纯TiO2催化剂的光催化活性受限于带隙能量过大以及表面酸碱位点不足等问题。
因此,探究人员通过表面酸碱位点构筑的方法来增强二氧化钛光催化剂的性能,成为当前的探究热点。
一、表面酸碱位点构筑的方法1. 共沉淀法共沉淀法是一种常用的表面酸碱位点构筑方法。
通过在TiO2表面引入适量的酸碱配体,形成酸碱对,从而增加催化剂的酸碱位点数量。
探究发现,共沉淀法构筑的二氧化钛催化剂具有优异的光催化活性,能够有效降解有机污染物。
2. 离子交换法离子交换法是另一种常用的表面酸碱位点构筑方法。
通过将TiO2与含有酸碱离子的溶液接触,酸碱离子与TiO2表面的羟基发生离子交换,形成酸碱对。
探究表明,离子交换法构筑的二氧化钛催化剂具有较高的酸碱位点密度和催化活性。
二、性能探究1. 光催化活性探究表面酸碱位点构筑的二氧化钛光催化剂较传统纯TiO2催化剂表现出更高的催化活性。
这是因为酸碱位点极化了吸附物质,提高了电荷的传递速率,从而增强了催化剂的反应活性。
同时,酸碱位点的引入能够有效地延长催化剂的寿命,提高了光催化的稳定性。
2. 光吸纳性能探究表面酸碱位点构筑的二氧化钛光催化剂在光吸纳性能方面也表现出明显的改善。
酸碱位点的引入使得催化剂的带隙能量得到调控,使其能够吸纳更多的可见光。
探究发现,光吸纳性能的提高能够显著提高光催化反应的效率,从而实现更有效的有机污染物降解。
结论:通过表面酸碱位点构筑的方法,能够显著提高二氧化钛光催化剂的性能。
酸碱位点的引入不仅增加了催化剂的酸碱位点数量,还极化了吸附物质,提高了电荷传递速率,从而增强了催化剂的催化活性。
同时,酸碱位点的引入还能够调控催化剂的光吸纳性能,使其能够吸纳更多的可见光,提高光催化反应的效率。
这些探究将为二氧化钛光催化剂的应用提供更多的可能性,并在环境净化和有机污染物降解等领域具有重要的应用价值。
毕业设计(论文)纳米二氧化钛的制备与光催化性能研究1 绪论二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。
二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。
二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑[1];它又具有锌白一样的持久性。
二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。
在过去的研究中,用半导体粉末对水、油和空气中的有毒有机化合物进行光催化降解和完全矿化引起了人们的大量关注。
由于抗光腐蚀性,化学稳定性,成本低,无毒和强氧化性,二氧化钛被作为应用最广泛的光催化剂来光降解水和空气中的有毒化合物。
但是二氧化钛具有较大的带隙(锐钛矿相二氧化钛为3.20ev)因此,只有较小一段太阳光区域,大约为2%~3%紫外光区可被应用[2]。
人们尝试用各种制备方法,如贵金属掺杂、氧化物复合、表面修饰等等方法,防止和减少电子与空穴的复合,提高催化剂的光催化活性。
众所周知,吸附和催化的效率与固体的孔径及表面积有关,因此,对二氧化钛进行修饰、改性及增大比表面积是提高光量子效率和增大反应速率的一个有效的方法与途径。
1.1 TiO2的结构与基本性质1.1.1物理常数及结构特征表1 TiO的物理常数1.1.2 TiO2的结构特征在自然界中,TiO2存在三种晶型结构,即金红石、锐钛矿和板钛矿。
这些结构的区别取决于TiO68-八面体的连接方式,图1-1是TiO68-八面体的两种连接方式,锐钛矿结构是由TiO68-八面体共边组成,而金红石和板钛矿结构则是由TiO68-八面体共顶点且共边组成。
锐钛矿TiO2中的每个八面体与周围8个八面体相连,金红石TiO2中每个八面体与周围10个八面体相连。
事实上锐钛矿可以看做是一种四面体结构,而金红石和板钛矿则是晶格稍有畸变的八面体结构[3]。
简单地认为锐钛矿比金红石活性高是不严谨的,它们的活性受其晶化过程的一些因素影响。
二氧化钛做光催化剂的原理
二氧化钛(TiO2)是一种常用的光催化剂,它在可见光和紫外光照射下能够催化许多化学反应。
其主要原理是通过光生电荷对的形成和利用来促进化学反应。
当二氧化钛暴露在光照下时,其电子从价带(valence band)被光激发到导带(conduction band),形成带隙电荷对(electron-hole pair)。
导带中的电子和价带中的空穴(electron-hole)分别具有不同的氧化还原性质,可以参与氧化还原反应。
首先,光照下的二氧化钛表面吸附氧分子(O2)并将其催化分解为氧化物阴离子(O2-)。
此过程生成的自由电子可以从导带中转移到表面的吸附氧分子上,形成氧化物阴离子。
同时,生成的空穴也可在材料内部进行传导。
其次,已经吸附在二氧化钛表面或溶于液相中的有机物可以被光激发的电子和空穴进行氧化和还原反应。
光生的电子和空穴可与有机物发生直接的或间接的反应。
在间接反应中,电子和空穴分别与溶液中存在的氧和水分子发生反应,生成具有氧化或还原能力的活性氧种和氢氧离子。
这些活性氧种和氢氧离子可以氧化和降解有机污染物。
总的来说,二氧化钛作为光催化剂的原理是通过吸收光能产生电子和空穴对,并利用这些电子和空穴对参与化学反应。
这种光催化作用可以用于水处理、空气净
化、光电转换等领域,具有潜在的环境和能源应用价值。
二氧化钛功效引言二氧化钛(Titanium Dioxide)是一种常见的无机化合物,化学式为TiO2。
由于其独特的物理和化学性质,二氧化钛在许多领域中被广泛应用。
本文将重点介绍二氧化钛的功效及其在不同领域中的应用。
二氧化钛的功效1. 防晒二氧化钛是一种常见的防晒成分。
它具有良好的防紫外线性能,能够吸收和散射紫外线,从而保护皮肤免受紫外线的伤害。
许多防晒霜和化妆品中都添加了二氧化钛作为防晒成分,以帮助人们有效地防止晒伤和皮肤癌的发生。
2. 抗菌二氧化钛具有优秀的抗菌性能。
它能够通过光催化作用产生活性氧和自由基,破坏细菌的细胞壁和膜,抑制细菌的生长和繁殖。
因此,二氧化钛被广泛应用于医疗器械、医用材料等领域,用于抑制细菌感染和减少交叉感染的风险。
3. 自洁二氧化钛具有自洁性能,即能够在光照下分解吸附在其表面的有机物和污染物。
这是由于二氧化钛具有光催化作用,能够利用光能将有机物氧化分解为无害的物质。
这种自洁性能使得二氧化钛广泛应用于建筑材料、玻璃、陶瓷等领域,用于保持建筑物表面的清洁和美观。
4. 催化二氧化钛是一种重要的催化剂。
它在光催化、电催化和热催化反应中都具有良好的催化活性。
二氧化钛催化剂可以用于水处理、空气净化、废气处理、有机合成等领域,具有高效、环保和可持续的特点。
5. 光电性能二氧化钛具有优异的光电性能,可用于光电子器件的制备。
它在太阳能电池、光催化电池、光电导体等领域中具有广泛的应用。
二氧化钛能够吸收光能并转化为电能,具有良好的光电转换效率和稳定性。
二氧化钛的应用1. 化妆品二氧化钛广泛应用于化妆品中,主要用作防晒成分。
它能够有效地吸收和散射紫外线,保护皮肤免受紫外线伤害。
此外,二氧化钛还被用作妆容调节剂,能够改善肤色不均、调节肤色,使肤色更加均匀和明亮。
2. 医疗器械由于二氧化钛具有优秀的抗菌性能,它被广泛应用于医疗器械和医用材料中。
二氧化钛能够抑制细菌的生长和繁殖,减少感染的风险,提高医疗器械的安全性和可靠性。
二氧化钛原料的用途二氧化钛是一种常见的无机化合物,其化学式为TiO2。
它具有良好的化学稳定性、高熔点、高硬度和良好的光催化性能,在工业生产和科学研究中有着广泛的应用。
以下是二氧化钛原料的主要用途。
1. 塑料和橡胶工业:由于二氧化钛对紫外线有很好的抵抗能力和不透明性,所以广泛用于塑料和橡胶制品中,作为一种白色着色剂。
二氧化钛可以提高塑料和橡胶制品的耐候性、耐老化性和抗紫外线性能。
2. 涂料和油墨工业:二氧化钛是一种优质的白色颜料,可以用于各种涂料和油墨的生产中,提供良好的遮盖性、白度和光泽。
二氧化钛还具有很好的分散性,可以提高涂料的稳定性和涂层的耐候性。
3. 纺织和造纸工业:在纺织和造纸工业中,二氧化钛也是一种常用的白色着色剂。
添加二氧化钛可以使纤维和纸张具有良好的光泽、白度和柔软性。
4. 化妆品工业:二氧化钛是一种常见的化妆品成分,可用于制造颜料、粉底、口红等产品。
它可以提供良好的遮盖性、保湿性和抗紫外线性能。
5. 食品工业:二氧化钛是一种无毒无害的物质,常用于食品工业中作为白色着色剂。
它可以用于制作糖果、饼干、面包等食品,提供良好的外观效果。
6. 电子工业:二氧化钛具有良好的电介质性能,可应用于电子材料的制备过程中,如制造电容器、集成电路等。
二氧化钛还可以用于太阳能电池的制造,提高光电转化效率。
7. 环境保护:二氧化钛具有良好的光催化性能,可以吸收紫外线并与水中的污染物发生反应,分解有机物和杀灭细菌。
因此,二氧化钛常用于空气净化、水处理和环境修复等领域。
8. 医药工业:二氧化钛在医药工业中有多种应用。
例如,在制备药片和胶囊时,二氧化钛可以用作涂料或包衣材料,提供保护和延缓释放的功能。
另外,二氧化钛还可以用于制备人工骨骼和关节假体等医疗器械。
除了上述应用外,二氧化钛还被广泛应用于涂料、橡胶、陶瓷、玻璃、金属、纸张、印刷、染料、杀虫剂、防晒霜、防腐剂等行业。
总的来说,二氧化钛是一种重要的无机化合物,广泛用于各个领域,为这些行业的发展做出了重要贡献。
《基于二氧化钛的催化剂光催化甲醇直接脱氢性能及反应机理研究》篇一一、引言随着全球能源需求的增长和传统能源的日益枯竭,寻找可再生、清洁的能源已成为科研工作者的研究重点。
甲醇作为一种重要的有机溶剂和能源载体,其直接脱氢制备甲醛或氢气等高附加值产品,具有广阔的应用前景。
近年来,基于二氧化钛(TiO2)的催化剂因其良好的光催化性能和稳定性,在光催化甲醇直接脱氢反应中受到了广泛关注。
本文旨在研究基于二氧化钛的催化剂在光催化甲醇直接脱氢反应中的性能及反应机理。
二、实验材料与方法1. 催化剂制备本实验采用溶胶-凝胶法制备了不同晶型的二氧化钛催化剂,包括锐钛矿型、金红石型等。
通过控制煅烧温度和时间,调整催化剂的晶型和比表面积。
2. 实验装置与操作光催化实验在自制的光催化反应器中进行。
反应器采用300W的紫外灯作为光源,光源与催化剂的距离、光照时间等均经过优化。
反应后的产物通过气相色谱仪进行定性、定量分析。
3. 性能评价以甲醇的转化率、氢气的选择性等为评价指标,对不同条件下催化剂的性能进行评价。
三、结果与讨论1. 光催化甲醇直接脱氢性能实验结果表明,二氧化钛催化剂对甲醇直接脱氢反应具有较好的催化性能。
其中,锐钛矿型二氧化钛在紫外光照射下表现出较高的催化活性,甲醇的转化率和氢气的选择性均优于金红石型二氧化钛。
此外,催化剂的比表面积、孔结构等也会影响其催化性能。
2. 反应机理研究根据实验结果和文献报道,我们提出了基于二氧化钛的光催化甲醇直接脱氢反应机理。
在紫外光照射下,二氧化钛催化剂产生光生电子和光生空穴。
光生电子具有还原性,可以与甲醇分子发生还原反应,生成甲醛和氢气;而光生空穴则具有氧化性,可以与水分子发生氧化反应,生成氧气和氢离子。
这些反应共同构成了光催化甲醇直接脱氢反应的循环过程。
3. 影响因素分析催化剂的晶型、比表面积、光照强度、反应温度等因素均会影响光催化甲醇直接脱氢反应的性能。
其中,催化剂的晶型对比表面积的影响最为显著。
二氧化钛(TiO2)是一种具有多种优异性能的无机化合物,广泛应用于涂料、塑料、陶瓷、玻璃、化妆品、医药、环保等领域。
它是一种白色粉末,无毒、无味、无污染,具有良好的光催化活性和化学稳定性。
本文将对二氧化钛材料进行详细介绍。
一、物理性质1. 外观:二氧化钛为白色粉末,无固定熔点,熔点范围在1840℃。
2. 密度:二氧化钛的密度为4.0-4.2g/cm3。
3. 折射率:二氧化钛的折射率为2.71。
4. 溶解性:二氧化钛在水中的溶解度较低,但在酸性或碱性条件下,其溶解度会显著提高。
二、化学性质1. 化学稳定性:二氧化钛具有较高的化学稳定性,不易与其他物质发生化学反应。
在常温下,它不会与水、酸、碱等物质发生反应。
2. 光催化活性:二氧化钛具有很强的光催化活性,能够在紫外光照射下产生电子-空穴对,从而引发光催化反应。
这使得二氧化钛在环保领域具有广泛的应用前景,如空气净化、污水处理等。
3. 抗菌性:二氧化钛具有一定的抗菌性,能够抑制细菌、病毒等微生物的生长和繁殖。
因此,它被广泛应用于化妆品、食品包装等领域。
三、应用领域1. 涂料:二氧化钛作为一种重要的颜料添加剂,可以提高涂料的遮盖力、耐候性和抗紫外线性能。
此外,二氧化钛还具有光催化功能,可以分解空气中的有害物质,提高室内空气质量。
2. 塑料:二氧化钛可以作为一种新型的光稳定剂,用于改善塑料的耐光老化性能。
同时,二氧化钛还可以提高塑料的抗紫外线性能,延长其使用寿命。
3. 陶瓷:二氧化钛可以作为陶瓷釉料的主要成分,提高陶瓷的耐磨性、抗冲击性和抗紫外线性能。
此外,二氧化钛还可以提高陶瓷的装饰效果,使其更加美观大方。
4. 玻璃:二氧化钛可以作为玻璃的着色剂,赋予玻璃各种颜色。
同时,二氧化钛还可以提高玻璃的抗紫外线性能,延长其使用寿命。
5. 化妆品:二氧化钛具有良好的遮盖力和光学性能,可以作为化妆品中的颜料添加剂。
此外,二氧化钛还具有抗菌性,可以抑制细菌、病毒等微生物的生长和繁殖,保护皮肤健康。
二氧化钛光催化原理二氧化钛光催化技术是一种环保、高效的新型光催化技术,它利用二氧化钛在紫外光照射下产生的活性氧化物质,对有机物进行催化降解,从而实现废水和废气的净化处理。
在工业废水处理、大气污染治理、光催化杀菌等领域有着广泛的应用前景。
二氧化钛光催化原理的核心是光生电化学反应。
当二氧化钛暴露在紫外光下时,它会吸收光能,激发电子跃迁至导带,形成电子-空穴对。
这些电子-空穴对具有很强的氧化还原能力,可与水或氧分子发生反应,生成羟基自由基和过氧化氢等活性氧化物质。
这些活性氧化物质具有很强的氧化能力,可以氧化分解有机废水中的有机物质,将其降解为无害的小分子物质。
此外,二氧化钛表面的光生电子-空穴对还可以与有机废水中的有机物质直接发生反应,产生氧化物质,实现有机物的降解。
这种直接的光催化反应速率较快,对于一些难降解的有机物质具有很好的降解效果。
除了光生电子-空穴对的作用,二氧化钛表面的一些缺陷和吸附位点也对光催化反应起着重要作用。
这些缺陷和吸附位点可以吸附有机废水中的有机物质,促进光催化反应的进行,提高反应速率和降解效率。
综上所述,二氧化钛光催化原理是通过光生电子-空穴对、直接光催化反应以及表面缺陷和吸附位点的作用,实现有机废水的降解和净化。
这种基于光催化原理的废水处理技术具有高效、环保、无二次污染等优点,是当前研究和应用的热点之一。
在实际应用中,二氧化钛光催化技术还存在一些问题和挑战,如光照条件、催化剂的稳定性、反应机理等方面需要进一步研究和改进。
但随着科技的不断进步和发展,相信二氧化钛光催化技术将会在环保领域发挥越来越重要的作用,为人类创造一个更加清洁、美丽的生活环境。
TiO2的光催化性能研究摘要:主要介绍二氧化钛的光催化原理,基本途径,以及光催化剂的结构特性和影响因素,还讲述了关于二氧化钛的光催化应用。
关键字:二氧化钛光催化光催化剂,俗称钛白粉,多用于光触媒、化妆品,能靠紫外二氧化钛,化学式为TiO2线消毒及杀菌,现正广泛开发,将来有机会成为新工业。
二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。
二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。
二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。
1 TiO的基本性质21.1结晶特征及物理常数物性:金红石型锐钛型结晶系:四方晶系四方晶系相对密度:3.9~4.2 3.8~4.1折射率: 2.76 2.55莫氏硬度:6-7 5.5-6电容率:114 31熔点:1858 高温时转变为金红石型晶格常数:A轴0.458,c轴0.795 A轴0.378,c轴0.949线膨胀系数:25℃/℃a轴:7.19X10-6 2.88?10-6c轴:9.94X10-6 6.44?10-6热导率: 1.809?10-3吸油度:16~48 18~30着色强度:1650~1900 1200~1300颗粒大小:0.2~0.3 0.3功函数:5.58eV2TiO的光催化作用22.1光催化作用原理二氧化钛是一种N型半导体材料,锐钛矿相TiO的禁带宽度Eg =3.2eV,由2半导体的光吸收阈值λg与禁带宽度E g的关系式:λg (nm)=1240/Eg(eV)上时,价带中的电子就会发生跃迁,可知:当波长为387nm的入射光照射到TiO2形成电子-空穴对,光生电子具有较强的还原性,光生空穴具有较强的氧化性。
在半导体悬浮水溶液中,半导体材料的费米能级会倾斜而在界面上形成一个空间电荷层即肖特基势垒,在这一势垒电场作用下,光生电子与空穴分离并迁移到粒子表面的不同位置,还原和氧化吸附在表面上的物质。
二氧化钛纳米材料二氧化钛(TiO2)是一种重要的半导体材料,具有广泛的应用前景,尤其是在纳米材料领域。
纳米材料是指至少在一维上尺寸小于100纳米的材料,具有特殊的物理、化学和生物学性质。
二氧化钛纳米材料因其独特的光电性能和化学稳定性,被广泛应用于光催化、光电器件、传感器、抗菌材料等领域。
首先,二氧化钛纳米材料在光催化领域具有重要应用。
由于其较大的比表面积和优异的光催化性能,二氧化钛纳米材料被广泛应用于水分解、有机废水处理、空气净化等领域。
通过光催化作用,二氧化钛纳米材料可以有效分解有害物质,实现环境净化和资源利用,具有重要的环保和能源应用价值。
其次,二氧化钛纳米材料在光电器件方面也有重要应用。
由于其优异的光电性能和稳定性,二氧化钛纳米材料被广泛应用于太阳能电池、光电探测器、光致发光器件等领域。
通过合理设计和制备二氧化钛纳米材料,可以实现光电器件的高效能转换和稳定性,推动光电器件领域的发展和应用。
此外,二氧化钛纳米材料在传感器领域也具有重要应用。
由于其高灵敏度和快速响应特性,二氧化钛纳米材料被广泛应用于气体传感、生物传感、化学传感等领域。
通过构建二氧化钛纳米材料基底的传感器,可以实现对环境中有害气体、生物分子、化学物质等的高灵敏检测和快速响应,具有重要的应用前景和社会价值。
最后,二氧化钛纳米材料在抗菌材料方面也有重要应用。
由于其优异的抗菌性能和生物相容性,二氧化钛纳米材料被广泛应用于医疗器械、食品包装、环境卫生等领域。
通过将二氧化钛纳米材料引入抗菌材料中,可以实现对细菌、病毒等微生物的高效杀灭和抑制,具有重要的医疗卫生和食品安全应用价值。
总之,二氧化钛纳米材料具有广泛的应用前景,在光催化、光电器件、传感器、抗菌材料等领域都有重要的应用价值。
随着纳米材料研究的不断深入和发展,相信二氧化钛纳米材料将在更多领域展现出其独特的优势和应用价值。
二氧化钛的光催化性能及其应用 作 者 姓 名 秦幸海 学 号 ************ 专 业 无机非金属材料 指导教师姓名 王峰 目 录 摘 要 ……………………………………………………………3 第一章 二氧化钛的性能…………………………………3
1.1二氧化钛的结构………………………………………………3 第二章 反应机理……………………………………………4 2.1光催化反应机理…………………………………………………4 2.2杀菌机理…………………………………………………………5 2.3光催化活性的影响因素…………………………………………5 第三章 二氧化钛催化剂的应用……………………………7 3.1在空气净化方面的应用…………………………………………7 3.2在水处理方面的应用……………………………………………7 3.3在其它方面的应用………………………………………………8 第四章 结束语………………………………………………9 摘 要 二氧化钛是一种应用广泛的半导体材料,它因成本低、稳定性好、对人体无毒性,并具有气敏、压敏、光敏以及强的光催化特性而被广泛应用到传感器、电子添料、油漆涂料、光催化剂以及其它化工原料等[1-3],国内外很多科技工作者投身到二氧化钛的研究开发之中,每年都有大量论文报道。80年代末以来人们在纳米二氧化钛的制备工艺和性能研究方面做了大量工作。特别是在利用二氧化钛光催化降解污水等方面取得了一定成果,本文就二氧化钛在光催化方面的研究现状做分析,并就其应用前景的提出几点看法。 关键词:二氧化钛 光催化 性能 应用 第一章 二氧化钛的性能 1.1二氧化钛的结构 二氧化钛,俗名为钛白粉,有3种晶型:锐钛矿型(Anatase,简写为A )、金红石型(R utile简写为R ) 和板钛矿型,三者在自然界中都存在。其中, 板钛矿型在自然界中很稀有,属斜方晶系,是不稳定的晶型,因而没有工业价值。但是锐铁矿和金红石相在自然界普遍存在,在光催化领域有广泛的应用。金红石和锐钛矿两者均为四方晶系,晶型结构均可由相互衔接的Ti06八面体表示。两者的差别在于八面体的畸变程度和八面体间相互衔接的方式不同,如图1所示。在金红石相中,晶体结构表现为氧离子近似六方最紧密堆积,钛离子位于变形的八面体空隙中,构成[Ti06]八面体,铁离子的配位数为六,氧离子的配位数为三,[Ti06] 配位八面体沿C轴共棱成链状排列,链间由配位八面体共角顶相连,Ti06八面体有稍微的畸变,金红石型中每个八面体与周围10个八面体相连(其中两个共边, 八个共顶角),而锐铁矿型中每个八面体与周围8个八面体相连(四个共边,四个共顶角) 。这些结构上的差异导致了两种晶型有不同的质量 密度和电子能带结构。锐钛矿型的质量密度 (3.894 g*cm_3) 略小于金红石型 (4.250 g*cm_3), 带隙(3.2eV) 略大于金红石型(3.0 eV)。通常,锐钛矿相 Ti02 在高温热处理下会逐渐转变成金红石相。金红石TiO2具有很高的热稳定性因此锐钛矿由于其低的介电常数和质量密度以及高的电子迁移率是公认具有较高光催化活性的光催化材料。[1] 5
图 1 金红石和锐钛矿的结构 第二章 反应机理 半导体TiO2是一种新型的高效光催化即剂,具有很强的氧化能力,在一定能量的光照条件下,它不仅能将环境中的有害有机物降解为二氧化碳和水,而且可以氧化去除大气中低浓度的NOx和含硫化合物(如硫化氢、二氧化硫)等有毒气体。另外,光催化剂TiO2还具有杀菌、除臭、防雾、自洁净等作用,可以进一步改善生活环境。TiO2光催化具有能耗低、操光催化性能,使操作简单、反应条件温和以及无二次污染等优点。纳米TiO2光催化氧化杀菌具有显著的优点:无需昂贵的氧化试剂,空气中的氧就可作为氧化剂;而二氧化钛催化剂价格低廉,无毒,化学及光化学性质稳定;自然光中的紫外光就可作为光源激发催化剂, 因此无需能源,系统维护费用低;氧化还原反应无选择性,可以杀灭大多数的微生物。目前,二氧化钛光催化技术在环境保护中越来越受到人们的关注和重视,它对于环境保护、维持生态平衡、节约费用、实现可持续发展具有重大意义。[2] 2.1光催化反应机理 TiO2属于一种n型半导体材料,它的禁带宽度为3.2ev(锐钛矿),当它受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e-);而价带中则相应地形成光生空穴(h+)。 如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O分子氧化成 ·OH自由基,·OH 自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染物,将其矿化为无机小分子、CO2和H2O等无害物质。 纳米TiO2光催化降解机理共分为7个步骤来完成光催化的过程[3 1、 TiO2 + hv→ eˉ+ h+ 2、 h+ + H2O→OH + H+ 3、 eˉ+ O2→OOˉ 4、 OOˉ+H+ →OOH 5、 2OOH → O2 + H2O2 6、 OOˉ+ eˉ+ 2H+ →H2O2 7、 H2O2 + eˉ→OH + OHˉ 8、 h+ + OHˉ→OH 有hv能量大小的光子或者具有大于半导体禁带宽度Eg的光子射入半导体时,一个电子由价带(VB)激发到导带(CB),因而在导带上产生一个高活性电子(eˉ ),在价带上留下了一个空穴(h +),形成氧化还原体系。溶解氧及水和电子及空穴相互作用,最终产生高活性的羟基。OHˉ、O2ˉ、OOHˉ自由基具有强氧化性,能把大多数吸附在TiO2表面的有机污染物降解为CO2、H2O,把无机污染物氧化或还原为无害物。
2.2杀菌机理 ZXL-001纳米二氧化钛具有很强的光催化杀菌作用。通过对纳米TiO2光催化杀灭革兰氏阴、阳性细菌的致死曲线进行对比、常规培养验证和透射电镜观察得出结论:纳米TiO2光催化灭菌首先是从细菌细胞壁开始,其产生的自由基能破坏细胞壁结构,使细胞壁断裂、破损,质膜解体,然后进入胞体内部破坏内膜和细胞组分,使细胞质凝聚,导致细胞内容物溢出,可出现菌体空化现象。从而证实了纳米TiO2的抑菌机理是在光催化作用下,纳米TiO2禁带上的电子由价带跃迁到导带,在表面形成高活性的电子-空穴对,并进一步形成·OHˉ、 ·O2ˉ、·OOHˉ通过一系列物理化学作用破坏细菌细胞,从而杀灭细菌。
2.3光催化活性的影响因素
2.3.1晶体结构的影响: Ti02主要有两种晶型—锐钛矿型和金红石型,锐钛红石型均属四方晶系,图1-2为两种晶型的单元结构[10],两种晶型都是由相互连接的TiO6八面体组成的,每个Ti原子都位于八面体的中心,且被6个O原子围绕。两者的差别主要是八面体的畸变程度和相互连接方式不同。 7
金红石型的八面体不规则,微现斜方晶,其中每个八面体与周围10个八面体相连(其中两个共边,八个共顶角);而锐钛矿型的八面体呈明显的斜方晶畸变,其对称性低于前者,每个八面体与周围8个八面体相连(四个共边,四个共顶角)。这种晶型结构确定了它们的键距:锐钛矿型的Ti-Ti键距(3.79,3.04),Ti-O键 (l.934,1.980);金红石型的Ti-Ti键距(3.57,.396),Ti-O键距(l.949,1.980)。比较Ti-Ti键距,锐钛矿型比金红石型大,而Ti-O键距,锐钛矿型比金红石型小。这些结构上的差异使得两种晶型有不同的质量密度及电子能带结构。锐钛矿型Ti02的质量密度(3.894g·cm-3)略小于金红石型Ti02 (4.250g·cm-3),锐钛矿型Ti02的禁带宽度Eg为3.3ev,大于金红石型Ti02的 (Eg为3.lVe)。锐钛矿型的Ti02较负的导带对O2的吸附能力较强,比表面较大,光生电子和空穴容易分离,这些因素使得锐钛矿型Ti02光催化活性高于金红石型Ti02光催化活性[11,12]。 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度不规则分布,实际的晶体都是近似的空间点阵式结构,总有一种或几种结构上缺陷。当有微量杂质元素掺入晶体中时,也可能形成杂质置换缺陷。这些缺陷存在对催化活性起着重要作用。Salvador等研究了金红石型Ti02 (001)单晶上水的光解过程,发现氧空位形成的Ti3+-Vo-Ti3+缺陷是反应中将H2O氧化为H2O2过程的活性中心,其原因是Ti3+-Ti3十键间距(2.59)比无缺陷的金红石型中Ti4+-Ti4+键间距(4.59)小得多,因而使吸附的活性羟基反应活性增加,反应速率常数比无缺陷的金红石型上的大5倍。但是有的缺陷也可能成为电子-空穴的复合中心而低反应活性。
2.3.2晶粒粒径的影响 催化剂粒径的大小直接影响光催化活性。当粒子的粒径越小时,单位质量的粒子数越多,比表面积越大。对于一般的光催化反应,在反应物充足的条件下,当催化剂表面的活性中心密度一定时,表面积越大吸附的OH-越多,生成更多的高活性的·OH,从而提高了催化氧化效率。当粒子的大小在1-100nm级时,就会出现量子效应,成为量子化粒子,使得h+-e-对具有更强的氧化还原能力,催化活性将随尺寸量子化程度的提高而增加。另外,尺寸的量子化可以使半导体获得更大的电荷迁移速率,使h+与e-复合的几率大大减小,因而提高催化活性
2.3.3缺陷的影响 缺陷的存在对光催化活性起着重要作用。氧空位位形成的缺陷是H2O氧化为H2O2的反应活性中心。
第三章 二氧化钛催化剂的应用 3.1在空气净化方面的应用: 光是如何净化空气的呢?用光催化原理制成的空气净化器又具有怎样的优势呢?传统的负离子空气净化器,实际上只能达到“清新”空气的效果,大部份污染物无法消除;活性碳空气净化器则受到吸附饱和的制约;而光催化技术在空气净化装置中的应用,可以克服上述两种空气净化器的技术局限性,达到更有效更彻底消除空气污染的效果。这说来要归功于纳米技术,让特定波长的光照射在一种高科技的新型复合纳米材料上,可以激发出一种对人体完全无害的高能粒子,它具有极强的氧化——还原能力,能将空气中的细菌、病毒、甲醛、苯、二氧化硫等污染屋直接分解成无毒无味的物质,从而造成了消毒灭菌全方位净化空气的神奇境界,这是当前世界上已被确认的一种最先进的高效杀菌净化技术[9]。
3.2在水处理方面的应用 光催化氧化法是近些年出现的水处理技术,在足够的反应时间内通常可以将有机物完全矿化为CO2和H2O等简单无机物,避免了二次污染,简单高效而有发展前途。 纳米TiO2光催化氧化法对水中污染物的去除具有广泛的适用性,其对水中卤代脂肪烃、染料、硝基芳烃、多环芳烃、杂环化合物、烃类、酚类、表面活性剂、农药等都能有效地进行降解。用TiO2作光催化剂,在光照下可使60种含氯有机化合物发生氧化还原反应而生成CO2、H2O及其他无毒的无机物。光催化氧化研究的对象除含小分子有机物以外,还包括大分子聚合物,如聚丙烯酰胺(PAM)。研究结果表明,PAM的降解效率与TiO2类型、用量及PAM浓度等因素有关。在水处理过程中,纳米TiO2光催化氧化活性随TiO2粒径减小而增高。有研