基于MATLAB的蚁群算法求解旅行商问题
- 格式:pdf
- 大小:1.44 MB
- 文档页数:3
用MAX_MIN蚂蚁算法解决中国旅行商问题
李如琦;苏媛媛
【期刊名称】《湖南工业大学学报》
【年(卷),期】2007(021)005
【摘要】简要阐述了中国旅行商问题,介绍了MAX_MIN蚂蚁算法的原理和其在蚁群算法上的改进,使用MAX_MIN蚂蚁算法解决该问题,最后的试验结果证明该方法在解决这种问题上是有效的.
【总页数】3页(P48-50)
【作者】李如琦;苏媛媛
【作者单位】广西大学,电气工程学院,广西,南宁,530004;广西大学,电气工程学院,广西,南宁,530004
【正文语种】中文
【中图分类】TP273
【相关文献】
1.应用LK算法求解旅行商问题的混合蚂蚁算法 [J], 陈星宇;肖伟;全惠云
2.用于求解对称旅行商问题的粒子群算法和蚂蚁算法的融合 [J], 郑洁;李凯;李晓;丁建立
3.求解旅行商问题的混合蚂蚁算法 [J], 陈文兰;戴树贵
4.双目标旅行商问题及其蚂蚁算法实验研究 [J], 王洪刚;李高雅;马良
5.遗传算法和蚂蚁算法混合求解旅行商问题 [J], 熊道勇;肖人岳
因版权原因,仅展示原文概要,查看原文内容请购买。
基于GPU加速的并行蚁群算法求解旅行商问题研究摘要:蚁群算法是求解旅行商问题的有效方法之一,但是随着蚁群规模和城市规模的增大,算法的运行速度将大大降低,本文利用GPU在CUDA7.0环境下,对蚁群算法进行化加速设计,实验结果表明,该方法取得了良好的加速效果,当蚁群规模增大时,加速倍大幅度提高。
数据显示,蚁群个体和城市规模越大,加速效果越好。
关键词:蚁群算法;GPU;CUDA中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2016)12-0206-02旅行商问题(Traveling Salesman Problem,简称TSP)是一个典型的组合优化问题。
城市管道铺设优化、物流业的车辆调度、制造业中的切割路径优化等现实生活中的优化问题都可以归结为TSP求解问题。
它解决从一个城市出发,经过若干个城市后又返回原城市的最优路径的求解问题。
蚂蚁在觅食路径上会释放一种特殊的分泌物―“信息素”,随着时间流逝,信息素会挥发,后面的蚂蚁根据路径上的信息素浓度,选择信息素多的路径去觅食,这样便形成了一个正反馈机制。
在整个寻径过程中,虽然单只蚂蚁的选择能力有限,但它们的行为具有非常高的自组织性,相互之间交换路径,最终寻找到最优路径。
受到蚁群系统信息共享机制的启发,意大利学者DorigoM于1992年首次系统提出了蚁群算法,并成功地将该方法应用到求解TSP问题中[1]。
该算法是启发式搜算算法的一种,采用了分布式并行计算机制,易于与其他方法结合,具有强的鲁棒性。
同时,相对于其他搜算法,对初始路线要求不高,在搜索过程中不需要人工调整。
研究表明,蚁群算法是解决TSP问题有效的算法之一,因此也成为近年来的研究热点。
近年来,基于GPU(图像处理器)的大规模通用并行计算,大大提高了计算机图形处理的效率[2]。
GPU的高速浮点运算能力、并行计算和可编程功能也为通用计算提供了良好的并行计算平台,同时也为蚁群算法的高速并行实现提供了可能。
TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距商,要求确定一条经过各城市当且仅当一次的是短路线。
其图论描述为:给定图G= (V, A),其中V为顶点集,A 为各顶点相互连接组成的边集,设(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamihon回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题3j=dji, ni, j=l, 2, 3, - , n);2)非对称旅行商问题(dijHdji, Bi, j=1, 2, 3, - , n)o非对称旅行商问题较碓求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={V H V2, V n - , %}的一个访问顺序为T={l), b, tj, - , tj, - , tj,A其中衣v (i=l, 2, 3,・・・,□),且记t n+l=tl>则旅行商问题的数学模型为:血工Xzr-l TSP是一个典型的组台优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中槪括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和板高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近台并、最近插入、晨远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质長较差,迄今为止巳开发了许多性能较好的改迸型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopficld神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策路2.1模拟退火算法方法1)编码选择:采用描述TSP解的臺常用的一种策略——路径编码。
2)SA状态产生函数的设计:对于基于站径编码的SA状态产生函数操作,可将其设计为:①互换操作(SV7AP);②逆序操作(INV);③插入操作仃NS)。
多目标旅行商问题(MO-TSP)是指在多个目标地点之间找到最优路径,使得旅行商能够同时满足多个旅行目标的问题。
这是一个复杂的组合优化问题,涉及到时间、成本、距离等多个目标的平衡。
针对这一问题,已经有许多算法被提出,比如遗传算法、模拟退火算法、蚁群算法等。
在本文中,我将针对用于解决多目标旅行商问题的算法进行深入剖析和讨论。
1. 遗传算法遗传算法是一种模仿自然选择和遗传机制的优化方法,通过种群的进化来寻找问题的最优解。
在解决MO-TSP问题时,遗传算法可以通过不断进化种群中的路径来寻找最佳的解决方案。
在每一代进化中,选择、交叉和变异等操作都会对种群进行改进,直到找到最优的解。
2. 模拟退火算法模拟退火算法是一种启发式算法,模拟金属退火过程中的晶粒结构变化来寻找问题的最优解。
在解决MO-TSP问题时,模拟退火算法可以通过接受较差解的概率来跳出局部最优解,并在搜索空间中进行全局搜索,以找到更好的解。
3. 蚁群算法蚁群算法是一种基于蚁群寻食行为的启发式算法,模拟蚂蚁在搜索食物时释放信息素的过程。
在解决MO-TSP问题时,蚁群算法可以通过蚂蚁在路径上释放信息素的方式来寻找最优路径,蚁群不断更新信息素浓度,并通过信息素浓度来选择下一步的移动方向。
在实际应用中,这几种算法都有其优缺点,如何选择最合适的算法取决于实际问题的复杂度、目标要求和算法的性能。
在我看来,遗传算法在求解MO-TSP问题时具有良好的全局搜索能力,但对于大规模问题的收敛速度可能较慢;模拟退火算法适用于局部搜索和全局搜索的结合,但在处理多目标问题时需要合理设定参数;蚁群算法在求解路径优化问题时具有较好的鲁棒性和稳健性,但对于问题解空间的探索可能会存在过早收敛的问题。
MO-TSP问题是一个复杂的组合优化问题,需要综合运用各种启发式算法和元启发式算法,以及结合实际问题的特点和要求,才能找到最佳的解决方案。
通过对算法的深入理解和灵活运用,我们可以在实际问题中取得较好的优化效果。
蚁群算法(Ant Colony Optimization, ACO)是一种基于蚁群的群体智能算法,用于求解组合优化问题。
下面是蚁群算法的基本步骤:
1.初始化
在算法开始前,需对相关参数进行初始化,例如:蚂蚁群大小、信息素参数等。
此外,需要定义问题空间中每个解的初始状态,以及预设的目标函数。
2.蚁群搜索
在搜索阶段,蚂蚁会基于启发式信息(包括距离信息和信息素信息)进行路径选择,从而寻找到一组解来尽可能地优化目标函数。
对于每个蚂蚁,它将从初始位置出发,经过一系列的决策,最终到达目标位置,同时产生一条路径。
3.更新信息素
当所有的蚂蚁完成搜索后,将根据每个蚂蚁的路径更新信息素表。
结合各蚂蚁的贡献,信息素的浓度将被不断变化以反映出对当前问题具有的经验。
通过信息素的积累,越来越多的蚂蚁会选择这些较优的路径,从而找到更优的解。
4.重复搜索
重复执行步骤2和3,直到满足预设的停止条件。
通常停止条件是指已经经过了预设的搜索迭代次数或运行时间已过期等等。
在整个搜索过程中,各个蚂蚁将会逐渐集中于最优路径周围,以最小化目标函数。
5.解码和输出
最后,需要通过对最优路径进行解码来获得最佳解,并输出到相应的应用中。
总之,蚁群算法是一种有效的算法,在组合优化问题中具有优异的性能,例如旅行商问题、网络路径优化、调度安排等。
掌握蚁群算法的基本步骤和优化策略,可以为相关问题的求解提供有力的支持。
南京航空航天大学金城学院毕业设计(论文)开题报告
题目基于蚁群算法的TSP问题研究
系部信息工程系
专业信息工程
学生姓名李奇学号2005021237 指导教师吴玲职称讲师
毕设地点南京航空航天大学金城学院
年月日
填写要求
1.开题报告只需填写“文献综述”、“研究或解决的问题和拟采用的方法”两部分内容,其他信息由系统自动生成,不需要手工填写。
2.为了与网上任务书兼容及最终打印格式一致,开题报告采用固定格式,如有不适请调整内容以适应表格大小并保持整体美观,切勿轻易改变格式。
3.任务书须用A4纸,小4号字,黑色宋体,行距1.5倍。
4.使用此开题报告模板填写完毕,可直接粘接复制相应的内容到毕业设计网络系统。
TSP的⼏种求解⽅法及其优缺点TSP的⼏种求解⽅法及其优缺点⼀、什么是TSP问题旅⾏商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定⼀条经过各城市当且仅当⼀次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A 为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定⼀条长度最短的Hamilton回路,即遍历所有顶点当且仅当⼀次的最短距离。
旅⾏商问题可分为如下两类:1)对称旅⾏商问题(dij=dji,Πi,j=1,2,3,?,n);2)⾮对称旅⾏商问题(dij≠dji,?i,j=1,2,3,?,n)。
⾮对称旅⾏商问题较难求解,我们⼀般是探讨对称旅⾏商问题的求解。
若对于城市V={v1,v2,v3,?,v n}的⼀个访问顺序为T={t1,t2,t3,?,t i,?,t n},其中t i∈V(i=1,2,3,?,n),且记t n+1=t1,则旅⾏商问题的数学模型为:minL=。
TSP是⼀个典型的组合优化问题,并且是⼀个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接⽐较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极⾼的实际应⽤价值。
⼆、主要求解⽅法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插⼊、最远插⼊、最近添加、贪婪插⼊等。
但是,由于构造型算法优化质量较差,迄今为⽌已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退⽕算法2)禁忌搜索算法3)Hopfield神经⽹络优化算法4)蚁群算法5)遗传算法6)混合优化策略2.1 模拟退⽕算法⽅法1)编码选择:采⽤描述TSP解的最常⽤的⼀种策略——路径编码。
2)SA状态产⽣函数的设计:对于基于路径编码的SA状态产⽣函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插⼊操作(INS)。
蚁群算法的原理和应用蚁群算法是一种基于模拟蚂蚁寻求食物路径的群智能算法。
它的理论基础来自于蚁群的自组织行为。
该算法已应用于求解多种优化问题,包括旅行商问题、车辆路径问题等。
本文将对蚁群算法的原理和应用进行探讨。
一、蚁群算法的原理蚁群算法模拟了蚂蚁寻找食物的行为。
在蚁群中,每只蚂蚁只能看见其它蚂蚁留下的信息素,而不能直接观察到食物的位置。
当一只蚂蚁找到了食物,它返回巢穴并留下一些信息素。
其它蚂蚁能够感知到这些信息素,并会朝着有更多信息素的方向前进。
这种通过信息素来引导蚂蚁集体行动的行为被称为“自组织行为”。
蚁群算法模拟了蚂蚁的行为,并借助信息素来引导解空间中的搜索。
蚁群算法具体操作流程如下:1. 初始化信息素矩阵和蚂蚁的位置。
2. 每只蚂蚁根据信息素和启发式信息选择一个位置,并向其移动。
3. 当所有蚂蚁完成移动后,更新全局最优路径。
4. 更新信息素矩阵,使信息素浓度与路径长度呈反比例关系。
5. 重复步骤2-4,直到达到终止条件。
二、蚁群算法的应用1. 旅行商问题旅行商问题是一种著名的组合优化问题。
给定 n 个城市和其间的距离,要求找出一条最短路径,使得每个城市都被恰好经过一次。
这是一个 NP 难问题,目前不存在快速求解方法。
蚁群算法可以有效地解决旅行商问题。
该算法使用蚂蚁移动的路径来表示旅行商的路径,通过信息素来引导蚂蚁选择路径。
在一定数量的迭代次数后,蚁群算法能够找到近似最优解。
2. 车辆路径问题车辆路径问题是指在一定时间内,如何安排车辆进行配送,从而最大化效益、最小化成本。
传统的运筹学方法通常采用贪心或者遗传算法等算法进行求解,但这些算法都存在着计算复杂度高、收敛速度慢等问题。
蚁群算法具有搜索速度快、计算复杂度低等优点,因此在车辆路径问题中也得到了广泛的应用。
蚁群算法可以有效地降低车辆离散配送的成本,提高配送质量和效率。
3. 其他应用除了上述两个领域,蚁群算法还可以应用于诸如调度、机器学习、智能优化、信号处理等领域。