半导体物理习题与问题(精选5篇)
- 格式:docx
- 大小:45.54 KB
- 文档页数:37
半导体物理问答题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一篇 习题 半导体中的电子状态1-1、什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。
1-2、试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。
1-3、试指出空穴的主要特征。
1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。
1-5、某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。
求:(1) 能带宽度;(2) 能带底和能带顶的有效质量。
第一篇 题解 半导体中的电子状态1-1、解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
1-2、解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge 、Si 的禁带宽度具有负温度系数。
1-3、解: 空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。
主要特征如下:A 、荷正电:+q ;B 、空穴浓度表示为p (电子浓度表示为n );C 、E P =-E nD 、m P *=-m n *。
1-4、解:(1) Ge 、Si:a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ;b )间接能隙结构c )禁带宽度E g 随温度增加而减小;(2) GaAs :a )E g (300K )= 1.428eV , Eg (0K) = 1.522eV ;b )直接能隙结构;c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;1-5、解:(1) 由题意得:[][])sin(3)cos(1.0)cos(3)sin(1.002220ka ka E a k d dE ka ka aE dk dE+=-=eVE E E E a kd dE a k E a kd dE a k a k a k ka tg dk dE oooo 1384.1min max ,01028.2)4349.198sin 34349.198(cos 1.0,4349.198,01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.1831,04002222400222121=-=∆<⨯-=+==>⨯=+====∴==--则能带宽度对应能带极大值。
半导体物理试题及答案一、单项选择题(每题2分,共20分)1. 半导体材料的导电能力介于导体和绝缘体之间,这是由于()。
A. 半导体的原子结构B. 半导体的电子结构C. 半导体的能带结构D. 半导体的晶格结构答案:C2. 在半导体中,电子从价带跃迁到导带需要()。
A. 吸收能量B. 释放能量C. 吸收光子D. 释放光子答案:A3. PN结形成的基础是()。
A. 杂质掺杂B. 温度变化C. 压力变化D. 磁场变化答案:A4. 半导体器件中的载流子主要是指()。
A. 电子B. 空穴C. 电子和空穴D. 光子答案:C5. 半导体的掺杂浓度越高,其导电性能()。
A. 越好B. 越差C. 不变D. 先变好再变差答案:A二、填空题(每题2分,共20分)1. 半导体的导电性能可以通过改变其________来调节。
答案:掺杂浓度2. 半导体的能带结构中,价带和导带之间的能量差称为________。
答案:带隙3. 在半导体中,电子和空穴的复合现象称为________。
答案:复合4. 半导体器件中的二极管具有单向导电性,其导通方向是从________到________。
答案:阳极阴极5. 半导体的PN结在外加正向电压时,其内部电场会________。
答案:减弱三、简答题(每题10分,共30分)1. 简述半导体的掺杂原理。
答案:半导体的掺杂原理是指通过向半导体材料中掺入少量的杂质元素,改变其电子结构,从而调节其导电性能。
掺入的杂质元素可以是施主杂质(如磷、砷等),它们会向半导体中引入额外的电子,形成N型半导体;也可以是受主杂质(如硼、铝等),它们会在半导体中形成空穴,形成P型半导体。
2. 描述PN结的工作原理。
答案:PN结是由P型半导体和N型半导体结合而成的结构。
在PN结中,P型半导体的空穴会向N型半导体扩散,而N型半导体的电子会向P型半导体扩散。
由于扩散作用,会在PN结的交界面形成一个内建电场,该电场会阻止更多的载流子通过PN结。
半导体物理复习试题及答案复习资料一、引言半导体物理是现代电子学中至关重要的一门学科,其涉及电子行为、半导体器件工作原理等内容。
为了帮助大家更好地复习半导体物理,本文整理了一些常见的复习试题及答案,以供大家参考和学习。
二、基础知识题1. 请简述半导体材料相对于导体和绝缘体的特点。
答案:半导体材料具有介于导体和绝缘体之间的导电特性。
与导体相比,半导体的电导率较低,并且在无外界作用下几乎不带电荷。
与绝缘体相比,半导体的电导率较高,但不会随温度显著增加。
2. 什么是本征半导体?请举例说明。
答案:本征半导体是指不掺杂任何杂质的半导体材料。
例如,纯净的硅(Si)和锗(Ge)就是本征半导体。
3. 简述P型半导体和N型半导体的形成原理。
答案:P型半导体形成的原理是在纯净的半导体材料中掺入少量三价元素,如硼(B),使其成为施主原子。
施主原子进入晶格后,会失去一个电子,并在晶格中留下一个空位。
这样就使得电子在晶格中存在的空位,形成了称为“空穴”的正电荷载流子,因此形成了P型半导体。
N型半导体形成的原理是在纯净的半导体材料中掺入少量五价元素,如磷(P)或砷(As),使其成为受主原子。
受主原子进入晶格后,会多出一个电子,并在晶格中留下一个可移动的带负电荷的离子。
这样就使得半导体中存在了大量的自由电子,形成了N型半导体。
4. 简述PN结的形成原理及特性。
答案:PN结是由P型半导体和N型半导体的结合所形成。
P型半导体和N型半导体在接触处发生扩散,形成电子从N区流向P区的过程。
PN结具有单向导电性,即在正向偏置时,电流可以顺利通过;而在反向偏置时,电流几乎无法通过。
三、摩尔斯电子学题1. 使用摩尔斯电子学符号,画出“半导体”的符号。
答案:半导体的摩尔斯电子学符号为“--..-.-.-...-.”2. 根据摩尔斯电子学符号“--.-.--.-.-.-.--.--”,翻译为英文是什么?答案:根据翻译表,该符号翻译为“TRANSISTOR”。
第1篇一、基础知识1. 请解释半导体、绝缘体和导体的区别,并举例说明。
2. 什么是能带理论?请简述其基本原理和意义。
3. 解释半导体材料的禁带宽度对器件性能的影响。
4. 请简述半导体材料的导电机制,包括电子和空穴的导电。
5. 什么是pn结?请解释其形成原理、工作原理和主要特性。
6. 请简述半导体器件的基本结构,如二极管、晶体管等。
7. 解释霍尔效应及其在半导体中的应用。
8. 什么是半导体器件的掺杂?请简述掺杂对器件性能的影响。
9. 请解释光电效应及其在半导体器件中的应用。
10. 什么是半导体材料的晶体生长?请列举几种常见的晶体生长方法。
二、半导体器件1. 请简述二极管的基本结构、工作原理和主要特性。
2. 解释晶体管的工作原理,包括npn型和pnp型晶体管。
3. 请简述MOSFET的基本结构、工作原理和主要特性。
4. 解释半导体激光器的工作原理,包括半导体激光二极管(LD)和半导体激光器(SL)。
5. 请简述太阳能电池的基本结构、工作原理和主要特性。
6. 解释半导体光电器件(如光电二极管、光电三极管)的工作原理。
7. 请简述半导体存储器(如DRAM、SRAM)的基本结构、工作原理和主要特性。
8. 解释半导体传感器(如温度传感器、压力传感器)的工作原理。
三、半导体物理研究方法1. 请简述半导体物理实验的基本方法,如电学测量、光学测量等。
2. 解释半导体物理研究中的数据分析方法,如曲线拟合、误差分析等。
3. 请简述半导体物理研究中的模拟方法,如有限元分析、蒙特卡洛模拟等。
4. 解释半导体物理研究中的计算方法,如量子力学计算、分子动力学计算等。
5. 请简述半导体物理研究中的实验设计方法,如实验方案制定、实验参数优化等。
四、半导体物理前沿技术1. 请简述半导体物理领域的最新研究进展,如量子点、碳纳米管等。
2. 解释半导体物理在新能源、物联网、人工智能等领域的应用。
3. 请简述半导体物理在微电子、光电子、生物电子等领域的交叉研究。
复习思考题与自测题第一章1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。
当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。
全然概念题:第一章 半导体电子状态1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
1.2能带晶体中,电子的能量是不连续的,在*些能量区间能级分布是准连续的,在*些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
1.2能带论是半导体物理的理论根底,试简要说明能带论所采纳的理论方法。
答:能带论在以下两个重要近似根底上,给出晶体的势场分布,进而给出电子的薛定鄂方程。
通过该方程和周期性边界条件后来给出E-k关系,从而系统地建立起该理论。
单电子近似:将晶体中其它电子对*一电子的库仑作用按几率分布平均地加以考虑,如此就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。
绝热近似:近似感觉晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。
1.2克龙尼克—纳模型解释能带现象的理论方法答案:克龙尼克—纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如以下图所示V*克龙尼克—潘纳模型的势场分布利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。
由此得到的能量分布在k空间上是周期函数,而且*些能量区间能级是准连续的〔被称为允带〕,另一些区间没有电子能级〔被称为禁带〕。
从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。
1.2导带与价带1.3有效质量有效质量是在描述晶体中载流子运动时引进的物理量。
它概括了周期性势场对载流子运动的阻碍,从而使外场力与加速度的关系具有牛顿定律的形式。
其大小由晶体自身的E-k 关系决定。
1.4本征半导体既无杂质有无缺陷的理想半导体材料。
1.4空穴空穴是为处理价带电子导电问题而引进的概念。
设想价带中的每个空电子状态带有一个正的全然电荷,并给予其与电子符号相反、大小相等的有效质量,如此就引进了一个假想的粒子,称其为空穴。
半导体物理试题库及答案一、单项选择题1. 半导体材料中,导带和价带之间的能量差称为()。
A. 能带间隙B. 费米能级C. 载流子浓度D. 电子亲和能答案:A2. 在半导体中,电子从价带跃迁到导带所需的最小能量称为()。
A. 能带间隙B. 费米能级C. 载流子浓度D. 电子亲和能答案:A3. 半导体材料的导电性主要取决于()。
A. 原子核B. 电子C. 空穴D. 离子答案:B4. 在半导体中,电子和空穴的复合会导致()。
A. 发光B. 发热C. 电导增加D. 电导减少答案:A5. 半导体的掺杂可以改变其()。
A. 颜色B. 密度C. 导电性D. 硬度答案:C二、多项选择题1. 半导体材料可以分为以下哪些类型?()A. 元素半导体B. 化合物半导体C. 合金半导体D. 有机半导体答案:ABCD2. 以下哪些因素会影响半导体的导电性?()A. 温度B. 掺杂浓度C. 光照D. 压力答案:ABCD3. 在半导体物理中,以下哪些是描述半导体特性的重要参数?()A. 载流子浓度B. 迁移率C. 能带间隙D. 电子亲和能答案:ABCD三、判断题1. 半导体的导电性介于导体和绝缘体之间。
()答案:正确2. 半导体材料的能带间隙越大,其导电性越好。
()答案:错误3. 掺杂可以增加半导体的载流子浓度,从而提高其导电性。
()答案:正确4. 半导体中的电子和空穴是实际存在的粒子。
()答案:错误5. 半导体材料的导电性只受温度影响。
()答案:错误四、简答题1. 简述半导体的能带理论。
答案:半导体的能带理论描述了固体材料中电子的能量状态。
在半导体中,电子的能量状态被分为不同的能带,主要包括价带和导带。
价带中的电子是束缚态,而导带中的电子是自由态,可以参与导电。
能带间隙是指导带底部和价带顶部之间的能量差,它决定了半导体的导电性。
2. 什么是p型半导体和n型半导体?答案:p型半导体是指通过掺杂受主杂质(如硼)而形成的半导体,其中空穴是主要的载流子。
半导体物理试题库及答案一、单项选择题(每题2分,共20分)1. 在半导体中,电子从价带跃迁到导带所需能量的最小值称为:A. 禁带宽度B. 费米能级C. 载流子浓度D. 电子亲和能答案:A2. 下列哪种半导体材料的禁带宽度大于硅?A. 锗B. 砷化镓C. 硅D. 碳化硅答案:D3. PN结在正向偏置时,其导电性能主要取决于:A. 电子B. 空穴C. 杂质D. 复合答案:B4. 半导体器件中,二极管的导通电压通常为:A. 0.2VB. 0.7VC. 1.5VD. 3.3V答案:B5. 在半导体物理学中,霍尔效应可以用来测量:A. 载流子浓度B. 载流子迁移率C. 载流子类型D. 所有以上答案:D二、多项选择题(每题3分,共15分)1. 下列哪些因素会影响半导体的载流子浓度?(多选)A. 温度B. 光照C. 杂质浓度D. 材料类型答案:ABCD2. 半导体器件的能带结构包括:A. 价带B. 导带C. 禁带D. 费米能级答案:ABC3. 下列哪些是半导体材料的特性?(多选)A. 导电性介于导体和绝缘体之间B. 导电性随温度升高而增加C. 导电性随光照强度增加而增加D. 导电性随杂质浓度增加而增加答案:ABCD三、填空题(每空1分,共20分)1. 半导体材料的导电性可以通过掺杂来改变,其中掺入____类型的杂质可以增加载流子浓度。
答案:施主2. 在PN结中,当外加电压的方向与PN结内电场方向相反时,称为______偏置。
答案:反向3. 半导体材料的导电性随温度升高而______。
答案:增加4. 半导体器件的能带结构中,价带和导带之间的区域称为______。
答案:禁带5. 霍尔效应测量中,当载流子受到垂直于电流方向的磁场作用时,会在垂直于电流和磁场的方向上产生______。
答案:霍尔电压四、简答题(每题5分,共10分)1. 简述半导体材料的导电机制。
答案:半导体材料的导电机制主要涉及价带中的电子获得足够能量跃迁到导带,从而成为自由电子,同时在价带中留下空穴。
第一篇习题 半导体中的电子状态1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。
1-3、 试指出空穴的主要特征。
1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。
1-5、某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。
求:(1) 能带宽度;(2) 能带底和能带顶的有效质量。
第一篇题解 半导体中的电子状态 刘诺 编1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge、Si的禁带宽度具有负温度系数。
1-3、解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。
主要特征如下:A、荷正电:+q;B、空穴浓度表示为p(电子浓度表示为n);C、E P=-E nD、m P*=-m n*。
1-4、解:(1)Ge、Si:a)Eg (Si:0K) = 1.21eV;Eg (Ge:0K) = 1.170eV;b)间接能隙结构c)禁带宽度E g随温度增加而减小;(2)GaAs:a)E g(300K)第二篇习题-半导体中的杂质和缺陷能级刘诺编2-1、什么叫浅能级杂质?它们电离后有何特点?2-2、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n型半导体。
2-3、什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p型半导体。
半导体物理复习试题及答案复习资料一、选择题1、下面关于晶体结构的描述,错误的是()A 晶体具有周期性的原子排列B 晶体中原子的排列具有长程有序性C 非晶体的原子排列没有周期性D 所有晶体都是各向同性的答案:D解释:晶体具有各向异性,而非各向同性。
2、半导体中的施主杂质能级()A 位于导带底附近B 位于价带顶附近C 位于禁带中央D 靠近价带顶答案:A解释:施主杂质能级靠近导带底,容易向导带提供电子。
3、本征半导体的载流子浓度随温度升高而()A 不变B 减小C 增大D 先增大后减小答案:C解释:温度升高,本征激发增强,载流子浓度增大。
4、下面关于 PN 结的描述,正确的是()A PN 结空间电荷区中的内建电场方向由 N 区指向 P 区B 正向偏置时,PN 结电流很大C 反向偏置时,PN 结电流很小且趋于饱和D 以上都对答案:D解释:PN 结空间电荷区中的内建电场方向由 N 区指向 P 区,正向偏置时多数载流子扩散电流大,反向偏置时少数载流子漂移电流小且趋于饱和。
5、金属和半导体接触时,如果形成阻挡层,那么半导体表面是()A 积累层C 反型层D 以上都可能答案:B解释:形成阻挡层时,半导体表面通常是耗尽层。
二、填空题1、常见的半导体材料有_____、_____和_____等。
答案:硅、锗、砷化镓2、半导体中的载流子包括_____和_____。
答案:电子、空穴3、施主杂质的电离能_____受主杂质的电离能。
(填“大于”或“小于”)答案:小于4、当半导体处于热平衡状态时,其费米能级_____。
(填“恒定不变”或“随温度变化”)答案:恒定不变5、异质结分为_____异质结和_____异质结。
答案:突变异质结、缓变异质结1、简述半导体中施主杂质和受主杂质的作用。
答:施主杂质在半导体中能够提供电子,使其成为主要的导电载流子,增加半导体的电导率。
受主杂质能够接受电子,产生空穴,使空穴成为主要的导电载流子,同样能提高半导体的电导率。
半导体物理与器件第四版答案半导体物理与器件第四版答案【篇一:半导体物理第五章习题答案】>1. 一个n型半导体样品的额外空穴密度为1013cm-3,已知空穴寿命为100?s,计算空穴的复合率。
解:复合率为单位时间单位体积内因复合而消失的电子-空穴对数,因此1013u1017cm?3?s ?6100?102. 用强光照射n型样品,假定光被均匀吸收,产生额外载流子,产生率为gp,空穴寿命为?,请①写出光照开始阶段额外载流子密度随时间变化所满足的方程;②求出光照下达到稳定状态时的额外载流子密度。
解:⑴光照下,额外载流子密度?n=?p,其值在光照的开始阶段随时间的变化决定于产生和复合两种过程,因此,额外载流子密度随时间变化所满足的方程由产生率gp和复合率u的代数和构成,即 d(?p)?p gp? dt?d(?p)0,于是由上式得⑵稳定时额外载流子密度不再随时间变化,即dtp?p?p0?gp?3. 有一块n型硅样品,额外载流子寿命是1?s,无光照时的电阻率是10??cm。
今用光照射该样品,光被半导体均匀吸收,电子-空穴对的产生率是1022/cm3?s,试计算光照下样品的电阻率,并求电导中少数载流子的贡献占多大比例?解:光照被均匀吸收后产生的稳定额外载流子密度p??n?gp??1022?10?6?1016 cm-3取?n?1350cm2/(v?s),?p?500cm/(v?s),则额外载流子对电导率的贡献2pq(?n??p)?1016?1.6?10?19?(1350?500)?2.96 s/cm无光照时?0?10.1s/cm,因而光照下的电导率02.96?0.1?3.06s/cm相应的电阻率 ??110.33??cm 3.06少数载流子对电导的贡献为:?p?pq?p??pq?p?gp?q?p代入数据:?p?(p0??p)q?p??pq?p?1016?1.6?10?19?500?0.8s/cm∴p?00.80.26?26﹪ 3.06即光电导中少数载流子的贡献为26﹪4.一块半导体样品的额外载流子寿命? =10?s,今用光照在其中产生非平衡载流子,问光照突然停止后的20?s时刻其额外载流子密度衰减到原来的百分之几?解:已知光照停止后额外载流子密度的衰减规律为p(t)??p0e?因此光照停止后任意时刻额外载流子密度与光照停止时的初始密度之比即为t??p(t)e? ?p0t当t?20?s?2?10?5s时20??p(20)e10?e?2?0.135?13.5﹪ ?p05. 光照在掺杂浓度为1016cm-3的n型硅中产生的额外载流子密度为?n=?p= 1016cm-3。
半导体物理与器件第三版课后练习题含答案1. 对于p型半导体和n型半导体,请回答以下问题:a. 哪些原子的掺入能够形成p型半导体?掺入三价元素(如硼、铝等)能够形成p型半导体。
b. 哪些原子的掺入能够形成n型半导体?掺入五价元素(如磷、砷等)能够形成n型半导体。
c. 请说明掺杂浓度对于导电性有何影响?掺杂浓度越高,导电性越强。
因为高浓度的杂质能够带来更多的杂质离子和电子,从而提高了载流子浓度,增强了半导体的导电性。
d. 在p型半导体中,哪些能级是占据态,哪些是空的?在p型半导体中,价带能级是占据态,而导带能级是空的。
e. 在n型半导体中,哪些能级是占据态,哪些是空的?在n型半导体中,导带能级是占据态,而价带能级是空的。
2. 硅p-n结的温度系数是大于零还是小于零?请解释原因。
硅p-n结的温度系数是负的。
这是因为在给定的工作温度下,少子寿命的下降速率与载流子浓度的增长速率之间存在一个平衡。
当温度升高时,载流子浓度增长的速率加快,因而少子寿命下降的速率也会变大。
这一现象会导致整体导电性下降,即硅p-n结中的电流减少。
因此,硅p-n结的温度系数为负。
3. 在半导体器件中,为什么p-n结击穿电压很重要?请简要解释。
p-n结击穿电压是指在一个p-n结器件中施加的足以导致电流大幅增加的电压。
在普通的工作条件下,p-n结是一个非导电状态,而电流仅仅是由热激发和少数载流子扩散引起。
但是,当施加的电压超过了击穿电压时,大量的载流子会被电流激发和扩散,从而导致电流剧增,从而损坏器件或者破坏电路的运行。
因此,掌握p-n结的击穿电压非常重要,可以保证器件稳定和电路的可靠性。
半导体物理作业题————————————————————————————————作者: ————————————————————————————————日期:第一章习题1. 什么是电子的共有化运动答:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限于某一个原子上,可以由一个原子转移到相邻的原子上去,因而,电子可以在整个晶体中运动。
2. 金属导体与半导体,绝缘体与半导体,导电机理主要不同之处 答:金属导体与半导体:半导体中导带的电子和价带的空穴均参与导电; 绝缘体与半导体:绝缘体禁带宽度很大,通常温度下激发到导带去的电子很少,所以导电性很差;半导体禁带宽度较小,通常温度下激发到导带去的电子有不少,所以具有一定的导电能力。
3. 有效质量m*的引入意义答:有效质量概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用 4. 外层电子与内层电子相比哪个有效质量相对质量大,为什么答:内层电子有效质量大,因为公式 (自填),能带越窄,二次微商越小,有效质量越大,内层电子能带窄。
1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k )分别为:E c=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC=== sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
复习思考题与自测题第一章1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。
当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。
半导体物理学习题集与详解引言半导体物理学是现代电子学和光电子学的基础,涵盖了半导体材料的特性、载流子运动、固体结构等方面的知识。
掌握半导体物理学的知识,对于电子工程师和材料科学家来说都是非常重要的。
本文将为读者提供一些半导体物理学的学习题目,以及详细的解析,帮助读者更好地理解和应用半导体物理学的知识。
问题一问题:什么是半导体?半导体与导体和绝缘体有什么区别?解析:半导体是一种介于导体和绝缘体之间的材料。
在晶体中,半导体的禁带宽度比导体宽一些,但比绝缘体窄一些。
禁带宽度是指能量带隙,也就是价带和导带之间的能量差。
导体的禁带宽度为零,而绝缘体的禁带宽度很大。
半导体的特殊之处在于,它的禁带宽度可以通过外界条件(例如温度、施加电场、掺杂等)的改变而发生变化。
问题:如何计算半导体中载流子的浓度?解析:半导体中的载流子浓度可以通过以下公式计算:$$ n = N_c \\cdot e^{-\\frac{E_c - E_f}{kT}} $$$$ p = N_v \\cdot e^{-\\frac{E_f - E_v}{kT}} $$其中,n为电子浓度,p为空穴浓度,N_c为导带的状态密度,N_v为价带的状态密度,E_c和E_v分别为导带和价带的能量,E_f为费米能级,k为玻尔兹曼常数,T为绝对温度。
问题三问题:什么是本征半导体?本征半导体中的载流子浓度与温度的关系是怎样的?解析:本征半导体是指在没有外界杂质掺杂的情况下的纯净半导体。
在本征半导体中,电子和空穴浓度是相等的,并且与温度呈指数关系。
通常情况下,本征半导体中的电子浓度和空穴浓度都随着温度的升高而增加。
在绝对零度下,本征半导体中的电子和空穴浓度为零。
问题:什么是杂质掺杂?杂质掺杂对半导体的导电性有什么影响?解析:杂质掺杂是指将少量的外来原子掺入到半导体晶体中。
掺杂的原子被称为杂质或施主/受主离子。
杂质掺杂可以改变半导体的电性质。
当施主离子掺入到半导体中时,它会捐赠一个电子给半导体晶体,这样就会在半导体中形成额外的自由电子,导致半导体呈现n型导电性。
半导体物理学试题及答案(总6页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--半导体物理学试题及答案半导体物理学试题及答案(一) 一、选择题1、如果半导体中电子浓度等于空穴浓度,则该半导体以( A )导电为主;如果半导体中电子浓度大于空穴浓度,则该半导体以( E )导电为主;如果半导体中电子浓度小于空穴浓度,则该半导体以( C )导电为主。
A、本征B、受主C、空穴D、施主E、电子2、受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。
A、电子和空穴B、空穴C、电子3、电子是带( B )电的( E );空穴是带( A )电的( D )粒子。
A、正B、负C、零D、准粒子E、粒子4、当Au掺入Si中时,它是( B )能级,在半导体中起的是( D )的作用;当B掺入Si中时,它是( C )能级,在半导体中起的是( A )的作用。
A、受主B、深C、浅D、复合中心E、陷阱5、 MIS结构发生多子积累时,表面的导电类型与体材料的类型( A )。
A、相同B、不同C、无关6、杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是( B )。
A、变大,变小 ;B、变小,变大;C、变小,变小;D、变大,变大。
7、砷有效的陷阱中心位置(B )A、靠近禁带中央B、靠近费米能级8、在热力学温度零度时,能量比EF小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比EF小的量子态被电子占据的概率为( A )。
A、大于1/2B、小于1/2C、等于1/2D、等于1E、等于09、如图所示的P型半导体MIS结构的C-V特性图中,AB段代表( A),CD段代表( B )。
A、多子积累B、多子耗尽C、少子反型D、平带状态10、金属和半导体接触分为:( B )。
A、整流的肖特基接触和整流的欧姆接触B、整流的肖特基接触和非整流的欧姆接触C、非整流的肖特基接触和整流的欧姆接触D、非整流的肖特基接触和非整流的欧姆接触11、一块半导体材料,光照在材料中会产生非平衡载流子,若光照忽然停止t?后,其中非平衡载流子将衰减为原来的( A )。
第五篇 题解-非平衡载流子刘诺 编5-1、何谓非平衡载流子?非平衡状态与平衡状态的差异何在?解:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子。
通常所指的非平衡载流子是指非平衡少子。
热平衡状态下半导体的载流子浓度是一定的,产生与复合处于动态平衡状态 ,跃迁引起的产生、复合不会产生宏观效应。
在非平衡状态下,额外的产生、复合效应会在宏观现象中体现出来。
5-2、漂移运动和扩散运动有什么不同?解:漂移运动是载流子在外电场的作用下发生的定向运动,而扩散运动是由于浓度分布不均匀导致载流子从浓度高的地方向浓度底的方向的定向运动。
前者的推动力是外电场,后者的推动力则是载流子的分布引起的。
5-3、漂移运动与扩散运动之间有什么联系?非简并半导体的迁移率与扩散系数之间有什么联系?解:漂移运动与扩散运动之间通过迁移率与扩散系数相联系。
而非简并半导体的迁移率与扩散系数则通过爱因斯坦关系相联系,二者的比值与温度成反比关系。
即T k q D 0=μ 5-4、平均自由程与扩散长度有何不同?平均自由时间与非平衡载流子的寿命又有何不同?答:平均自由程是在连续两次散射之间载流子自由运动的平均路程。
而扩散长度则是非平衡载流子深入样品的平均距离。
它们的不同之处在于平均自由程由散射决定,而扩散长度由扩散系数和材料的寿命来决定。
平均自由时间是载流子连续两次散射平均所需的自由时间,非平衡载流子的寿命是指非平衡载流子的平均生存时间。
前者与散射有关,散射越弱,平均自由时间越长;后者由复合几率决定,它与复合几率成反比关系。
5-5、证明非平衡载流子的寿命满足()τte p t p -∆=∆0,并说明式中各项的物理意义。
证明:()[]ppdt t p d τ∆=∆-=非平衡载流子数而在单位时间内复合的子的减少数单位时间内非平衡载流时刻撤除光照如果在0=t则在单位时间内减少的非平衡载流子数=在单位时间内复合的非平衡载流子数,即()[]()1−→−∆=∆-pp dt t p d τ在小注入条件下,τ为常数,解方程(1),得到()()()20−→−∆=∆-p te p t p τ式中,Δp (0)为t=0时刻的非平衡载流子浓度。
半导体物理试题及答案一、单项选择题(每题2分,共20分)1. 半导体材料中,电子和空穴的复合过程不会产生以下哪种现象?A. 发光现象B. 产生热量C. 产生光电子D. 产生电子-空穴对答案:D2. 在半导体中,掺杂杂质可以改变半导体的导电类型,以下哪种掺杂会使半导体变成n型半导体?A. 硼(B)B. 磷(P)C. 铝(Al)D. 镓(Ga)答案:B3. 半导体的能带结构中,价带和导带之间的能量差称为:A. 能隙B. 能级C. 能带D. 能带宽度答案:A4. 在半导体中,电子从价带跃迁到导带需要吸收的能量称为:A. 激发能B. 能隙C. 跃迁能D. 电子亲和能答案:A5. PN结形成后,空间电荷区的电场方向是:A. 从P区指向N区B. 从N区指向P区C. 从P区指向P区D. 从N区指向N区答案:A6. 半导体中的霍尔效应是由于:A. 电场引起的B. 磁场引起的C. 温度引起的D. 压力引起的答案:B7. 半导体器件中的肖特基二极管是一种:A. 金属-半导体接触B. 半导体-半导体接触C. 金属-金属接触D. 绝缘体-半导体接触答案:A8. 在半导体中,电子和空穴的复合会导致:A. 电子数增加B. 空穴数增加C. 电子数和空穴数都减少D. 电子数和空穴数都增加答案:C9. 半导体的掺杂浓度增加,其电导率会:A. 增加B. 减少C. 保持不变D. 先增加后减少答案:A10. 半导体的本征激发是指:A. 电子从价带激发到导带B. 电子从导带激发到更高能级C. 电子从金属激发到半导体D. 电子从半导体激发到金属答案:A二、填空题(每题2分,共20分)1. 半导体的导电类型由________决定,n型半导体中多数载流子是________,p型半导体中多数载流子是________。
答案:掺杂杂质;电子;空穴2. 半导体的能带结构中,价带顶和导带底之间的能量差称为________。
答案:能隙3. 半导体中的载流子包括________和________。
半导体物理习题与问题(精选5篇)第一篇:半导体物理习题与问题第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(1)能带的宽度;(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:()对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(1)能带宽度;(2)能带底和能带顶的有效质量。
6 原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同?原子中内层电子和外层电子参与共有化运动有何不同?7 晶体体积的大小对能级和能带有什么影响?描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此?为什么?10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
”是否如此?为什么? 11简述有效质量与能带结构的关系?12对于自由电子,加速反向与外力作用反向一致,这个结论是否适用于布洛赫电子?13从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同?14试述在周期性势场中运动的电子具有哪些一般属性?以硅的本征激发为例,说明半导体能带图的物理意义及其与硅晶格结构的联系?15为什么电子从其价键上挣脱出来所需的最小能量就是半导体的禁带宽度?16为什么半导体满带中的少量空状态可以用具有正电荷和一定质量的空穴来描述?17有两块硅单晶,其中一块的重量是另一块重量的二倍。
这两块晶体价带中的能级数是否相等?彼此有何联系?18说明布里渊区和k 空间等能面这两个物理概念的不同。
19为什么极值附近的等能面是球面的半导体,当改变存储反向时只能观察到一个共振吸收峰?第二章半导体中的杂质与缺陷能级例1.半导体硅单晶的介电常数=11.8,电子和空穴的有效质量各为=0.97=0.19和,=0.16,=0.53,利用类氢模型估计:(1)施主和受主电离能;(2)基态电子轨道半径解:(1)利用下式求得和。
因此,施主和受主杂质电离能各为:(2)基态电子轨道半径各为:式中, 是波尔半径。
习题与思考题:什么叫浅能级杂质?它们电离后有何特点?什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n型半导体。
什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p型半导体。
掺杂半导体与本征半导体之间有何差异?试举例说明掺杂对半导体的导电性能的影响。
两性杂质和其它杂质有何异同?深能级杂质和浅能级杂质对半导体有何影响?7 何谓杂质补偿?杂质补偿的意义何在?说明杂质能级以及电离能的物理意义。
8为什么受主、施主能级分别位于价带之上或导带之下,而且电离能的数值较小?纯锗、硅中掺入Ⅲ族或Ⅴ族元素后,为什么使半导体电性能有很大的改变?杂质半导体(p型或n型)应用很广,但为什么我们很强调对半导体材料的提纯?10把不同种类的施主杂质掺入同一种半导体材料中,杂质的电离能和轨道半径是否不同?把同一种杂质掺入到不同的半导体材料中(例如锗和硅),杂质的电离能和轨道半径又是否都相同? 11何谓深能级杂质?它们电离以后有说明特点?12为什么金元素在锗或硅中电离后可以引入多个施主或受主能级?13说明掺杂对半导体导电性能的影响。
14说明半导体中浅能级杂质和深能级杂质的作用有何不同?15什么叫杂质补偿?什么叫高度补偿的半导体?杂质补偿有何实际应用?第三章半导体中载流子的统计分布例1.有一硅样品,施主浓度为,已知施主电离能杂质电离时的温度。
解:令和,受主浓度为,试求的施主表示电离施主和电离受主的浓度,则电中性方程为:略去价带空穴的贡献,则得:式中:对硅材料由题意可知(受主杂质全部电离),则(1)当施主有99%的N电离时,说明只有1%的施主有电子占据,即=0.01。
=198,代入式(1)得:去对数并加以整理即得到下面的方程:用相关数值解的方法或作图求得解为:T=101.例2.现有三块半导体硅材料,已知室温下(300K)它们的空穴浓度分别为:,,。
分别计算这三块材料的电子浓度判断这三块材料的导电类型;分别计算这三块材料的费米能级的位置。
解:(1)室温时硅的根据载流子浓度积公式:,可求出(2), 即即,故为p型半导体.,故为本征半导体.,即(3)当T=300k时,由得:对三块材料分别计算如下:,故为n型半导体.即 p型半导体的费米能级在禁带中线下0.37eV处。
即费米能级位于禁带中心位置。
对n型材料有即对n型材料,费米能级在禁带中心线上0.35eV处。
对于某n型半导体,试证明其费米能级在其本征半导体的费米能级之上。
即EFn>EFi。
2 试分别定性定量说明:在一定的温度下,对本征材料而言,材料的禁带宽度越窄,载流子浓度越高;对一定的材料,当掺杂浓度一定时,温度越高,载流子浓度越高。
3 若两块Si样品中的电子浓度分别为 2.25×1010cm-3和6.8×1016cm-3,试分别求出其中的空穴的浓度和费米能级的相对位置,并判断样品的导电类型。
假如再在其中都掺入浓度为2.25×1016cm-3的受主杂质,这两块样品的导电类型又将怎样?含受主浓度为8.0×106cm-3和施主浓度为7.25×1017cm-3的Si材料,试求温度分别为300K和400K时此材料的载流子浓度和费米能级的相对位置。
试分别计算本征Si在77K、300K和500K下的载流子浓度。
6 Si样品中的施主浓度为4.5×1016cm-3,试计算300K时的电子浓度和空穴浓度各为多少?某掺施主杂质的非简并Si样品,试求EF=(EC+ED)/2时施主的浓度。
半导体处于怎样的状态才能叫处于热平衡状态?其物理意义如何。
9 什么叫统计分布函数?费米分布和玻耳兹曼分布的函数形式有何区别?在怎样的条件下前者可以过渡到后者?为什么半导体中载流子分布可以用玻耳兹曼分布描述?10说明费米能级的物理意义。
根据费米能级位置如何计算半导体中电子和空穴浓度?如何理解费米能级是掺杂类型和掺杂程度的标志?11证明,在时,对费米能级取什么样的对称形式?这个条件把电子从费米能12在半导体计算中,经常应用级统计过渡到玻耳兹曼统计,试说明这种过渡的物理意义。
13写出半导体的电中性方程。
此方程在半导体中有何重要意义? 14若n型硅中掺入受主杂质,费米能级升高还是降低?若温度升高当本征激发起作用时,费米能级在什么位置?为什么?15如何理解分布函数与状态密度的乘积再对能量积分即可求得电子浓度?16为什么硅半导体器件比锗器件的工作温度高?17当温度一定时,杂质半导体的费米能级主要由什么因素决定?试把强N、弱N型半导体与强P、弱P半导体的费米能级与本征半导体的费米能级比较。
18如果向半导体中重掺施主杂质,就你所知会出现一些什么效应?第四章半导体的导电性例1.室温下,本征锗的电阻率为47掺入锑杂质,使每,试求本征载流子浓度。
若个锗原子中有一个杂质原子,计算室温下电子,试浓度和空穴浓度。
设杂质全部电离。
锗原子的浓度为求该掺杂锗材料的电阻率。
设变化。
,且认为不随掺杂而解:本征半导体的电阻率表达式为:施主杂质原子的浓度故其电阻率例2.在半导体锗材料中掺入施主杂质浓度度;设室温下本征锗材料的电阻率,求所加的电场强度。
,受主杂质浓,假设电,若流过子和空穴的迁移率分别为样品的电流密度为解:须先求出本征载流子浓度又联立得:故样品的电导率:即: E=1.996V/cm习题与思考题:1 对于重掺杂半导体和一般掺杂半导体,为何前者的迁移率随温度的变化趋势不同?试加以定性分析。
何谓迁移率?影响迁移率的主要因素有哪些?试定性分析Si的电阻率与温度的变化关系。
4 证明当μn≠μp,且电子浓度,空穴浓度时半导体的电导率有最小值,并推导σmin的表达式。
0.12kg的Si单晶掺有3.0×10-9kg 的Sb,设杂质全部电离,试求出此材料的电导率。
(Si单晶的密度为2.33g/cm3,Sb的原子量为121.8)试从经典物理和量子理论分别说明散射的物理意义。
比较并区别下述物理概念:电导迁移率、霍耳迁移率和漂移迁移率。
8 什么是声子?它对半导体材料的电导起什么作用?强电场作用下,迁移率的数值与场强E有关,这时欧姆定律是否仍然正确?为什么?10半导体的电阻系数是正的还是负的?为什么?11有一块本征半导体样品,试描述用以增加其电导率的两个物理过程。
12如果有相同的电阻率的掺杂锗和硅半导体,问哪一个材料的少子浓度高?为什么?13光学波散射和声学波散射的物理机构有何区别?各在什么样晶体中起主要作用? 14说明本征锗和硅中载流子迁移率温度增加如何变化?15电导有效质量和状态密度有何区别?它们与电子的纵有效质量和横有效质量的关系如何?16对于仅含一种杂质的锗样品,如果要确定载流子符号、浓度、迁移率和有效质量,应进行哪些测量?17解释多能谷散射如何影响材料的导电性。
18为什么要引入热载流子概念?热载流子和普通载流子有何区别?第五章非平衡载流子例1.某p型半导体掺杂浓度光的照射下产生非平衡载流子,其产生率,少子寿命,在均匀, 试计算室温时光照情况下的费米能级并和原来无光照时的费米能级比较。
设本征载流子浓度.解:(1)无光照时,空穴浓度说明无光照时,费米能级在禁带中线下面0.35eV处。
(2)稳定光照后,产生的非平衡载流子为:上面两式说明,在之下,而在之上。
且非平衡态时空穴的准费米能级和和原来的费米能级几乎无差别,与电子的准费米能级相差甚远,如下图所示。