2012半导体物理第二章-2+
- 格式:ppt
- 大小:11.67 MB
- 文档页数:125
半导体物理学简明教程答案陈志明编第二章-半导体中的载流子及其输运性质-课后习题答案半导体物理学简明教程 0第二章 半导体中的载流子及其输运性质1、对于导带底不在布里渊区中心,且电子等能面为旋转椭球面的各向异性问题,证明每个旋转椭球内所包含的动能小于(E -E C )的状态数Z 由式(2-20)给出。
证明:设导带底能量为CE ,具有类似结构的半导体在导带底附近的电子等能面为旋转椭球面,即⎪⎪⎭⎫ ⎝⎛++=-l t C m k m k k E k E 23222122)(与椭球标准方程2221122221k k k a b c++=相比较,可知其电子等能面的三个半轴a 、b 、c 分别为212])(2[ c t E E m b a -==212])(2[c l E E m c -=于是,K 空间能量为E 的等能面所包围的体积即可表示为232122)()8(3434C t l E E m m abc V -==ππ因为k 空间的量子态密度是V/(4π3),所以动能半导体物理学简明教程0半导体物理学简明教程 02/132/3*2)()2(2)(E E m V E g Vp V -= π2、完成本章从式(2-42)到(2-43)的推演,证明非简并半导体的空穴密度由式(2-43)决定。
解:非简并半导体的价带中空穴浓度p 0为 dE E g E f p VB E E VV)())(1('0-=⎰带入玻尔兹曼分布函数和状态密度函数可得dE E E TK E E m p V E E Fp VV21'0323*20)()exp()2(21--=⎰π令,)()(0T K E Ex V-=则121021)()(x T K E E V =-Tdxk E E d V 0)(=-将积分下限的E'V (价带底)改为-∞,计算可得)exp()2(202320*0TK E E T k m p FV p -=π令3230*2320*)2(2)2(2h T k m T k m N p p V ππ==则得)ex p(00Tk E E N P VF V --=半导体物理学简明教程 13、当E -E F =1.5kT 、4kT 、10kT 时,分别用费米分布函数和玻耳兹曼分布函数计算电子占据这些能级的几率,并分析计算结果说明了什么问题。