数字图像处理第三章 空间域图像增强资料
- 格式:ppt
- 大小:4.12 MB
- 文档页数:68
如何进行高效的图像增强和降噪图像增强和降噪是数字图像处理中的重要任务之一。
它们的目的是改善图像的视觉质量和可视化细节,并消除图像中的不必要的噪声。
在本文中,我将介绍一些常用的图像增强和降噪技术,以及一些实现这些技术的高效算法。
一、图像增强技术1.灰度变换:灰度变换是一种调整图像亮度和对比度的常用技术。
它可以通过改变灰度级来增加图像的对比度和动态范围,提高图像的视觉效果。
2.直方图均衡化:直方图均衡化是通过重新分配图像灰度级来增加图像对比度的一种方法。
它通过改变图像的直方图来增强图像的细节和对比度。
3.双边滤波:双边滤波是一种能够保留图像边缘信息,同时消除噪声的滤波技术。
它能够通过平滑图像来改善图像的质量,同时保持图像的细节。
4.锐化增强:锐化增强是一种通过增加图像的高频分量来提高图像的清晰度和细节感的方法。
它可以通过增加图像的边缘强度来突出图像的边缘。
5.多尺度增强:多尺度增强是一种通过在多个尺度上对图像进行增强来提高图像视觉质量的方法。
它可以通过提取图像的不同频率分量来增强图像的细节和对比度。
二、图像降噪技术1.均值滤波:均值滤波是一种常见的降噪方法,它通过将像素值替换为其周围像素的均值来减少噪声。
然而,它可能会导致图像的模糊,特别是在对边缘等细节进行处理时。
2.中值滤波:中值滤波是一种基于排序统计理论的降噪方法,它通过将像素值替换为其周围像素的中值来消除噪声。
相比于均值滤波,中值滤波能够在去除噪声的同时保留图像的边缘细节。
3.小波降噪:小波降噪是一种利用小波变换的降噪方法,它在时频域上对图像进行分析和处理。
它能够通过消除噪声的高频分量来降低图像的噪声水平。
4.非局部均值降噪:非局部均值降噪是一种通过将像素值替换为与其相似的像素均值来减少噪声的方法。
它能够通过比较像素的相似性来区分图像中的噪声和细节,并有选择地进行降噪。
三、高效实现图像增强和降噪的算法1.并行计算:利用并行计算技术,如GPU加速、多线程等,在处理图像增强和降噪算法时,可以提高计算效率和算法的实时性。
1. 图像处理的主要方法分几大类?答:图字图像处理方法分为大两类:空间域处理(空域法)和变换域处理(频域法)。
空域法:直接对获取的数字图像进行处理。
频域法:对先对获取的数字图像进行正交变换,得到变换系数阵列,然后再进行处理,最后再逆变换到空间域,得到图像的处理结果2. 图像处理的主要内容是什么?答:图形数字化(图像获取):把连续图像用一组数字表示,便于用计算机分析处理。
图像变换:对图像进行正交变换,以便进行处理。
图像增强:对图像的某些特征进行强调或锐化而不增加图像的相关数据。
图像复原:去除图像中的噪声干扰和模糊,恢复图像的客观面目。
图像编码:在满足一定的图形质量要求下对图像进行编码,可以压缩表示图像的数据。
图像分析:对图像中感兴趣的目标进行检测和测量,从而获得所需的客观信息。
图像识别:找到图像的特征,以便进一步处理。
图像理解:在图像分析的基础上得出对图像内容含义的理解及解释,从而指导和规划行为。
3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。
答:像素:在卫星图像上,由卫星传感器记录下的最小的分立要素(有空间分量和谱分量两种)。
通常,表示图像的二维数组是连续的,将连续参数 x,y ,和 f 取离散值后,图像被分割成很多小的网格,每个网格即为像素 图像分辨率:指对原始图像的采样分辨率,即图像水平或垂直方向单位长度上所包含的采样点数。
单位是“像素点/单位长度”图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色数,或灰度图像中的最大灰度等级(图像深度:位图图像中,各像素点的亮度或色彩信息用二进制数位来表示,这一数据位的位数即为像素深度,也叫图像深度。
图像深度越深,能够表现的颜色数量越多,图像的色彩也越丰富。
)图像数据量:图像数据量是一幅图像的总像素点数目与每个像素点所需字节数的乘积。
《数字图像处理》期末考试重点总结work Information Technology Company.2020YEAR*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。
(1)处理精度高,再现性好。
(2)易于控制处理效果。
(3)处理的多样性。
(4)图像数据量庞大。
(5)图像处理技术综合性强。
*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。
图像增强不存在通用理论。
图像增强的方法:空间域方法和变换域方法。
*图像反转:S=L-1-r1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。
*对数变换 S=C*log(1+r)c为常数,r>=0作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。
对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。
*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。
*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。
直方图均衡化变换函数必须为严格单调递增函数。
直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。
获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。
*平滑滤波器用于模糊处理和减小噪声。
平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。
优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。
数字图像处理技术数字图像处理技术⼀.数字图像处理概述数字图像处理是指⼈们为了获得⼀定的预期结果和相关数据利⽤计算机处理系统对获得的数字图像进⾏⼀系列有⽬的性的技术操作。
数字图像处理技术最早出现在上个世纪中期,伴随着计算机的发展,数字图像处理技术也慢慢地发展起来。
数字图像处理⾸次获得成功的应⽤是在航空航天领域,即1964年使⽤计算机对⼏千⽉球照⽚使⽤了图像处理技术,并成功的绘制了⽉球表⾯地图,取得了数字图像处理应⽤中⾥程碑式的成功。
最近⼏⼗年来,科学技术的不断发展使数字图像处理在各领域都得到了更加⼴泛的应⽤和关注。
许多学者在图像处理的技术中投⼊了⼤量的研究并且取得了丰硕的成果,使数字图像处理技术达到了新的⾼度,并且发展迅猛。
⼆.数字图象处理研究的容⼀般的数字图像处理的主要⽬的集中在图像的存储和传输,提⾼图像的质量,改善图像的视觉效果,图像理解以及模式识别等⽅⾯。
新世纪以来,信息技术取得了长⾜的发展和进步,⼩波理论、神经元理论、数字形态学以及模糊理论都与数字处理技术相结合,产⽣了新的图像处理⽅法和理论。
⽐如,数学形态学与神经⽹络相结合⽤于图像去噪。
这些新的⽅法和理论都以传统的数字图像处理技术为依托,在其理论基础上发展⽽来的。
数字图像处理技术主要包括:⑴图像增强图像增强是数字图像处理过程中经常采⽤的⼀种⽅法。
其⽬的是改善视觉效果或者便于⼈和机器对图像的理解和分析,根据图像的特点或存在的问题采取的简单改善⽅法或加强特征的措施就称为图像增强。
⑵图像恢复图像恢复也称为图像还原,其⽬的是尽可能的减少或者去除数字图像在获取过程中的降质,恢复被退化图像的本来⾯貌,从⽽改善图像质量,以提⾼视觉观察效果。
从这个意义上看,图像恢复和图像增强的⽬的是相同的,不同的是图像恢复后的图像可看成时图像逆退化过程的结果,⽽图像增强不⽤考虑处理后的图像是否失真,适应⼈眼视觉和⼼理即可。
⑶图像变换图像变换就是把图像从空域转换到频域,就是对原图像函数寻找⼀个合适变换的数学问题,每个图像变换⽅法都存在⾃⼰的正交变换集,正是由于各种正交换集的不同⽽形成不同的变换。
《数字图像处理》知识点汇总1.什么是图像?“图”是物体投射或反射光的分布,“像”是⼈的视觉系统对图的接受在⼤脑中形成的印象或反映。
图像是客观和主观的结合。
2.数字图像是指由被称作象素的⼩块区域组成的⼆维矩阵。
将物理图象⾏列划分后,每个⼩块区域称为像素(pixel)。
对于单⾊即灰度图像⽽⾔,每个像素包括两个属性:位置和灰度。
灰度⼜称为亮度,灰度⽤⼀个数值来表⽰,通常数值范围在0到255之间,即可⽤⼀个字节来表⽰。
0表⽰⿊、255表⽰⽩。
3.彩⾊图象可以⽤红、绿、蓝三元组的⼆维矩阵来表⽰。
通常,三元组的每个数值也是在0到255之间,0表⽰相应的基⾊在该象素中没有,⽽255则代表相应的基⾊在该象素中取得最⼤值,这种情况下每个象素可⽤三个字节来表⽰。
4.数字图像处理就是利⽤计算机系统对数字图像进⾏各种⽬的的处理。
5.对连续图像f(x,y)进⾏数字化需要在空间域和值域进⾏离散化。
空间上通过图像抽样进⾏空间离散,得到像素。
像素亮度需要通过灰度级量化实现灰度值离散。
数字图像常⽤矩阵来表⽰。
6.从计算机处理的⾓度可以由⾼到低将数字图像分为三个层次,分别为图像处理、图像分析和图像理解。
这三个层次覆盖了图像处理的所有应⽤领域。
(1). 图像处理指对图像进⾏各种加⼯,以改善图像的视觉效果;强调图像之间进⾏的变换。
图像处理是⼀个从图像到图像的过程。
(2). 图像分析指对图像中感兴趣的⽬标进⾏提取和分割,获得⽬标的客观信息(特点或性质),建⽴对图像的描述;图像分析以观察者为中⼼研究客观世界,它是⼀个从图像到数据的过程。
(3). 图像理解指研究图像中各⽬标的性质和它们之间的相互联系,得出对图像内容含义的理解及原来客观场景的解释;图像理解以客观世界为中⼼,借助知识、经验来推理、认识客观世界,属于⾼层操作(符号运算)。
7.图像处理、图像分析和图像理解是处在三个抽象程度和数据量各有特点的不同层次上。
图像处理是⽐较低层的操作,它主要在图像像素级上进⾏处理,处理的数据量⾮常⼤。
《数字图像处理》实验教案一、实验目的与要求1. 实验目的(1)理解数字图像处理的基本概念和原理;(2)掌握常用的数字图像处理方法和技术;(3)培养实际操作数字图像处理软件的能力。
2. 实验要求(1)熟悉计算机操作系统和图像处理软件的使用;(2)了解图像处理的基本概念,如图像采样、量化、图像增强、滤波等;(3)能够根据实际需求选择合适的图像处理方法。
二、实验内容与步骤1. 实验内容(1)图像采样与量化;(2)图像增强;(3)图像滤波;(4)图像边缘检测;(5)图像分割。
2. 实验步骤(1)打开图像处理软件,导入实验所需图像;(2)进行图像采样与量化,观察图像质量的变化;(3)应用图像增强技术,改善图像的视觉效果;(4)利用图像滤波去除图像噪声,提高图像质量;(5)进行图像边缘检测和分割,提取感兴趣的区域。
三、实验原理与方法1. 图像采样与量化原理:图像采样是将图像在空间域上离散化,量化是将图像的像素值进行限制。
方法:设置采样间隔和量化级别,对图像进行采样和量化处理。
2. 图像增强原理:通过对图像像素值进行变换,提高图像的视觉效果。
方法:采用直方图均衡化、对比度增强、锐化等方法进行图像增强。
3. 图像滤波原理:通过卷积运算,去除图像噪声和冗余信息。
方法:选择合适的滤波器,如低通滤波器、高通滤波器、带阻滤波器等,对图像进行滤波处理。
4. 图像边缘检测原理:检测图像中像素值变化显著的点,找出图像的边缘。
方法:采用梯度算子、Sobel算子、Canny算子等方法进行边缘检测。
5. 图像分割原理:将图像划分为具有相似特征的区域,实现图像的分割。
方法:采用阈值分割、区域生长、边缘追踪等方法进行图像分割。
四、实验注意事项1. 实验前请确保熟悉图像处理软件的使用;2. 实验过程中注意调整参数的取值,观察图像效果的变化;五、实验评价与思考1. 实验评价(1)能否正确进行图像采样与量化;(2)能否有效地进行图像增强和滤波处理;(3)能否准确地进行图像边缘检测和分割;(4)实验报告的质量。