物理高考二轮复习专题02:功能关系 能量守恒
- 格式:doc
- 大小:220.00 KB
- 文档页数:11
能量守恒定律综合计算专题复习1.如图,光滑水平面上静止一质量m1=1.0kg、长L=0.3m的木板,木板右端有质量m2=1.0kg的小滑块,在滑块正上方的O点用长r=0.4m的轻质细绳悬挂质量m=0.5kg的小球。
将小球向右上方拉至细绳与竖直方向成θ=60°的位置由静止释放,小球摆到最低点与滑块发生正碰并被反弹,碰撞时间极短,碰撞前后瞬间细绳对小球的拉力减小了4.8N,最终小滑块恰好不会从木板上滑下。
不计空气阻力,滑块、小球均可视为质点,重力加速度g取10m/s2。
求:(1)小球碰前瞬间的速度大小;(2)小球碰后瞬间的速度大小;(3)小滑块与木板之间的动摩擦因数。
2.如图所示,ABCD为固定在竖直平面内的轨道,其中ABC为光滑半圆形轨道,半径为R,CD为水平粗糙轨道,一质量为m的小滑块(可视为质点)从圆轨道中点B由静止释放,滑至D点恰好静止,CD 间距为4R。
已知重力加速度为g。
(1)求小滑块与水平面间的动摩擦因数(2)求小滑块到达C点时,小滑块对圆轨道压力的大小(3)现使小滑块在D点获得一初动能,使它向左运动冲上圆轨道,恰好能通过最高点A,求小滑块在D点获得的初动能3.如图甲,倾角α=37︒的光滑斜面有一轻质弹簧下端固定在O点,上端可自由伸长到A点。
在A点放一个物体,在力F的作用下向下缓慢压缩弹簧到B点(图中未画出),该过程中力F随压缩距离x的变化如图乙所示。
重力加速度g取10m/s2,sin37︒=0.6,cos37︒=0.8,求:(1)物体的质量m;(2)弹簧的最大弹性势能;(3)在B点撤去力F,物体被弹回到A点时的速度。
4.如图所示,长为L的轻质木板放在水平面上,左端用光滑的铰链固定,木板中央放着质量为m的小物块,物块与板间的动摩擦因数为μ.用力将木板右端抬起,直至物块刚好沿木板下滑.最大静摩擦力等于滑动摩擦力,重力加速度为g。
(1)若缓慢抬起木板,则木板与水平面间夹角θ的正切值为多大时物块开始下滑;(2)若将木板由静止开始迅速向上加速转动,短时间内角速度增大至ω后匀速转动,当木板转至与水平面间夹角为45°时,物块开始下滑,则ω应为多大;(3)在(2)的情况下,求木板转至45°的过程中拉力做的功W。
功和功率 功能关系复习备考建议(1)能量观点是高中物理三大观点之一,是历年高考必考内容;或与直线运动、平抛运动、圆周运动结合,或与电场、电磁感应结合,或与弹簧、传送带、板块连接体等结合;或借助选择题单独考查功、功率、动能定理、功能关系的理解,或在计算题中考查动力学与能量观点的综合应用,难度较大.(2)对于动量问题,17年只在选择题中出现,而且是动量守恒、动量定理的基本应用,18年在计算题中出现,Ⅰ卷、Ⅱ卷都是动量守恒的基本应用,运动过程简单,综合性较低,Ⅲ卷只是用到了动量的概念,19年在计算题中出现,Ⅰ卷、Ⅲ卷都涉及动量与能量观点的综合应用,Ⅱ卷中用到了动量定理,对于动量的考察,综合性、难度有所提升,备考时应多加注意.第4课时 功和功率 功能关系 考点 功、功率的分析与计算1.恒力功的计算(1)单个恒力的功W =Fl cos α. (2)合力为恒力的功①先求合力,再求W =F 合l cos α. ②W =W 1+W 2+…. 2.变力功的计算(1)若力大小恒定,且方向始终沿轨迹切线方向,可用力的大小跟路程的乘积计算. (2)力的方向不变,大小随位移线性变化可用W =F l cos α计算. (3)F -l 图象中,功的大小等于“面积”. (4)求解一般变力做的功常用动能定理. 3.功率的计算(1)P =Wt,适用于计算平均功率;(2)P =Fv ,若v 为瞬时速度,则P 为瞬时功率;若v 为平均速度,则P 为平均功率. 注意:力F 与速度v 方向不在同一直线上时功率为Fv cos θ.例1 (多选)(2019·山西晋中市适应性调研)如图1甲所示,足够长的固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,沿杆方向给环施加一个拉力F ,使环由静止开始运动,已知拉力F 及小环速度v 随时间t 变化的规律如图乙、丙所示,重力加速度g 取10m/s 2.则以下判断正确的是( )图1A .小环的质量是1kgB .细杆与地面间的倾角是30°C .前3s 内拉力F 的最大功率是2.25WD .前3s 内拉力对小环做功5.75J 答案 AD解析 由速度-时间图象得到环先匀加速上升,然后匀速运动,由题图可得:第1s 内,a =Δv t =0.51m/s 2=0.5 m/s 2,加速阶段:F 1-mg sin θ=ma ;匀速阶段:F 2-mg sin θ=0,联立以上三式解得:m =1kg ,sin θ=0.45,故A 正确,B 错误;第1s 内,速度不断变大,拉力的瞬时功率也不断变大,第1s 末,P =Fv 1=5×0.5W=2.5W ;第1s 末到第3s 末,P =Fv 1=4.5×0.5W=2.25W ,即拉力的最大功率为2.5W ,故C 错误;从速度-时间图象可以得到,第1 s 内的位移为0.25 m,1~3 s 内的位移为1 m ,前3 s 内拉力做的功为:W =5×0.25 J +4.5×1J =5.75J ,故D 正确. 变式训练1.(2019·河南名校联盟高三下学期2月联考)如图2所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点.每根杆上都套着一个质量相等的小滑环(图中未画出),三个滑环分别从a 、b 、c 处由静止释放,用P 1、P 2、P 3依次表示各滑环从静止滑到d 过程中重力的平均功率,则( )图2A .P 1<P 2<P 3B .P 1>P 2>P 3C .P 3>P 1>P 2D .P 1=P 2=P 3 答案 B解析 对小滑环b 受力分析,受重力和支持力,将重力沿杆的方向和垂直杆的方向正交分解,根据牛顿第二定律得,小滑环做初速度为零的匀加速直线运动的加速度为a =g sin θ(θ为杆与水平方向的夹角),由数学知识可知,小滑环的位移x =2R sin θ,所以t =2xa=2×2R sin θg sin θ=4Rg,t 与θ无关,即t 1=t 2=t 3,而三个环重力做功W 1>W 2>W 3,所以有:P 1>P 2>P 3,B 正确.2.(多选)(2019·福建龙岩市期末质量检查)如图3所示,在竖直平面内有一条不光滑的轨道ABC ,其中AB 段是半径为R 的14圆弧,BC 段是水平的.一质量为m 的滑块从A 点由静止滑下,最后停在水平轨道上C 点,此过程克服摩擦力做功为W 1.现用一沿着轨道方向的力推滑块,使它缓慢地由C 点推回到A 点,此过程克服摩擦力做功为W 2,推力对滑块做功为W ,重力加速度为g ,则下列关系中正确的是( )图3A .W 1=mgRB .W 2=mgRC .mgR <W <2mgRD .W >2mgR 答案 AC解析 滑块由A 到C 的过程,由动能定理可知mgR -W 1=0,故A 对;滑块由A 到B 做圆周运动,而在推力作用下从C 经过B 到达A 的过程是一个缓慢的匀速过程,所以从A 到B 的过程中平均支持力大于从B 到A 的平均支持力,那么摩擦力从A 到B 做的功大于从B 到A 做的功,而两次经过BC 段摩擦力做功相等,故W 2<W 1=mgR ,故B 错;滑块由C 到A 的过程中,由能量守恒可知,推力对滑块做的功等于滑块重力势能增加量与克服摩擦力所做的功两部分,即W -mgR -W 2=0,即W =W 1+W 2,由于W 2<W 1=mgR ,所以mgR <W <2mgR ,故C 对,D 错.考点 功能关系的理解和应用1.几个重要的功能关系(1)重力做的功等于重力势能的减少量,即W G =-ΔE p . (2)弹力做的功等于弹性势能的减少量,即W 弹=-ΔE p . (3)合力做的功等于动能的变化量,即W =ΔE k .(4)重力(或系统内弹力)之外的其他力做的功等于机械能的变化量,即W 其他=ΔE . (5)系统内一对滑动摩擦力做的功是系统内能改变的量度,即Q =F f ·x 相对. 2.理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化可以通过做功来实现.(2)功是能量转化的量度,功和能的关系,一是体现在不同性质的力做功对应不同形式的能转化,二是做功的多少与能量转化的多少在数值上相等. 3.应用(1)分析物体运动过程中受哪些力,有哪些力做功,有哪些形式的能发生变化. (2)列动能定理或能量守恒定律表达式.例2 (多选)(2019·全国卷Ⅱ·18)从地面竖直向上抛出一物体,其机械能E 总等于动能E k 与重力势能E p 之和.取地面为重力势能零点,该物体的E 总和E p 随它离开地面的高度h 的变化如图4所示.重力加速度取10m/s 2.由图中数据可得( )图4A .物体的质量为2kgB .h =0时,物体的速率为20m/sC .h =2m 时,物体的动能E k =40JD .从地面至h =4m ,物体的动能减少100J 答案 AD解析 根据题图图像可知,h =4m 时物体的重力势能mgh =80J ,解得物体质量m =2kg ,抛出时物体的动能为E k0=100J ,由公式E k0=12mv 2可知,h =0时物体的速率为v =10m/s ,选项A 正确,B 错误;由功能关系可知F f h =|ΔE 总|=20J ,解得物体上升过程中所受空气阻力F f =5 N ,从物体开始抛出至上升到h =2 m 的过程中,由动能定理有-mgh -F f h =E k -100J ,解得E k =50J ,选项C 错误;由题图图像可知,物体上升到h =4m 时,机械能为80J ,重力势能为80J ,动能为零,即从地面上升到h =4m ,物体动能减少100J ,选项D 正确. 变式训练3.(多选)(2018·安徽安庆市二模)如图5所示,一运动员穿着飞行装备从飞机上跳出后的一段运动过程可近似认为是匀变速直线运动,运动方向与水平方向成53°角,运动员的加速度大小为3g4.已知运动员(包含装备)的质量为m ,则在运动员下落高度为h 的过程中,下列说法正确的是(sin53°=45,cos53°=35)( )图5A .运动员重力势能的减少量为35mghB .运动员动能的增加量为34mghC .运动员动能的增加量为1516mghD .运动员的机械能减少了116mgh答案 CD解析 运动员下落的高度是h ,则重力做功:W =mgh ,所以运动员重力势能的减少量为mgh ,故A 错误;运动员下落的高度是h ,则飞行的距离:L =h sin53°=54h ,运动员受到的合外力:F 合=ma =34mg ,动能的增加量等于合外力做的功,即:ΔE k =W 合=F 合L =34mg ×54h =1516mgh ,故B 错误,C 正确;运动员重力势能的减少量为mgh ,动能的增加量为1516mgh ,所以运动员的机械能减少了116mgh ,故D 正确.4.(多选)(2019·福建厦门市第一次质量检查)如图6甲所示,一轻质弹簧的下端固定在水平面上,上端与A 物体相连接,将B 物体放置在A 物体上面,A 、B 的质量都为m ,初始时两物体处于静止状态.现用竖直向上的拉力F 作用在物体B 上,使物体B 开始向上做匀加速运动,拉力F 与物体B 的位移x 的关系如图乙所示(g =10m/s 2),下列说法正确的是( )图6A .0~4cm 过程中,物体A 、B 和弹簧组成的系统机械能增大B .0~4cm 过程中,弹簧的弹性势能减小,物体B 运动到4cm 处,弹簧弹性势能为零C .弹簧的劲度系数为7.5N/cmD.弹簧的劲度系数为5.0N/cm答案AC解析0~4 cm过程中,物体A、B和弹簧组成的系统,因力F对系统做正功,则系统的机械能增大,选项A正确.由题图可知,在x=4 cm处A、B分离,此时A、B之间的压力为零,A、B的加速度相等,但是弹簧仍处于压缩状态,弹簧的弹性势能不为零,选项B错误.开始物体处于静止状态,重力和弹力二力平衡,有:2mg=kΔl1;拉力F1为20 N时,弹簧弹力和重力平衡,合力等于拉力,根据牛顿第二定律,有:F1=2ma;物体B与A分离后,拉力F2为50 N,根据牛顿第二定律,有:F2-mg=ma;物体A与B分离时,物体A的加速度为a,则根据牛顿第二定律有:kΔl2-mg=k(Δl1-4 cm)-mg=ma;联立解得:m=4.0 kg,k=7.5 N/cm.选项C正确,D错误.考点动能定理的应用1.表达式:W总=E k2-E k1.2.五点说明(1)W总为物体在运动过程中所受各力做功的代数和.(2)动能变化量E k2-E k1一定是物体在末、初两状态的动能之差.(3)动能定理既适用于直线运动,也适用于曲线运动.(4)动能定理既适用于恒力做功,也适用于变力做功.(5)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.3.基本思路(1)确定研究对象和研究过程.(2)进行运动分析和受力分析,确定初、末速度和各力做功情况,利用动能定理全过程或者分过程列式.4.在功能关系中的应用(1)对于物体运动过程中不涉及加速度和时间,而涉及力和位移、速度的问题时,一般选择动能定理,尤其是曲线运动、多过程的直线运动等.(2)动能定理也是一种功能关系,即合外力做的功(总功)与动能变化量一一对应.例3如图7所示,在地面上竖直固定了刻度尺和轻质弹簧,弹簧原长时上端与刻度尺上的A点等高.质量m=0.5kg的篮球静止在弹簧正上方,其底端距A点的高度h1=1.10m,篮球由静止释放,测得第一次撞击弹簧时,弹簧的最大形变量x1=0.15m,第一次反弹至最高点,篮球底端距A点的高度h2=0.873m,篮球多次反弹后静止在弹簧的上端,此时弹簧的形变量x2=0.01m,弹性势能为E p=0.025J.若篮球运动时受到的空气阻力大小恒定,忽略篮球与弹簧碰撞时的能量损失和篮球形变,弹簧形变在弹性限度范围内,g取10m/s2.求:图7(1)弹簧的劲度系数;(2)篮球在运动过程中受到的空气阻力的大小; (3)篮球在整个运动过程中通过的路程. 答案 (1)500N/m (2)0.50N (3)11.05m 解析 (1)由最后静止的位置可知kx 2=mg , 所以k =500N/m(2)由动能定理可知,在篮球由静止下落到第一次反弹至最高点的过程中mg Δh -F f ·L =12mv 22-12mv 12整个过程动能变化为0,重力做功mg Δh =mg (h 1-h 2)=1.135J 空气阻力大小恒定,作用距离为L =h 1+h 2+2x 1=2.273m故可得F f ≈0.50N(3)整个运动过程中,空气阻力一直与运动方向相反 根据动能定理有mg Δh ′+W f +W 弹=12mv 2′2-12mv 12整个过程动能变化为0,重力做功mg Δh ′=mg (h 1+x 2)=5.55J 弹力做功W 弹=-E p =-0.025J则空气阻力做功W f =-mg Δh ′-W 弹=-5.525J 因W f =-F f s 故解得s =11.05m. 变式训练5.(2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h 在3m 以内时,物体上升、下落过程中动能E k 随h 的变化如图8所示.重力加速度取10m/s 2.该物体的质量为( )图8A.2kgB.1.5kgC.1kgD.0.5kg答案 C解析设物体的质量为m,则物体在上升过程中,受到竖直向下的重力mg和竖直向下的恒定外力F,当Δh=3m时,由动能定理结合题图可得-(mg+F)×Δh=(36-72) J;物体在下落过程中,受到竖直向下的重力mg和竖直向上的恒定外力F,当Δh=3m时,再由动能定理结合题图可得(mg-F)×Δh=(48-24) J,联立解得m=1kg、F=2N,选项C正确,A、B、D均错误.6.由相同材料的木板搭成的轨道如图9所示,其中木板AB、BC、CD、DE、EF…的长均为L =1.5m,木板OA和其他木板与水平地面的夹角都为β=37°,sin37°=0.6,cos37°=0.8,g取10m/s2.一个可看成质点的物体在木板OA上从离地高度h=1.8m处由静止释放,物体与木板间的动摩擦因数都为μ=0.2,在两木板交接处都用小曲面相连,使物体能顺利地经过,既不损失动能,也不会脱离轨道,在以后的运动过程中,求:(最大静摩擦力等于滑动摩擦力)图9(1)物体能否静止在木板上?请说明理由.(2)物体运动的总路程是多少?(3)物体最终停在何处?并作出解释.答案(1)不能理由见解析(2)11.25m (3)C点解释见解析解析(1)物体在木板上时,重力沿木板方向的分力为mg sinβ=0.6mg最大静摩擦力F fm=μmg cosβ=0.16mg因mg sinβ>μmg cosβ,故物体不会静止在木板上.(2)从物体开始运动到停下,设总路程为s,由动能定理得mgh -μmgs cos β=0解得s =11.25m(3)假设物体依次能到达B 、D 点,由动能定理得mg (h -L sin β)-μmg cos β(L +hsin β)=12mv B 2 解得v B >0mg (h -L sin β)-μmg cos β(3L +hsin β)=12mv D 2 v D 无解说明物体能通过B 点但不能到达D 点,因物体不能静止在木板上,故物体最终停在C 点.考点 动力学与能量观点的综合应用1.两个分析(1)综合受力分析、运动过程分析,由牛顿运动定律做好动力学分析.(2)分析各力做功情况,做好能量的转化与守恒的分析,由此把握各运动阶段的运动性质,各连接点、临界点的力学特征、运动特征、能量特征. 2.四个选择(1)当物体受到恒力作用发生运动状态的改变而且又涉及时间时,一般选择用动力学方法解题;(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移时,应优先选择能量守恒定律;(3)当涉及细节并要求分析力时,一般选择牛顿运动定律,对某一时刻的问题选择牛顿第二定律求解;(4)复杂问题的分析一般需选择能量的观点、运动与力的观点综合分析求解.例4 (2019·河北邯郸市测试)如图10所示,一根轻弹簧左端固定于竖直墙上,右端被质量m =1kg 可视为质点的小物块压缩而处于静止状态,且弹簧与物块不拴接,弹簧原长小于光滑平台的长度.在平台的右端有一传送带,AB 长L =5m ,物块与传送带间的动摩擦因数μ1=0.2,与传送带相邻的粗糙水平面BC 长s =1.5 m ,它与物块间的动摩擦因数μ2=0.3,在C 点右侧有一半径为R 的光滑竖直圆弧轨道与BC 平滑连接,圆弧对应的圆心角为θ=120°,在圆弧的最高点F 处有一固定挡板,物块撞上挡板后会以原速率反弹回来.若传送带以v =5m/s 的速率顺时针转动,不考虑物块滑上和滑下传送带的机械能损失.当弹簧储存的E p =18 J 能量全部释放时,小物块恰能滑到与圆心等高的E 点,取g =10 m/s 2.图10(1)求右侧圆弧的轨道半径R ;(2)求小物块最终停下时与C 点的距离;(3)若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围.答案 (1)0.8m (2)13m (3)37m/s≤v ≤43m/s解析 (1)物块被弹簧弹出,由E p =12mv 02,可知:v 0=6m/s因为v 0>v ,故物块滑上传送带后先减速,物块与传送带相对滑动过程中, 由:μ1mg =ma 1,v =v 0-a 1t 1,x 1=v 0t 1-12a 1t 12得到:a 1=2m/s 2,t 1=0.5s ,x 1=2.75m因为x 1<L ,故物块与传送带同速后相对静止,最后物块以5m/s 的速度滑上水平面BC ,物块滑离传送带后恰到E 点,由动能定理可知:12mv 2=μ2mgs +mgR代入数据得到:R =0.8m.(2)设物块从E 点返回至B 点的速度大小为v B , 由12mv 2-12mv B 2=μ2mg ·2s 得到v B =7m/s ,因为v B >0,故物块会再次滑上传送带,物块在恒定摩擦力的作用下先减速至0再反向加速,由运动的对称性可知,物块以相同的速率离开传送带,经分析可知最终在BC 间停下,设最终停在距C 点x 处,由12mv B 2=μ2mg (s -x ),代入数据解得:x =13m. (3)设传送带速度为v 1时物块恰能到F 点,在F 点满足mg sin30°=m v F 2R从B 到F 过程中由动能定理可知: -μ2mgs -mg (R +R sin30°)=12mv F 2-12mv 12解得:v 1=37m/s设传送带速度为v 2时,物块撞挡板后返回能再次上滑恰到E 点, 由12mv 22=μ2mg ·3s +mgR解得:v 2=43m/s若物块在传送带上一直加速运动,由12mv B m 2-12mv 02=μ1mgL知其到B 点的最大速度v B m =56m/s若物块在E 、F 间速度减为0,则物块将脱离轨道.综合上述分析可知,只要传送带速度37m/s≤v ≤43m/s 就满足条件. 变式训练7.(2019·山东青岛二中上学期期末)如图11所示,O 点距水平地面的高度为H =3m ,不可伸长的细线一端固定在O 点,另一端系一质量m =2kg 的小球(可视为质点),另一根水平细线一端固定在墙上A 点,另一端与小球相连,OB 线与竖直方向的夹角为37°,l <H ,g 取10m/s 2,空气阻力不计.(sin37°=0.6,cos37°=0.8)图11(1)若OB 的长度l =1m ,剪断细线AB 的同时,在竖直平面内垂直OB 的方向上,给小球一个斜向下的冲量,为使小球恰好能在竖直平面内做完整的圆周运动,求此冲量的大小; (2)若先剪断细线AB ,当小球由静止运动至最低点时再剪断OB ,小球最终落地,求OB 的长度l 为多长时,小球落地点与O 点的水平距离最远,最远水平距离是多少. 答案 (1)246kg·m/s (2)1.5m355m 解析 (1)要使小球恰好能在竖直平面内做完整的圆周运动,最高点需满足:mg =m v 2l从B 点到最高点,由动能定理有: -mg (l +l cos37°)=12mv 2-12mv 02联立得一开始的冲量大小为I =mv 0=246kg·m/s(2)从剪断AB 到小球至H -l 高度过程,设小球至H -l 高度处的速度为v 0′ 由机械能守恒可得12mv 0′2=mgl (1-cos37°)小球从H -l 高度做初速度为v 0′的平抛运动,12gt 2=H -l ,x =v 0′t 联立得,x =45(-l 2+3l ) 当l =1.5m 时x 取最大值,为355m .专题突破练1.(2019·山东烟台市上学期期末)如图1所示,把两个相同的小球从离地面相同高度处,以相同大小的初速度v 分别沿竖直向上和水平向右方向抛出,不计空气阻力.则下列说法中正确的是( )图1A .两小球落地时速度相同B .两小球落地时,重力的瞬时功率相同C .从小球抛出到落地,重力对两小球做的功相等D .从小球抛出到落地,重力对两小球做功的平均功率相等 答案 C解析 两小球运动过程中均只有重力做功,故机械能都守恒,由机械能守恒定律得,两小球落地时的速度大小相同,但方向不同,故A 错误;两小球落地时,由于竖直方向的分速度不同,故重力的瞬时功率不相同,故B 错误;由重力做功公式W =mgh 得,从开始运动至落地,重力对两小球做功相同,故C 正确;从抛出至落地,重力对两小球做的功相同,但是落地的时间不同,故重力对两小球做功的平均功率不相同,故D 错误.2.(2019·河北张家口市上学期期末)如图2所示,运动员跳伞将经历加速下降和减速下降两个过程,在这两个过程中,下列说法正确的是( )图2A .运动员先处于超重状态后处于失重状态B .空气浮力对系统始终做负功C .加速下降时,重力做功大于系统重力势能的减小量D .任意相等的时间内系统重力势能的减小量相等 答案 B解析 运动员先加速向下运动,处于失重状态,后减速向下运动,处于超重状态,选项A 错误;空气浮力与运动方向总相反,则对系统始终做负功,选项B 正确;无论以什么运动状态运动,重力做功都等于系统重力势能的减小量,选项C 错误;因为是变速运动,相等的时间内,因为系统下降的高度不相等,则系统重力势能的减小量不相等,选项D 错误. 3.(2019·河南驻马店市上学期期终)一物体在竖直向上的恒力作用下,由静止开始上升,到达某一高度时撤去外力.若不计空气阻力,则在整个上升过程中,物体的机械能E 随时间t 变化的关系图象是( )答案 A解析 设物体在恒力作用下的加速度为a ,机械能增量为:ΔE =F Δh =F ·12at 2,知此时E-t 图象是开口向上的抛物线;撤去外力后的上升过程中,机械能守恒,则机械能不随时间改变,故A 正确,B 、C 、D 错误.4.(多选)如图3所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )图3A .两滑块组成的系统机械能守恒B .轻绳对m 做的功等于m 机械能的增加量C .重力对M 做的功等于M 动能的增加量D .两滑块组成的系统机械能的损失等于M 克服摩擦力做的功 答案 BD5.(2019·福建三明市期末质量检测)如图4所示,一个质量m =1 kg 的小球(视为质点)从H =11m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的竖直圆环内侧,且与圆环的动摩擦因数处处相等,当到达圆环顶点C 时,刚好对轨道压力为零,然后沿CB 圆弧滑下,进入光滑弧形轨道BD ,到达高度为h 的D 点时速度为零,则h 的值可能为(重力加速度g =10m/s 2)( )图4A .10mB .9.5mC .9mD .8.5m 答案 B解析 到达圆环顶点C 时,刚好对轨道压力为零,则mg =m v C 2R,解得v C =210m/s ,则物体在BC 阶段克服摩擦力做功,由动能定理mg (H -2R )-W BC =12mv C 2,解得W BC =10J ;由于从C到B 过程小球对圆轨道的平均压力小于从B 到C 过程小球对圆轨道的平均压力,则小球从C 到B 过程克服摩擦力做的功小于从B 到C 过程克服摩擦力做的功,即0<W CB <10J ;从C 到D 由动能定理:mg (2R -h )-W CB =0-12mv C 2,联立解得9m<h <10m.6.一名外卖送餐员用电动自行车沿平直公路行驶给客户送餐,中途因电瓶“没电”,只能改用脚蹬车以5m/s 的速度匀速前行,骑行过程中所受阻力大小恒为车和人总重力的0.02倍(取g =10 m/s 2),该送餐员骑电动自行车以5m/s 的速度匀速前行过程做功的功率最接近( )A .10WB .100WC .1kWD .10kW 答案 B解析 设送餐员和车的总质量为100kg ,匀速行驶时的速率为5m/s ,匀速行驶时的牵引力与阻力大小相等,F =0.02mg =20 N ,则送餐员骑电动自行车匀速行驶时的功率为P =Fv =100W ,故B 正确.7.(多选)(2019·四川第二次诊断)如图5甲所示,质量m =1kg 的物块在平行斜面向上的拉力F 作用下从静止开始沿斜面向上运动,t =0.5s 时撤去拉力,其1.5s 内的速度随时间变化关系如图乙所示,g 取10m/s 2.则( )图5A .0.5s 时拉力功率为12WB .0.5s 内拉力做功9JC .1.5s 后物块可能返回D .1.5s 后物块一定静止 答案 AC解析 0~0.5 s 内物体的位移:x 1=12×0.5×2 m=0.5 m ;0.5~1.5 s 内物体的位移:x 2=12×1×2m =1m ;由题图乙知,各阶段加速度的大小:a 1=4m/s 2,a 2=2 m/s 2;设斜面倾角为θ,斜面对物块的动摩擦因数为μ,根据牛顿第二定律,0~0.5s 内F -μgm cos θ-mg sin θ=ma 1;0.5~1.5s 内-μmg cos θ-mg sin θ=-ma 2,联立解得:F =6N ,但无法求出μ和θ.0.5s 时,拉力的功率P =Fv =12W ,故A 正确.拉力做的功为W =Fx 1=3J ,故B 错误.无法求出μ和θ,不清楚tan θ与μ的大小关系,故无法判断物块能否静止在斜面上,故C 正确,D 错误.8.(多选)(2019·安徽安庆市期末调研监测)如图6所示,重力为10N 的滑块轻放在倾角为30°的光滑斜面上,从a 点由静止开始下滑,到b 点接触到一个轻质弹簧,滑块压缩弹簧到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点.已知ab =1m ,bc =0.2m ,则以下结论正确的是( )图6A .整个过程中弹簧弹性势能的最大值为6JB .整个过程中滑块动能的最大值为6JC .从c 到b 弹簧的弹力对滑块做功5JD .整个过程中弹簧、滑块与地球组成的系统机械能守恒 答案 AD解析 滑块从a 到c, mgh ac +W 弹′=0-0,解得:W 弹′=-6J .则E pm =-W 弹′=6J ,所以整个过程中弹簧弹性势能的最大值为6J ,故A 正确;当滑块受到的合外力为0时,滑块速度最大,设滑块在d 点合外力为0,由分析可知d 点在b 点和c 点之间.滑块从a 到d 有:mgh ad +W 弹=E k d -0,因mgh ad <6J ,W 弹<0,所以E k d <6J ,故B 错误;从c 点到b 点弹簧的弹力对滑块做的功与从b 点到c 点弹簧的弹力对滑块做的功大小相等,即为6J ,故C 错误;整个过程中弹簧、滑块与地球组成的系统机械能守恒,没有与系统外发生能量转化,故D 正确.9.(多选)(2019·河南九师联盟质检)如图7所示,半径为R =0.4m 的14圆形光滑轨道固定于竖直平面内,圆形轨道与光滑固定的水平轨道相切,可视为质点的质量均为m =0.5kg 的小球甲、乙用轻杆连接,置于圆轨道上,小球甲与O 点等高,小球乙位于圆心O 的正下方.某时刻将两小球由静止释放,最终它们在水平面上运动,g 取10m/s 2.则( )图7A .小球甲下滑过程中机械能增加B .小球甲下滑过程中重力对它做功的功率先增大后减小C .小球甲下滑到圆形轨道最低点对轨道压力的大小为12ND .整个过程中轻杆对小球乙做的功为1J 答案 BD解析 小球甲下滑过程中,轻杆对甲做负功,则甲的机械能减小,故A 错误.小球甲下滑过程中,最高点速度为零,故重力的功率为零;最低点速度和重力垂直,故重力的功率也是零;而中途重力的功率不为零,故重力的功率应该是先增大后减小,故B 正确.两个球与轻杆组成的系统机械能守恒,故:mgR =12mv 2+12mv 2,解得:v =gR =10×0.4m/s =2 m/s ;小球甲下滑到圆弧形轨道最低点,重力和支持力的合力提供向心力,故:F N -mg =m v 2R,解得:F N=mg +m v 2R =0.5×10N+0.5×220.4N =10N ,根据牛顿第三定律,小球甲对轨道的压力大小为10N ,故C 错误;整个过程中,对球乙,根据动能定理,有:W =12mv 2=12×0.5×22J =1J ,故D 正确.10.(2019·吉林“五地六校”合作体联考)一辆赛车在水平路面上由静止启动,在前5s 内做匀加速直线运动,5s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图8所示.已知赛车的质量为m =1×103kg ,赛车受到的阻力为车重力的0.1倍,重力加速度g 取10m/s 2,则以下说法正确的是( )图8A .赛车在前5s 内的牵引力为5×102N。
基础课时15功能关系能量守恒定律一、单项选择题1.运动员跳伞将经历加速下降和减速下降两个过程,将人和伞看成一个系统,在这两个过程中,下列说法正确的是()A.阻力对系统始终做负功B.系统受到的合外力始终向下C.重力做功使系统的重力势能增加D.任意相等的时间内重力做的功相等解析运动员无论是加速下降还是减速下降,阻力始终阻碍系统的运动,所以阻力对系统始终做负功,故选项A正确;运动员加速下降时系统所受的合外力向下,减速下降时系统所受的合外力向上,故选项B错误;由W G=-ΔE p 知,运动员下落过程中重力始终做正功,系统重力势能减少,故选项C错误;运动员在加速下降和减速下降的过程中,任意相等时间内所通过的位移不一定相等,所以任意相等时间内重力做的功不一定相等,故选项D错误。
答案 A2.(2014·广东理综,16)如图1所示,是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中()图1A.缓冲器的机械能守恒B.摩擦力做功消耗机械能C.垫板的动能全部转化为内能D.弹簧的弹性势能全部转化为动能解析由于楔块与弹簧盒、垫板间有摩擦力,即摩擦力做负功,则机械能转化为内能,故A错误,B正确;垫板动能转化为内能和弹性势能,故C、D 错误。
答案 B3.升降机底板上放一质量为100 kg的物体,物体随升降机由静止开始竖直向上移动5 m时速度达到4 m/s,则此过程中(g取10 m/s2)()A.升降机对物体做功5 800 JB.合外力对物体做功5 800 JC.物体的重力势能增加500 JD.物体的机械能增加800 J解析根据动能定理得W升-mgh=12m v2,可解得W升=5 800 J,A正确;合外力做的功为12m v2=12×100×42 J=800 J,B错误;物体重力势能增加mgh=100×10×5 J=5 000 J,C错误;物体机械能增加ΔE=Fh=W升=5 800 J,D错误。
高考专题功能关系分析应用一、核心要点提示以下是几种常见的功能关系及其表达式:(1)其他力做多少正功,物体的机械能就增加多少(2)其他力做多少负功,物体的机械能就减少多少(3)W其他=ΔE(1)作用于系统的一对滑动摩擦力一定做负功,系二、典型例题1.一质量为m的物体以某一速度冲上一个倾角为37°的斜面,其运动的加速度的大小为0.9 g。
这个物体沿斜面上升的最大高度为H,则在这过程中()A.物体的重力势能增加了0.9 mgHB.物体的机械能损失了0.5 mgHC.物体的动能损失了0.5 mgHD.物体的重力势能增加了0.6 mgH【解析】重力势能的增加量等于克服重力做的功,故重力势能增加了mgH,故A、D错误;物体上滑过程,根据牛顿第二定律有,F合=mg sin 37°+F f=ma,解得,F f=0.3mg;动能减小量等于克服合力做的功,W 合=F 合·H sin 37°=1.5 mgH ,物体的机械能损失等于克服阻力做的功,W f =F f ·H sin 37°=0.5mgH ,故B 正确,C 错误。
【答案】B2、如图,一质量为m ,长度为l 的均匀柔软细绳PQ 竖直悬挂。
用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距。
重力加速度大小为g 。
在此过程中,外力做的功为( )A .B .C .D . 【答案】A 【解析】将绳的下端Q 缓慢地竖直向上拉起至M 点,PM 段绳的机械能不变,MQ 段绳的机械能的增加量为,由功能关系可知,在此过程中,外力做的功,故选A 。
3、如图甲所示,质量为1kg 的小物块,以初速度v 0=11m/s 从θ=53°的固定斜面底端先后两次滑上斜面,第一次对小物块施加一沿斜面向上的恒力F ,第二次不施加力,图乙中的两条线段a 、b 分别表示施加力F 和无F 时小物块沿斜面向上运动的v -t 图线,不考虑空气阻力,g =10m/s 2,下列说法正确的是( )A .恒力F 大小为21NB .物块与斜面间的动摩擦因数为0.5C .有恒力F 时,小物块在整个上升过程产生的热量较少D .有恒力F 时,小物块在整个上升过程机械能的减少量较小【答案】BD13l 19mgl 16mgl 13mgl 12mgl 21211()()36339E mg l mg l mgl ∆=---=19W mgl=【解析】根据v -t 中斜率等于加速度的意义可知:2101110/1.1a v a m s t -===-;201111/1b a m s -==-不受拉力时:ma b =-mg sin53°-μmgc os53°; 代入数据得:μ=0.5;受到拉力的作用时:ma a =F -mg si n 53°-μmg cos53°,所以:F =1N .故B 正确,A 错误;根据运动学公式:2002v x a -=可知,因为有恒力F 时,小物块的加速度小,位移大,所以在上升过程产生的热量较大.故C 错误;结合C 的分析可知,有恒力F 时,小物块上升的高度比较大,所以在最高点的重力势能比较大,而升高的过程动能的减小是相等的,所以在上升过程机械能的减少量较小.故D 正确.故选BD.4、如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连,弹簧处于自然长度时物块位于O 点(图中未标出).物块的质量为m ,AB =a ,物块与桌面间的动摩擦因数为μ. 现用水平向右的力将物块从O 点拉至A 点,拉力做的功为W . 撤去拉力后物块由静止向左运动,经O 点到达B 点时速度为零,重力加速度为g ,则上述过程中( )A .物块在A 点时,弹簧的弹性势能等于W -12μmga B .物块在B 点时,弹簧的弹性势能小于W -32μmga C .经O 点时,物块的动能小于W -μmgaD .物块动能最大时弹簧的弹性势能小于物块在B 点时弹簧的弹性势能【解析】 若无摩擦力的理想的弹簧振子,弹簧处于自然长度时O 点在AB 中点.有摩擦,有机械能损耗,就到不了理想情况的A 左边的对称点了,B 点相对A 来说,靠O 点更近了,OA >12a ,对于OA 段由功能关系可得W =μmg OA +E p A ,整理得E p A =W -μmg OA <W -12μmga ,因此A 选项错误;对于物块从O 到A 再到B ,由功能关系,可得W =μmg OA +μmga +E p B ,整理得E p B =W-μmg OA -μmga <W -32μmga ,因此B 选项正确;对于物块从O 到A 再到O ,由功能关系,可得W =μmg OA ×2+12mv 20,经O 点时,物块的动能12mv 20=W -2μmg OA <W -μmga ,C 选项正确;【答案】BC5、如图所示,质量相等的甲、乙两小球从一光滑直角斜面的顶端同时由静止释放,甲小球沿斜面下滑经过a 点,乙小球竖直下落经过b 点,a 、b 两点在同一水平面上,不计空气阻力,下列说法中正确的是( )A.甲小球在a点的速率等于乙小球在b点的速率B.甲小球到达a点的时间等于乙小球到达b点的时间C.甲小球在a点的机械能等于乙小球在b点的机械能(相对同一个零势能参考面)D.甲小球在a点时重力的功率等于乙小球在b点时重力的功率【解析】由机械能守恒得两小球到达a、b两处的速度大小相等,A、C正确;设斜面的倾角为α,甲小球在斜面上运动的加速度为a=g sin α,乙小球下落的加速度为a=g,由t=va可知t甲>t乙,B错误;甲小球在a点时重力的功率P甲=mgv sin α,乙小球在b点时重力的功率P乙=mgv,D错误.【答案】AC6、一物块放在如图所示的斜面上,用力F沿斜面向下拉物块,物块沿斜面运动了一段距离,若已知在此过程中,拉力F所做的功为A,斜面对物块的作用力所做的功为B,重力做的功为C,空气阻力做的功为D,其中A、B、C、D的绝对值分别为100 J、30 J、100 J、20 J,则物块动能的增量及物块机械能的增量分别为()A.50 J150 J B.80 J50 JC.200 J50 J D.150 J50 J【解析】在物块下滑的过程中,拉力F做正功,斜面对物块有摩擦力,做负功,重力做正功,空气阻力做负功.根据动能定理,合外力对物块做的功等于物块动能的增量,则ΔE k=W合=A+B+C+D=100 J+(-30 J)+100 J+(-20 J)=150 J.根据功能关系,除重力之外的其他力所做的功等于物块机械能的增量,则ΔE机=A+B+D=100 J+(-30 J)+(-20 J)=50 J.故选项D正确.【答案】D7、在女子排球比赛中,假设运动员某次发球后排球恰好从网上边缘过网.女子排球网网高H=2.24 m,排球质量为m=300 g,运动员对排球做的功为W1=20 J,排球从发出至运动到网上边缘的过程中克服空气阻力做功为W2=4.12 J,重力加速度g=10 m/s2.排球发出时的位置高度h=2.04 m,选地面为零势能面,则()A.与排球发出时相比,排球恰好到达球网上边缘时重力势能的增加量为6.72 JB .排球恰好到达球网上边缘时的机械能为26.12 JC .排球恰好到达球网上边缘时的动能为15.88 JD .与排球发出时相比,排球恰好到达球网上边缘时动能的减少量为4.72 J【解析】与排球发出时相比,排球恰好到达球网上边缘时重力势能的增加量为mg (H -h )=0.6 J ,A 错误;排球恰好到达球网上边缘时的机械能为mgh +W 1-W 2=22 J ,B 错误;排球恰好到达球网上边缘时的动能为W 1-W 2-mg (H -h )=15.28 J ,C 错误;与排球发出时相比,排球恰好到达球网上边缘时动能的减少量为W 2+mg (H -h )=4.72 J ,D 正确.【答案】D8、(2016·山西四校联考)如图所示,倾角为θ的光滑斜面足够长,一质量为m 的小物体,在沿斜面向上的恒力F 作用下,由静止从斜面底端沿斜面向上做匀加速直线运动,经过时间t ,力F 做功为60 J ,此后撤去力F ,物体又经过相同的时间t 回到斜面底端,若以底端的平面为零势能参考面,则下列说法正确的是( )A .物体回到斜面底端的动能为60 JB .恒力F =2mg sin θC .撤去力F 时,物体的重力势能是45 JD .动能与势能相等的时刻一定出现在撤去力F 之前【解析】由题设条件可知:前后两段小物体的运动的位移大小相等,方向相反,则由牛顿第二定律和运动学公式可得,x 0=12·F -mg sin θm t 2=-(F -mg sin θm t 2-12g sin θt 2),解得,F =43mg sin θ,选项B 错误;由题设条件知,Fx 0=43mgx 0sin θ=60 J ,则此过程中重力做的功为W G =-mgx 0sin θ=-45 J ,撤去力F 时,物体的重力势能是45 J ,选项C 正确;全程由动能定理可得:Fx 0=E k0,则物体回到斜面底端的动能E k0为60 J ,选项A 正确;撤去力F 时,物体的重力势能为45 J ,动能为15 J ,此后只有重力做功,机械能守恒,故动能与势能相等,且都为30 J 时在撤去力F 前、后都存在,选项D 错误。
专题五功和能第2讲功能关系机械能守恒定律和能量守恒定律一、核心知识、方法回扣:1.机械能守恒定律:(1)内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.(2)机械能守恒的条件①对某一物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.②对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.(3)三种表达式:①守恒的观点:____ ____ _____。
②转化的观点:_____ _____。
③转移的观点:_____ ___。
2.几个重要的功能关系(1)重力的功等于的变化,即W G=.(2)弹力的功等于的变化,即W弹=.(3)合力的功等于的变化,即W=.(4)重力之外(除弹簧弹力)的其他力的功等于的变化.W其他=ΔE.(5)一对滑动摩擦力做的功等于的变化.Q=F·s相对.3.静电力做功与无关.若电场为匀强电场,则W=Fs cos α=Eqs cos α;若是非匀强电场,则一般利用W=来求.4.磁场力又可分为洛伦兹力和安培力.洛伦兹力在任何情况下对运动的电荷都;安培力可以做正功、负功,还可以不做功.5.电流做功的实质是电场对做功.即W=UIt=.6.导体棒在磁场中切割磁感线时,棒中感应电流受到的安培力对导体棒做功,使机械能转化为能.7.静电力做功等于的变化,即W AB=-ΔE p.二、方法、规律:1.机械能守恒定律的应用(1)机械能是否守恒的判断①用做功来判断,看重力(或弹簧弹力)以外的其他力做功代数和是否.②用能量转化来判断,看是否有机械能转化为其他形式的能.③对一些“绳子突然绷紧”、“”等问题,机械能一般不守恒,除非题目中有特别说明及暗示.(2)应用机械能守恒定律解题的基本思路①选取研究对象——物体系.②根据研究对象所经历的物理过程,进行、分析,判断机械能是否守恒.③恰当地选取参考平面,确定研究对象在运动过程的始末状态时的机械能.④根据机械能守恒定律列方程,进行求解.2.功能关系在电学中应用的题目,一般过程复杂且涉及多种性质不同的力,因此,通过审题,抓住和运动过程分析是关键,然后根据不同的运动过程各力做功的特点来选择规律求解. 3.力学中的动能定理和能量守恒定律在处理电学中能量问题仍然是首选的方法.三、错题集:1、如图所示,桌面高地面高H,小球自离桌面高h处由静止落下,不计空气阻力,则小球触地的瞬间机械能为(设桌面为零势面)()A.mgh B.mgH C.mg(H+h) D.mg(H-h)2、以下过程中机械能守恒的是()A.以8m/s2的加速度在空中下落的石块B.沿固定的光滑斜面自由下滑的滑块C.正在升空的火箭D.吊在轻质弹簧下端正在自由振动的小球3、如图所示,质量分别为2m和m的A、B两物体用不可伸长的轻绳绕过轻质定滑轮相连,开始两物体处于同一高度,绳处于绷紧状态,轻绳足够长,不计一切摩擦。
物理高考二轮复习专题02:功能关系能量守恒姓名:________ 班级:________ 成绩:________一、单选题 (共5题;共10分)1. (2分)关于恒星,下列说法中正确的是A . 恒星的质量越大寿命就越长B . 太阳是宇宙中最大的恒星C . 恒星最终一定会变成黑洞D . 太阳是离地球最近的恒星2. (2分) (2017高一下·石家庄期末) 篮球运动员通常伸出双手迎接传来的篮球,接球时两手随球迅速收缩至胸前.这样做的目的是()A . 增加作用时间,减小球对手的冲量B . 增加作用时间,减小球对手的冲击力C . 减小作用时间,减小球的动量变化量D . 减小作用时间,增加球的动量变化量3. (2分) (2017高二下·射洪期中) 光滑斜面上物块A被平行斜面的轻质弹簧拉住静止于O点,如图所示,现将A沿斜面拉到B点无初速释放,物体在BC范围内做简谐运动,则下列说法错误的是()A . 在振动过程中,物体A和弹簧组成的系统机械能守恒B . 从B到C的过程中,合外力对物块A的冲量为零C . 物块A从B点到O点过程中,动能的增量等于弹性势能的减小量D . B点时物体A的机械能最小4. (2分) (2016高三上·兰州期中) 高空作业须系安全带,如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚刚产生作用前人下落的距离为h(可视为自由落体运动).此后经历时间t安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为()A . +mgB . ﹣mgC . +mgD . ﹣mg5. (2分) (2019高一上·延安期中) 做直线运动的物体,经过A、B两点的速度分别为vA、vB ,经过AB 中点C的速度。
已知物体在AC段做加速度为a1的匀加速直线运动,在BC段做加速度为a2的匀加速直线运动,则a1、a2的大小关系为()A . a1>a2B . a1=a2C . a1<a2D . 无法判断二、多选题 (共5题;共15分)6. (3分) (2017高一下·玉林期末) 在下列物理过程中,机械能守恒的有()A . 把一个物体竖直向上匀速提升的过程B . 人造卫星沿圆轨道绕地球运行的过程C . 汽车关闭油门后沿水平公路向前滑行的过程D . 从高处竖直下落的物体落在竖直的弹簧上,压缩弹簧的过程,对弹簧,物体和地球这一系统机械能守恒7. (3分)(2017·舒城模拟) 如图所示,半径为R的半球形陶罐固定在可以绕竖直轴旋转的水平转台上,转台转轴与过容器球心O的竖直线重合,转台以一定角速度ω匀速旋转.有两个质量均为m的小物块落入陶罐内,经过一段时间后,两小物块都随陶罐一起转动且相对罐壁静止,两物块和球心O点的连线相互垂直,且A物块和球心O点的连线与竖直方向的夹角θ=60°,已知重力加速度大小为g,则下列说法正确的是()A . 若A物块受到的摩擦力恰好为零,B物块受到的摩擦力的大小为B . 若A物块受到的摩擦力恰好为零,B物块受到的摩擦力的大小为C . 若B物块受到的摩擦力恰好为零,A物块受到的摩擦力的大小为D . 若B物块受到的摩擦力恰好为零,A物块受到的摩擦力的大小为8. (3分) (2017高一下·唐山期末) 神舟号载人飞船在发射至返回的过程中,以下哪些阶段返回舱的机械能是守恒的()A . 飞船升空的阶段B . 只在地球引力作用下,返回舱沿椭圆轨道绕地球运行的阶段C . 只在地球引力作用下,返回舱飞向地球的阶段D . 临近地面时返回舱减速下降的阶段9. (3分)(2017·黑龙江模拟) 在倾角为θ的固定光滑斜面上有两个用轻弹簧相连接的物块A、B,它们的质量分别为m1、m2 ,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态.现用一平行于斜面向上的恒力F拉物块A使之向上运动,当物块B刚要离开挡板C时,物块A运动的距离为d,速度为v,则此时()A . 物块B的质量满足m2gsinθ=kdB . 物块A的加速度为C . 拉力做功的瞬时功率为FvD . 此过程中,弹簧弹性势能的增量为Fd﹣m1dgsinθ﹣ m1v210. (3分) (2019高三上·黄浦月考) 如图甲所示,以斜面底端为重力势能零势能面,一物体在平行于斜面的拉力作用下,由静止开始沿光滑斜面向下运动.运动过程中物体的机械能与物体位移关系的图象(E﹣s图象)如图乙所示,其中0~s1过程的图线为曲线,s1~s2过程的图线为直线.根据该图象,下列判断正确的是()A . 0~s1过程中物体所受拉力可能沿斜面向下B . 0~s2过程中物体的动能一定增大C . s1~s2过程中物体做匀加速直线运动D . s1~s2过程中物体可能在做匀减速直线运动三、实验探究题 (共1题;共8分)11. (8分) (2019高一下·平遥期末) 利用图2装置做“验证机械能守恒定律”实验。
①为验证机械能是否守恒,需要比较重物下落过程中任意两点间的________。
A.动能变化量与势能变化量B.速度变化量和势能变化量C.速度变化量和高度变化量②除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是________。
A.交流电源B.刻度尺C.天平(含砝码)③实验中,先接通电源,再释放重物,得到图3所示的一条纸带。
在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O的距离分别为hA、hB、hC。
已知当地重力加速度为g,打点计时器打点的周期为T。
设重物的质量为m。
从打O点到打B点的过程中,重物的重力势能变化量=________,动能变化量=________。
四、综合题 (共4题;共50分)12. (10分) (2019高一下·滁州期末) 一辆汽车以恒定速率驶上一座拱形桥,已知拱桥面的圆弧半径为50m,g=10m/ 。
(1)若要求汽车在经过最高点后不离开桥面,则它的速度不能超过多少?(2)若汽车的速率为10m/s,则质量为50kg的乘客对座位的压力多大?(3)若汽车的速率为10m/s,则质量为50kg的乘客对座位的压力多大?13. (10分)(2019·望奎模拟) 如图1所示,两根与水平面成角的足够长光滑金属导轨平行放置,导轨间距为,导轨底端接有阻值为的电阻R,导轨的电阻忽略不计整个装置处于匀强磁场中,磁场方向垂直于导轨平面斜向上,磁感应强度现有一质量为、电阻为的金属棒用细绳通过光滑滑轮与质量为的物体相连,细绳与导轨平面平行将金属棒与M由静止释放,棒沿导轨运动了2m后开始做匀速运动运动过程中,棒与导轨始终保持垂直接触取重力加速度求:(1)金属棒匀速运动时的速度;(2)棒从释放到开始匀速运动的过程中,电阻R上产生的焦耳热;(3)若保持某一大小的磁感应强度不变,取不同质量M的物块拉动金属棒,测出金属棒相应的做匀速运动的v值,得到实验图象如图2所示,请根据图中的数据计算出此时的;(4)改变磁感应强度的大小为,,其他条件不变,请在坐标图2上画出相应的图线,并请说明图线与M轴的交点的物理意义.14. (15分) (2019高二下·金山期中) 如图所示,无限长金属导轨EF、PQ固定在倾角为θ=37°的绝缘斜面上,轨道间距L=1 m,底部接入一阻值为R=0.06Ω的定值电阻,上端开口。
垂直斜面向上的匀强磁场的磁感应强度B=2T。
一质量为m=2kg的金属棒ab与导轨接触良好,ab与导轨间动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。
现用一质量为M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与棒ab 相连。
由静止释放M,当t=1s时闭合开关S,ab棒减速。
当M下落距离H=5m时,ab棒开始匀速运动。
已知,运动中ab始终垂直导轨,并接触良好,不计空气阻力,sin37°=0.6,cos37°=0.8,取g=10m/s2。
求:(1) ab棒匀速运动速度v大小;(2)从ab开始运动至开始匀速的这段时间内,电阻R上产生的热量;(3)运动过程中ab棒最大加速度?15. (15分) (2017高二下·晋中期末) 如图所示,长木板B的质量为m2=1.0kg,静止放在粗糙的水平地面上,质量为m3=1.0kg的物块C(可视为质点)放在长木板的最右端.一个质量为m1=0.5kg的物块A由左侧向长木板运动.一段时间后物块A以v0=6m/s的速度与长木板B发生弹性正碰(时间极短),之后三者发生相对运动,整个过程物块C始终在长木板上.已知长木板与地面间的动摩擦因数为μ1=0.1,物块C与长木板间的动摩擦因数μ2=0.3,物块C与长木板间的最大静摩擦力等于滑动摩擦力,取g=10m/s2 ,求:(1)碰后瞬间物块A和长木板B的速度;(2)碰后瞬间物块A和长木板B的速度;(3)长木板B的最小长度.(4)长木板B的最小长度.参考答案一、单选题 (共5题;共10分)1-1、2-1、3-1、4-1、5-1、二、多选题 (共5题;共15分)6-1、7-1、8-1、9-1、10-1、三、实验探究题 (共1题;共8分)11-1、四、综合题 (共4题;共50分)12-1、答案:略12-2、答案:略12-3、答案:略13-1、答案:略13-2、答案:略13-3、答案:略13-4、答案:略14-1、14-2、14-3、15-1、答案:略15-2、答案:略15-3、答案:略15-4、答案:略第11 页共11 页。