辽宁省大连市西岗区2020-2021学年九年级上学期期末数学试题
- 格式:docx
- 大小:777.50 KB
- 文档页数:28
2020-2021学年辽宁省沈阳市沈北新区九年级第一学期期末数学试卷一、选择题(共10小题).1.用配方法解方程x2﹣4x﹣4=0时,原方程应变形为()A.(x﹣2)2=0B.(x﹣2)2=8C.(x+2)2=0D.(x+2)2=8 2.△ABC中,∠A、∠B都是锐角,且sin A=,cos B=,则△ABC的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定3.将抛物线y=﹣2x2向右平移3个单位,再向下平移4个单位,所得抛物线解析式为()A.y=2(x﹣3)2+4B.y=﹣2(x+3)2+4C.y=﹣2(x+3)2﹣4D.y=﹣2(x﹣3)2﹣44.如图,在Rt△ABC中,∠C=90°,AB=10,AC=6,则sin B等于()A.B.C.D.5.若2a=3b(a≠0),则的值为()A.B.C.2D.36.如图,河坝横断面迎水坡AB的坡比为1:,坝高BC=3m,则AB的长度为()A.6m B.3m C.9m D.6m7.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.4B.3C.2D.08.如图,AB∥CD∥EF,AF与BE相交于点G.若AD=2,DF=4,BC=3,则BE的长为()A.B.C.12D.99.如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3B.3:2C.9:4D.4:910.已知反比例函数y=的图象如图所示,则二次函数y=2kx2﹣x+k2的图象大致为()A.B.C.D.二、填空题(共6小题).11.方程x(3x﹣2)=4(3x﹣2)的根为.12.菱形ABCD中,对角线AC长为10cm,BD=6cm,则菱形ABCD的面积为cm2.13.如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为.14.抛物线y=2x2﹣3x﹣5与x轴两个交点之间的距离是.15.如图,点A在反比例函数y=﹣(x<0)图象上,过点A作AC⊥X轴,垂足为C,OA的垂直平分线交x轴于点B,当AC=1时,△ABC的周长为.16.某学校生物兴趣小组在该校空地上围了一块面积为200m2的矩形试验田,用来种植蔬菜.如图,试验田一面靠墙,墙长35m,另外三面用49m长的篱围成,其中一边开有一扇1m宽的门(不包括篱笆).设试验田垂直于墙的一边AB的长为xm,则所列方程为.三、解答题17.(6分)计算:2sin30°﹣4cos45°+|1﹣tan60°|.18.(6分)如图,△ABC中,AC=BC,CD⊥AB于点D,四边形DBCE是平行四边形.求证:四边形ADCE是矩形.19.(10分)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF 交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.20.(8分)如图,已知四边形ABCD是平行四边形,P为DC延长线上一点,AP分别交BD,BC于点M,N.(1)证明:AM2=MN•MP;(2)若AD=6,DC:CP=2:1,求BN的长.21.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)22.(10分)某超市准备进一批每个进价为40元的小家电,经市场调查预测,售价定为50元时可售出400个;定价每增加1元,销售量将减少10个.(1)设每个定价增加x元,此时的销售量是多少?(用含x的代数式表示)(2)超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少元?(3)超市若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?23.(10分)如图,在平面直角坐标系xOy中,直线y=kx+3(k≠0)与x轴交于点A,与双曲线y=(m≠0)的一个交点为B(﹣1,4).(1)求直线与双曲线的表达式;(2)过点B作BC⊥x轴于点C,若点P在双曲线y=上,且△PAC的面积为4,求点P的坐标.24.(12分)已知正方形ABCD,E为平面内任意一点,连接AE,BE,将△ABE绕点B顺时针旋转90°得到△BFC.(1)如图1,求证:①AE=CF;②AE⊥CF.(2)若BE=2,①如图2,点E在正方形内,连接EC,若∠AEB=135°,EC=5,求AE的长;②如图3,点E在正方形外,连接EF,若AB=6,当C、E、F在一条直线时,求AE的长.25.(12分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为,抛物线的顶点坐标为;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案一、选择题(每题2分,共20分)1.用配方法解方程x2﹣4x﹣4=0时,原方程应变形为()A.(x﹣2)2=0B.(x﹣2)2=8C.(x+2)2=0D.(x+2)2=8解:∵x2﹣4x﹣4=0,∴x2﹣4x+4=8,∴(x﹣2)2=8,故选:B.2.△ABC中,∠A、∠B都是锐角,且sin A=,cos B=,则△ABC的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定解:∵△ABC中,∠A、∠B都是锐角,sin A=,cos B=,∴∠A=∠B=30°.∴∠C=180°﹣∠A﹣∠B=180°﹣30°﹣30°=120°.故选:B.3.将抛物线y=﹣2x2向右平移3个单位,再向下平移4个单位,所得抛物线解析式为()A.y=2(x﹣3)2+4B.y=﹣2(x+3)2+4C.y=﹣2(x+3)2﹣4D.y=﹣2(x﹣3)2﹣4解:抛物线y=﹣2x2的顶点坐标为(0,0),向右平移3个单位,再向下平移4个单位后的图象的顶点坐标为(3,﹣4),所以,所得图象的解析式为y=﹣2(x﹣3)2﹣4,故选:D.4.如图,在Rt△ABC中,∠C=90°,AB=10,AC=6,则sin B等于()A.B.C.D.解:在Rt△ABC中,∴sin B===,故选:C.5.若2a=3b(a≠0),则的值为()A.B.C.2D.3解:∵2a=3b(a≠0),∴a=b,∴==2;故选:C.6.如图,河坝横断面迎水坡AB的坡比为1:,坝高BC=3m,则AB的长度为()A.6m B.3m C.9m D.6m解:∵迎水坡AB的坡比为1:,∴=,即=,解得,AC=3,由勾股定理得,AB==6(m),故选:A.7.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.4B.3C.2D.0解:∵反比例函数y=的图象位于第二、四象限,∴k﹣1<0,解得:k<1.8.如图,AB∥CD∥EF,AF与BE相交于点G.若AD=2,DF=4,BC=3,则BE的长为()A.B.C.12D.9解:∵AB∥CD∥EF,∴,∴,∵AD=2,DF=4,BC=3,∴,∴BE=9,故选:D.9.如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3B.3:2C.9:4D.4:9解:设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∴△DEG∽△CFG,∴=()2=()2=,故选:D.10.已知反比例函数y=的图象如图所示,则二次函数y=2kx2﹣x+k2的图象大致为()A.B.C.D.解:∵函数y=的图象经过二、四象限,∴k<0,∴抛物线开口向下,对称轴x=﹣=<0,即对称轴在y轴的左边.故选:D.二、填空题(每题3分,共18分)11.方程x(3x﹣2)=4(3x﹣2)的根为x1=,x2=4.解:方程移项得:x(3x﹣2)﹣4(3x﹣2)=0,分解因式得:(3x﹣2)(x﹣4)=0,可得3x﹣2=0或x﹣4=0,解得:x1=,x2=4.故答案为:x1=,x2=412.菱形ABCD中,对角线AC长为10cm,BD=6cm,则菱形ABCD的面积为30cm2.解:菱形的面积等于两对角线的积的一半,则这个菱形的面积是6×10×=30cm2.故答案为30.13.如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为(2,﹣3).解:∵四边形OABC是菱形,∴A、C关于直线OB对称,∵A(2,3),∴C(2,﹣3),故答案为(2,﹣3).14.抛物线y=2x2﹣3x﹣5与x轴两个交点之间的距离是.解:当y=0时,2x2﹣3x﹣5=0,解得,x1=,x2=﹣1,∵﹣(﹣1)=,∴抛物线y=2x2﹣3x﹣5与x轴两个交点之间的距离是,故答案为:.15.如图,点A在反比例函数y=﹣(x<0)图象上,过点A作AC⊥X轴,垂足为C,OA的垂直平分线交x轴于点B,当AC=1时,△ABC的周长为1+.解:∵AC⊥x轴,AC=1,∴A点的纵坐标为1,当y=1时,﹣=1,解得x=﹣,∴A(﹣,1),∴OC=,∵OA的垂直平分线交x轴于点B,∴BA=BO,∴△ABC的周长=AC+BC+AB=AC+BC+BO=AC+CO=1+.故答案为1+.16.某学校生物兴趣小组在该校空地上围了一块面积为200m2的矩形试验田,用来种植蔬菜.如图,试验田一面靠墙,墙长35m,另外三面用49m长的篱围成,其中一边开有一扇1m宽的门(不包括篱笆).设试验田垂直于墙的一边AB的长为xm,则所列方程为x(49+1﹣2x)=200.解:设当试验田垂直于墙的一边长为xm时,则另一边的长度为(49+1﹣2x)m,依题意得:x(49+1﹣2x)=200,故答案是:x(49+1﹣2x)=200.三、解答题17.(6分)计算:2sin30°﹣4cos45°+|1﹣tan60°|.解:原式=2×﹣4×+﹣1=1﹣2+﹣1=﹣2+.18.(6分)如图,△ABC中,AC=BC,CD⊥AB于点D,四边形DBCE是平行四边形.求证:四边形ADCE是矩形.【解答】证明:∵AC=BC,CD⊥AB,∴∠ADC=90°,AD=BD.∵在▱DBCE中,EC∥BD,EC=BD,∴EC∥AD,EC=AD.∴四边形ADCE是平行四边形.又∵∠ADC=90°,∴四边形ADCE是矩形.19.(10分)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF 交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.解:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵四边形ABCD是平行四边形,∴∠ABE=∠ADF,∴△ABE∽△ADF;(2)∵△ABE∽△ADF,∴∠BAG=∠DAH,∴AG=AH,∴∠AGH=∠AHG,∴∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.20.(8分)如图,已知四边形ABCD是平行四边形,P为DC延长线上一点,AP分别交BD,BC于点M,N.(1)证明:AM2=MN•MP;(2)若AD=6,DC:CP=2:1,求BN的长.【解答】证明:(1)∵AD∥BC,∴∠ADM=∠NBM,∠DAM=∠BNM,∴△ADM∽△NBM,∴=,∵AB∥DC,∴∠P=∠BAM,∠MDP=∠ABM,∴△PDM∽△ABM,∴=,∴=,∴AM2=MN•MP;(2)∵AD∥BC,∴∠PCN=∠PDA,∠P=∠P,∴△PCN∽△PDA,∴=,∵DC:CP=2:1,∴==,又∵AD=6,∴NC=2,∴BN=4.21.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.22.(10分)某超市准备进一批每个进价为40元的小家电,经市场调查预测,售价定为50元时可售出400个;定价每增加1元,销售量将减少10个.(1)设每个定价增加x元,此时的销售量是多少?(用含x的代数式表示)(2)超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少元?(3)超市若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?解:(1)根据题意得出:400﹣10x;(2)(10+x)(400﹣10x)=6000整理得:x2﹣30x+200=0,解得x1=20,x2=10(舍去),∴每个定价70元;(3)设最大利润为y元,则y=﹣10x2+300x+4000,当时,y最大=,所以每个定价为65元时,获得的最大利润为6250元.23.(10分)如图,在平面直角坐标系xOy中,直线y=kx+3(k≠0)与x轴交于点A,与双曲线y=(m≠0)的一个交点为B(﹣1,4).(1)求直线与双曲线的表达式;(2)过点B作BC⊥x轴于点C,若点P在双曲线y=上,且△PAC的面积为4,求点P的坐标.解:(1)∵直线y=kx+3(k≠0)与双曲线y=(m≠0)都经过点B(﹣1,4),∴﹣k+3=4,m=﹣1×4.∴k=﹣1,m=﹣4.∴直线的表达式为y=﹣x+3,双曲线的表达式为.(2)由题意,得点C的坐标为C(﹣1,0),直线y=﹣x+3与x轴交于点A(3,0).∴AC=4.∵,∴y P=±2.∵点P在双曲线上,∴点P的坐标为P1(﹣2,2)或P2(2,﹣2).24.(12分)已知正方形ABCD,E为平面内任意一点,连接AE,BE,将△ABE绕点B顺时针旋转90°得到△BFC.(1)如图1,求证:①AE=CF;②AE⊥CF.(2)若BE=2,①如图2,点E在正方形内,连接EC,若∠AEB=135°,EC=5,求AE的长;②如图3,点E在正方形外,连接EF,若AB=6,当C、E、F在一条直线时,求AE的长.解:(1)①∵△ABE绕点B顺时针旋转90°得到△BFC,∴△AEB≌△CFB,∴AE=CF;②如图1,延长AE交CF于M,由①知,△AEB≌△CFB,∴∠F=∠AEB,∠BAE=∠CBF,∵∠AEB+∠BAE+∠ABE=180°,∴∠F+∠CBF+∠BAM=180°∵四边形ABCD是正方形,∴∠ABC=90°,∴∠AMF=360°﹣∠ABC﹣∠F﹣∠BAM=90°,∴AE⊥CF;(2)①如图2,连接EF,由旋转知,BE⊥BF且BE=BF,∴∠BFE=45°,在Rt△BEF中,BE=BF=2,∴EF2=8,∵∠BEF=45°,∠AEB=135°,∴∠AEB+∠BEF=180°,∴点A,E,F在同一条直线上,由(1)知,AE⊥CF,在Rt△ECF中,CE=5,利用勾股定理得,FC==,∴AE=CF=②如图3,∵四边形ABCD是正方形,∴BC=AB=6,在Rt△BEF中,BF=BE=2,∴EF=2,过点B作BG⊥FC于点G,∴BG=FG=EF=,在Rt△BCG中,利用勾股定理得,GC==,故FC=CG+FG=+,∴AE=CF=+.25.(12分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为y=﹣x2﹣2x+3,抛物线的顶点坐标为(﹣1,4);(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.解:(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即:﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①,顶点坐标为(﹣1,4);(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×=2,y D=BD sin∠CBO=2,则点D(﹣1,2);(3)如图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=﹣x﹣1…②,联立①②并解得:x=(舍去正值),故点P(,);(4)不存在,理由:连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,﹣x2﹣2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC=×3×3+(﹣x2﹣2x+3﹣x﹣3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P.。
2020-2021大连市初三数学上期中试题及答案一、选择题1.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .42.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )A .16B .29C .13D .233.用配方法解方程2410x x -+=,配方后的方程是 ( )A .2(2)3x +=B .2(2)3x -=C .2(2)5x -=D .2(2)5x +=4.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32,0),B (0,2),则点B 2018的坐标为( )A .(6048,0)B .(6054,0)C .(6048,2)D .(6054,2)5.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)6.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 7.用配方法解方程210x x +-=,配方后所得方程是( )A .213()24x -=B .213()24x += C .215()24x += D .215()24x -= 8.已知实数0a <,则下列事件是随机事件的是( ) A .0a ≥ B .10a +> C .10a -< D .210a +<9.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4 B .k≤4 C .k<4且k≠3 D .k≤4且k≠3 10.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A .6B .7C .8D .9 11.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( )A .45°B .30°C .75°D .60° 12.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( )A .-41B .-35C .39D .45 二、填空题13.如图,将Rt ABC 绕直角顶点C 顺时针旋转90,得到DEC ,连接AD ,若25BAC ∠=,则BAD ∠=______.14.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .15.已知:如图,CD 是O 的直径,AE 切O 于点B ,DC 的延长线交AB 于点A ,20A ∠=,则DBE ∠=________度.16.如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C=_______度.17.圆锥的底面半径为14cm ,母线长为21cm ,则该圆锥的侧面展开图的圆心角为_____ 度.18.母线长为2cm ,底面圆的半径为1cm 的圆锥的侧面积为__________ cm².19.若关于 x 的一元二次方程2x 2-x+m=0 有两个相等的实数根,则 m 的值为__________.20.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.三、解答题21.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根.(1)求a 的取值范围;(2)当a 为符合条件的最大整数,求此时方程的解.22.已知关于x 的一元二次方程222(1)20x a x a a --+--=有两个不相等的实数根1x ,2x .(1)若a 为正整数,求a 的值;(2)若1x ,2x 满足221212-16x x x x +=,求a 的值.23.在平面直角坐标系xOy 中,抛物线G :y =mx 2+2mx +m ﹣1(m ≠0)与y 轴交于点C ,抛物线G 的顶点为D ,直线:y =mx +m ﹣1(m ≠0).(1)当m =1时,画出直线和抛物线G ,并直接写出直线被抛物线G 截得的线段长.(2)随着m 取值的变化,判断点C ,D 是否都在直线上并说明理由.(3)若直线被抛物线G 截得的线段长不小于2,结合函数的图象,直接写出m 的取值范围.24.现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是 ; (2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)25.某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2b a=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ),∴244ac ba=n,∴b2=4ac-4an=4a(c-n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C.【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键. 2.C解析:C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)=26=13.故选C.3.B解析:B【解析】【分析】根据配方法可以解答本题.【详解】x2−4x+1=0,(x−2)2−4+1=0,(x−2)2=3,故选:B.【点睛】本题考查解一元二次方程−配方法,解答本题的关键是解一元二次方程的方法.4.D解析:D【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差6个单位长度,根据这个规律可以求得B2018的坐标.【详解】∵A (32,0),B (0,2), ∴OA =32,OB =2,∴Rt △AOB 中,AB 52=, ∴OA +AB 1+B 1C 2=32+2+52=6, ∴B 2的横坐标为:6,且B 2C 2=2,即B 2(6,2),∴B 4的横坐标为:2×6=12, ∴点B 2018的横坐标为:2018÷2×6=6054,点B 2018的纵坐标为:2, 即B 2018的坐标是(6054,2).故选D .【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B 点之间的关系是解决本题的关键.5.C解析:C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质.6.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、不是轴对称图形,是中心对称图形,故此选项错误;B 、是轴对称图形,也是中心对称图形,故此选项正确;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、是轴对称图形,不是中心对称图形,故此选项错误;故选B .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.C解析:C【解析】【分析】本题根据配方的基本方法进行就可以得到答案.配方首先将常数项移到方程的右边,将二次项系数化为1,然后左右两边同时加上一次项系数一半的平方.【详解】解:2x +x=12x +x+14=1+14 215()24x +=. 故选C【点睛】 考点:配方的方法.8.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意;故选:B .【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.B解析:B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x轴交点的特点. 10.D解析:D【解析】【分析】由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB=1lr2,计算即可.【详解】解:∵正方形的边长为3,∴弧BD的弧长=6,∴S扇形DAB=11lr=22×6×3=9.故选D.【点睛】本题考查扇形面积的计算.11.D解析:D【解析】【分析】【详解】作半径OC⊥AB于点D,连结OA,OB,∵将O沿弦AB折叠,圆弧较好经过圆心O,∴OD=CD,OD=12OC=12OA,∴∠OAD=30°(30°所对的直角边等于斜边的一半),同理∠OBD=30°,∴∠AOB=120°,∴∠APB=12∠AOB=60°.(圆周角等于圆心角的一半)故选D.12.C 解析:C 【解析】【分析】根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a2-5a-1=0,a+b=5,ab=-1,把22a3ab8b2a++-变形为2(a2-5a-1)+3ab+8(a+b)+2,即可得答案.【详解】∵a,b为方程2x5x10--=的两个实数根,∴a2-5a-1=0,a+b=5,ab=-1,∴22a3ab8b2a++-=2(a2-5a-1)+3ab+8(a+b)+2=2×0+3×(-1)+8×5+2=39.故选:C.【点睛】本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1、x2,则x1+x2=ba-,x1·x2=ca;熟练掌握韦达定理是解题关键.二、填空题13.【解析】【分析】根据旋转的性质可得AC=CD再判断出△ACD是等腰直角三角形然后根据等腰直角三角形的性质求出∠CAD=45°由∠BAD=∠BAC+∠CAD 可得答案【详解】∵Rt△ABC绕其直角顶点C解析:70【解析】【分析】根据旋转的性质可得AC=CD,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,由∠BAD=∠BAC+∠CAD可得答案.【详解】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为:70°∘.【点睛】本题考查了旋转的性质、等腰直角三角形的判定与性质,熟练掌握相关性质并准确识图是解题的关键.14.【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°得到△BDE∴△ABC≌△BDE∠CBD=60°∴BD=BC=12cm∴△BCD为等边三角形∴CD=BC=BD=12cm 在Rt△ACB中AB解析:【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,AB=22+=13,512+=22AC BC△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为42.考点:旋转的性质.15.55【解析】【分析】连接BC由CD是⊙O的直径知道∠CBD=90°由AE是⊙O的切线知道∠DBE=∠1∠2=∠D又∠1+∠D=90°即∠1+∠2=90°;而∠A+∠2=∠1由此即可求出∠1即求出∠D解析:55【解析】【分析】连接BC,由CD是⊙O的直径知道∠CBD=90°,由AE是⊙O的切线知道∠DBE=∠1,∠2=∠D,又∠1+∠D=90°,即∠1+∠2=90°;而∠A+∠2=∠1,由此即可求出∠1,即求出∠DBE.【详解】如图,连接BC,∵CD是⊙O的直径,∴∠CBD=90°,∵AE是⊙O的切线,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°①,∠A+∠2=∠1②,-②得∠1=55°即∠DBE=55°.故答案为:∠DBE=55°.【点睛】本题考查的是弦切角的性质及圆周角定理,三角形内角与外角的关系,是一道较简单的题目.16.【解析】试题分析:解:连接OD∵CD是⊙O切线∴OD⊥CD∵四边形ABCD 是平行四边形∴AB∥CD∴AB⊥OD∴∠AOD=90°∵OA=OD∴∠A=∠ADO=45°∴∠C=∠A=45°故答案为45考解析:【解析】试题分析:解:连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.考点:1.切线的性质;2.平行四边形的性质.17.240【解析】【分析】根据弧长=圆锥底面周长=28πcm圆心角=弧长180母线长π计算【详解】解:由题意知:弧长=圆锥底面周长=2×14π=28πcm扇形的圆心角=弧长×180÷母线长÷π=28π×解析:240【解析】【分析】根据弧长=圆锥底面周长=28πcm,圆心角=弧长⨯180÷母线长÷π计算.【详解】解:由题意知:弧长=圆锥底面周长=2×14π=28πcm,扇形的圆心角=弧长×180÷母线长÷π=28π×180÷21π=240°.故答案为:240.【点睛】此题主要考查弧长=圆锥底面周长及弧长与圆心角的关系,熟练掌握公式及关系是解题关键.18.2π【解析】【分析】【详解】解:∵圆锥的底面圆的半径为1∴圆锥的底面圆的周长=2π×1=2π∴圆锥的侧面积=×2π×2=2π故答案为2π【点睛】本题考查了圆锥的侧面积公式:S=l•R圆锥侧面展开图为解析:2π【解析】【分析】【详解】解:∵圆锥的底面圆的半径为1,∴圆锥的底面圆的周长=2π×1=2π,∴圆锥的侧面积=12×2π×2=2π. 故答案为2π.【点睛】 本题考查了圆锥的侧面积公式:S =12l •R .圆锥侧面展开图为扇形,底面圆的周长等于扇形的弧长,母线长为扇形的半径. 19.【解析】【分析】根据关于x 的一元二次方程2x2-x+m=0有两个相等的实数根结合根的判别式公式得到关于m 的一元一次方程解之即可【详解】根据题意得:△=1-4×2m=0整理得:1-8m=0解得:m=故 解析:18【解析】【分析】根据“关于x 的一元二次方程2x 2-x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m 的一元一次方程,解之即可.【详解】根据题意得:△=1-4×2m=0, 整理得:1-8m=0,解得:m=18, 故答案为:18. 【点睛】 本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.20.【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k 由已知条件可得h=2k=9再由条件:它在x 轴上截得的线段长为6求出a 的值即可【详解】解:由题意设此抛物线的解析式为:y=a (x-2)2+9解析:2(2)9y x =--+【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k ,由已知条件可得h=2,k=9,再由条件:它在x 轴上截得的线段长为6,求出a 的值即可.【详解】解:由题意,设此抛物线的解析式为: y=a (x-2)2+9,∵且它在x 轴上截得的线段长为6,令y=0得,方程0=a (x-2)2+9,即:ax 2-4ax+4a+9=0,∵抛物线ya (x-2)2+9在x 轴上的交点的横坐标为方程的根,设为x 1,x 2,∴x 1+x 2=4,x 1•x 2=49a a+ ,∴|x 1-x 26=即16-4×49a a+=36 解得:a=-1,y=-(x-2)2+9, 故答案为:y=-(x-2)2+9.【点睛】此题主要考查了用顶点式求二次函数的解析式和一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根.三、解答题21.(1)a ≤174;(2)x =1或x =2 【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b 2﹣4ac≥0,建立关于a 的不等式,即可求出a 的取值范围;(2)根据(1)确定出a 的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a ﹣2)≥0,解得a ≤174; (2)由(1)可知a ≤174, ∴a 的最大整数值为4,此时方程为x 2﹣3x +2=0,解得x =1或x =2. 【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.22.(1)1a =,2;(2)1a =-【解析】【分析】(1)根据关于x 的一元二次方程222(1)20x a x a a --+--=有两个不相等的实数根,得到()22[2(1)]420a a a ∆=----->,于是得到结论;(2)由根与系数的关系可得122(1)x x a +=-,2122x x a a =--,代入22121216x x x x +-=,解方程即可得到结论.【详解】(1)∵关于x 的一元二次方程222(1)20x a x a a --+--=有两个不相等的实数根, ∴()22[2(1)]420a a a ∆=----->,解得:3a <,∵a 为正整数,∴1a =,2;(2)∵122(1)x x a +=-,2122x x a a =--,∵22121216x x x x +-=, ∴()2121216x x x x +-=,∴()22[2(1)]2163a a a -----=,解得:11a =-,26a =,∵3a <,∴1a =-.【点睛】本题考查的是一元二次方程根与系数的关系及根的判别式,先判断出a 的取值范围,再由根与系数的关系得出方程组是解答此题的关键.23.(1)见解析;(2)无论m 取何值,点C ,D 都在直线上,见解析;(3)m 的取值范围是m 或m【解析】【分析】(1)当m =1时,抛物线G 的函数表达式为y =x 2+2x ,直线的函数表达式为y =x ,求出直线被抛物线G 截得的线段,再画出两个函数的图象即可;(2)先求出C 、D 两点的坐标,再代入直线的解析式进行检验即可;(3)先联立直线与抛物线的解析式,求出它们的交点坐标,再根据这两个交点之间的距离不小于2列出不等式,求解即可.【详解】(1)当m=1时,抛物线G 的函数表达式为y=x 2+2x ,直线的函数表达式为y=x ,直线被抛物线G ,画出的两个函数的图象如图所示:(2)无论m取何值,点C,D都在直线上.理由如下:∵抛物线G:y=mx2+2mx+m-1(m≠0)与y轴交于点C,∴点C的坐标为C(0,m-1),∵y=mx2+2mx+m-1=m(x+1)2-1,∴抛物线G的顶点D的坐标为(-1,-1),对于直线:y=mx+m-1(m≠0),当x=0时,y=m-1,当x=-1时,y=m×(-1)+m-1=-1,∴无论m取何值,点C,D都在直线上;(3)解方程组2211y mx mx my mx m⎧++-⎨+-⎩==,得1xy m⎧⎨-⎩==,或11xy-⎧⎨-⎩==,∴直线与抛物线G的交点为(0,m-1),(-1,-1).∵直线被抛物线G截得的线段长不小于2,22()(0111)m++-+≥2,∴1+m2≥4,m2≥3,∴m≤33,∴m的取值范围是m≤33【点睛】此题考查二次函数的性质,二次函数图象上点的坐标特征,解题关键在于掌握两函数交点坐标的求法,函数的图象.24.(1)经过第一次传球后,篮球落在丙的手中的概率为12;(2)篮球传到乙的手中的概率为38.【解析】【分析】(1)根据概率公式即可得出答案;(2)根据题意先画出树状图得出所有等情况数,由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,由概率公式即可得出答案.【详解】(1)经过第一次传球后,篮球落在丙的手中的概率为12;故答案为:12;(2)画树状图如图所示:由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,∴篮球传到乙的手中的概率为38.【点睛】本题考查用列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.25.每件衬衫应降价20元.【解析】【分析】利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得x1=10,x2=20.∵“扩大销售量,减少库存”,∴x1=10应舍去,∴x=20.答:每件衬衫应降价20元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.。
2021-2022学年辽宁省大连市西岗区初二数学第一学期期末试卷一、选择题:(本大题共有10小题,每小题3分,共30分)1.(3分)下面有4个汽车标志图案,其中不是轴对称图形的是()A.B.C.D.2.(3分)下列长度的三条线段能组成直角三角形的是()A.2,3,4B.3,4,5C.9,16,25D.,,3.(3分)下列计算结果正确的是()A.a4•a2=a8B.6a﹣2a=4aC.a6÷a2=a3D.(﹣a2b)2=﹣a4b24.(3分)若二次根式在实数范围内有意义,则x的取值范围是()A.x≥﹣3B.x≥3C.x≤﹣3D.x>﹣35.(3分)下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=a x+a yB.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x6.(3分)若把x,y的值同时扩大为原来的2倍,则下列分式的值保持不变的是()A.B.C.D.7.(3分)已知x2+kx+16是一个完全平方式,则k的值为()A.4B.8C.﹣8D.±88.(3分)如图,A(4,0),C(﹣1,0),以点A为圆心,AC长为半径画弧,则点B的坐标为()A.(0,3)B.(3,0)C.(0,6)D.(6,0)9.(3分)实验测得,某种新型冠状病毒的直径是120纳米(1纳米=10﹣9米),120纳米用科学记数法可表示为()A.12×10﹣6米B.1.2×10﹣7米C.1.2×10﹣8米D.120×10﹣9米10.(3分)如图,AB=AC,AB的垂直平分线MN交AC于点D,BC=5cm,则△DBC的周长是()A.8cm B.13cm C.18cm D.21cm二、填空题(本题共6小题,每小题3分,共18分)11.(3分)如图,已知AB=AD,那么添加下列一个条件后,使它们能判定△ABC≌△ADC.12.(3分)一个等腰三角形的两边长分别为2和5,则它的周长为.13.(3分)如图,AD是△ABC的角平分线,∠B=90°.若AB=3,则点D到AC的距离是.14.(3分)如图,△ABC中,∠C=90°,AB的垂直平分线交BC于D.若AC=1,则BC=.15.(3分)计算:(2﹣3x)(﹣2﹣3x)=.16.(3分)在课外活动跳绳时,小林跳90下所需时间比小群跳160下所需时间少半分钟.已知小群每分钟跳的次数比小林每分钟所跳次数多倍,设小林每分钟跳x下.三、解答题(本题共4小题,17题10分、18题、19题各9分,20题11分,共39分)17.(10分)(1);(2).18.(9分)(π﹣3)0+||.19.(9分)已知:如图,点B、A、D、E在同一直线上,BD=AE,∠C=∠F.求证:AC=DF.20.(11分)根据疫情防控工作需要,某社区组织甲、乙两支医疗队开展疫苗接种工作,甲队比乙队每小时多接种30人四、解答题(体题共3小题,其中21题9分、22题、23题各10分,共29分)21.(9分)已知:在平面直角坐标系中,两点的横向(或纵向)距离可以用两点横坐标(或纵坐标)(1)如图,平面内点A坐标为(2,3),点B坐标为(﹣1,﹣1),纵向距离AC=,最后,可得AB=;(2)平面内有点M(1,),点N(m,﹣)(m>0),请参考(1)(用含m的式子表示)22.(10分)某中学有一块四边形的空地ABCD,如图所示,经测量∠A=90°,BC=12m,CD=13m (1)求四边形ABCD的面积;(2)学校计划在空地上种植草皮,若每平方米草皮要200元,问学校需要投入多少资金买草皮.23.(10分)某校为美化校园,计划对面积为1800m2区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用1天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.35万元,要求在两周(14天),问应该怎么安排两队工作量最省钱?五、解答题(本题共3小题,其中24题、25题各11分,26题12分,,共34分)24.(11分)已知,长方形纸片ABCD中,AB=3,点E在边CD上移动,连接AE,得到多边形AB'C'E,点B、C的对应点分别为点B'、C'.(1)当B'C'恰好经过点C时,如图1,则B′D=,CE=;(2)当B'C'分别交边AD、CD于点F、G,且∠DAE=22.5°,如图225.(11分)已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上(点M、点N 不与所在线段端点重合),BN=AM,连接AN,射线AG∥BC,延长BM交射线AG于点D,且AE=DE.(1)如图,当∠ACB=90°时;①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其它条件不变时,∠BDE的度数是.(用含α的代数式表示)26.(12分)阅读材料:在平面直角坐标系中,若点A(x A,y A),点B(x B,y B),则线段AB的中点M坐标为(,)(即中点坐标是端点坐标和的一半).问题:如图1,在平面直角坐标系中,△OAB顶点O是坐标原点(2a,0)、点B(a,a)、点D(b,0)(b,b).(1)连接AE,则AE中点M的坐标为(用含a、b的代数式表示);(2)过M点作MG⊥x轴,垂足为G,过B作BH⊥MG,小明利用点坐标表示出线段MG、DG、MH、BH的长,判断出MB与MD的关系,b=1,请根据小明的方法补全步骤;(3)若等腰Rt△ODE绕点O逆时针旋转α(α<45°),如图2,若点D坐标为(m,n),请写出过程,若不可以参考答案与试题解析一、选择题:(本大题共有10小题,每小题3分,共30分)1.【解答】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选:D.2.【解答】解:A.∵22+72=4+5=13,42=16,∴62+32≠42,∴以8,3,4为边的三角形不是直角三角形;B.∵62+45=9+16=25,57=25,∴32+82=53,∴以3,4,7为边的三角形是直角三角形;C.∵92+168=81+256=337,252=625,∴97+162≠252,∴以3,16,故本选项不符合题意;D.∵()2+()2=3+4=7,()2=5,∴()2+()2≠()2,∴以,,为边的三角形不是直角三角形;故选:B.3.【解答】解:A.a4•a2=a8,故本选项错误;B.6a﹣2a=2a;C.a6÷a2=a2,故本选项错误;D.(﹣a2b)2=a6b2,故本选项错误;故选:B.4.【解答】解:若二次根式在实数范围内有意义,则x+3≥8,解得:x≥﹣3.故选:A.5.【解答】解:A、a (x+y)=ax+ay,故此选项不合题意;B、x2﹣4x+6=(x﹣2)2,故此选项不合题意;C、10x4﹣5x=5x(2x﹣1),正确;D、x2﹣16+4x,无法分解因式;故选:C.6.【解答】解:A、=2×,故此选项不符合题意;B、=,分式的值保持不变;C、=,分式的值不能保持不变;D、=,分式的值不能保持不变.故选:B.7.【解答】解:∵x2+kx+16是一个完全平方式,∴k=±8.故选:D.8.【解答】解:根据已知可得:AB=AC=5,OA=4.在Rt△ABO中,OB=.∴B(0,3).故选:A.9.【解答】解:120纳米=120×10﹣9米=1.7×10﹣7米.故选:B.10.【解答】解:∵MN是AB的垂直平分线,∴DA=DB,∴△DBC的周长=DB+DC+BC=DA+DC+BC=AC+BC=13(cm),故选:B.二、填空题(本题共6小题,每小题3分,共18分)11.【解答】解:CB=CD,根据SSS,故答案为:CB=CD.12.【解答】解:(1)若2为腰长,5为底边长,由于6+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+3=12.故答案为:12.13.【解答】解:过点D作DE⊥AC于E,在Rt△ABC中,∠B=90°,BC=4,则AC===5,∵AD是△ABC的角平分线,∠B=90°,∴BD=DE,∵S△ABC=S△ABD+S△ACD,∴×3×4=×5×DE,解得:DE=BD=,即点D到AC的距离是,故答案为:.14.【解答】解:连接AD.∵AB的垂直平分线交BC于D,交AB于E,∴AD=BD,∴∠B=∠BAD=15°,∴∠ADC=∠B+∠BAD=30°,在Rt△ABC中,∠ADC=30°,∴AD=BD=2AC=2,∴CD=AC=,∴BC=CD+BD=2+,故答案为:2+.15.【解答】解:(2﹣3x)(﹣5﹣3x)=﹣(2﹣5x)(2+3x)=﹣[22﹣(3x)4]=﹣4+9x2.故答案为:﹣4+9x5.16.【解答】解:设小林每分钟跳x下,那么小群每分钟跳(1+.根据题意得,=﹣.故答案为:=﹣.三、解答题(本题共4小题,17题10分、18题、19题各9分,20题11分,共39分)17.【解答】解:(1)原式=﹣===2;(2)原式=•=x.18.【解答】解:(π﹣3)0+||.=4+2﹣﹣5﹣2=3﹣﹣3﹣2=﹣3﹣.19.【解答】证明:∵BD=AE,∴BD﹣AD=AE﹣AD.即AB=DE. ∵BC∥EF,∴∠B=∠E. 又∵∠C=∠F,在△ABC和△DEF中,∴△ABC≌△DEF. ∴AC=DF.20.【解答】解:设甲队每小时接种x人,则乙队每小时接种(x﹣30)人,依题意得:=,解得:x=150,经检验,x=150是原方程的解.答:甲队每小时接种150人.四、解答题(体题共3小题,其中21题9分、22题、23题各10分,共29分)21.【解答】解:(1)BC=2﹣(﹣1)=2,AC=3﹣(﹣1)=6,由勾股定理得,AB=,故答案为:3,3,5;(2)∵MN的横向距离为m﹣1,纵向距离为5,∴MN====|m+3|,∵m>8,∴MN=m+3.22.【解答】解:(1)连接BD,在Rt△ABD中,BD2=AB2+AD2=32+52=52,在△CBD中,CD2=132,BC5=122,而122+72=132,即BC8+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=AD•AB+×3×3+.故这块四边形空地的面积是36平方米;(2)36×200=7200(元).答:学校需要投入7200元资金买草皮.23.【解答】解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=1,解得:x=80,经检验,x=80是原方程的解,则x=100,答:甲工程队每天能完成绿化的面积是100m2,乙工程队每天能完成绿化的面积是80m2;(2)∵=<=,∴安排甲做14天,乙做:(1800﹣14×100)÷80=5(天)最省钱,此时费用为:14×6.4+5×5.35=7.35(万元),答:安排甲做14天,乙做5天最省钱.五、解答题(本题共3小题,其中24题、25题各11分,26题12分,,共34分)24.【解答】解:(1)∵四边形ABCD是长方形,∴DC=AB=3,AD=BC=5,由翻折可知:AB′=AB=7,B′C′=BC=5,∠C′=∠C=90°,∴B′D===4,∴C′D=B′C′﹣B′D=3﹣4=1,在Rt△DEC′中,DE=CD﹣CE=4﹣CE,根据勾股定理,得DE2=C′E2+C′D7,∴(3﹣CE)2=CE5+12,解得CE=.故答案为:4,;(2)∵∠DAE=22.5°,∴∠B′AE=∠BAE=67.8°,∴∠B′AF=45°,∴△BAF是等腰直角三角形,∴∠DFG=45°,∴△DFG是等腰直角三角形,∴DF=DG,∵AB′=FB′=3,∴AF=3,∴DF=AD﹣AF=5﹣3,∴△DFG的面积=×DF•DG=2=(43﹣30﹣15.25.【解答】(1)①证明:∵CA=CB,BN=AM,∴CM=CN,在△BCM和△ACN中,,∴△BCM≌△ACN(SAS);②解:∵△BCM≌△ACN,∴∠CBM=∠CAN,∵AG∥BC,∴∠CBM=∠ADM,∴∠ADM=∠CAN,∵AE=DE,∴∠EAD=∠EDA,∴∠BDE=∠CAN+∠EAD,∵∠ACB=90°,∴∠CAG=90°,∴∠BDE=∠CAN+∠EAD=90°;(2)解:由②同理可得∠BDE=∠CAN+∠EAD,∵∠ACB=α,∴∠CAG=α,∴∠BDE=∠CAN+∠EAD=180°﹣α,故答案为:180°﹣α.26.【解答】解:(1)∵A(2a,0),b),∴M(a+b,b).故答案为:(a+b,b).(2)结论:BM=DM,BM⊥DM.理由:∵B(a,a),0)b,b),∴BH=b,HM=a﹣b b,DG=a﹣b,∴BH=MG,HM=DG,∵∠DGM=∠MHB=90°,∴△BHM≌△MGD(SAS),∴∠BMH=∠GDM,BM=DM,∵∠GDM+∠DMG=90°,∴∠BMH+∠DMG=90°,∴∠BMD=90°,∴BM⊥DM.若a=8,b=1,2),8),),∴BH=,HM=,DG=,∴BH=MG,HM=DG,∵∠DGM=∠MHB=90°,∴△BHM≌△MGD(SAS),∴∠BMH=∠GDM,BM=DM,∵∠GDM+∠DMG=90°,∴∠BMH+∠DMG=90°,∴∠BMD=90°,∴BM⊥DM.(3)可以判断.理由:如图2中,过点M作MJ⊥OA于J,过点B作BH⊥MJ于点H.∵D(m,n),由旋转的性质可知,E((m﹣n,∵A(2a,2),a),∴M(a+m﹣n,n),∴DG=a+m﹣m﹣n m﹣n m+m﹣n m﹣m﹣n,∴BH=MG,HM=DG,∵∠DGM=∠MHB=90°,∴△BHM≌△MGD(SAS),∴∠BMH=∠GDM,BM=DM,∵∠GDM+∠DMG=90°,∴∠BMH+∠DMG=90°,∴∠BMD=90°,∴BM⊥DM.。
2020-2021学年辽宁省大连市高一(上)期末数学试卷一、单选题(本大题共8小题,共40.0分)1.“a⃗=b⃗ ”是“|a⃗|=|b⃗ |”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件2.若A=(−1,3),B={x|y=log2(2−x)},则A∩(∁R B)=()A. {x|3≤x}B. {x|−1<x<2}C. {x|2≤x<3}D. {x|x<3}3.若样本平均数为x.,总体平均数为μ,则()A. x.=μB. x.≈μC. μ是x.的估计值D. x.是μ的估计值4.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则AF⃗⃗⃗⃗⃗ =()A. 34AB⃗⃗⃗⃗⃗ +14AD⃗⃗⃗⃗⃗⃗B. 14AB⃗⃗⃗⃗⃗ +34AD⃗⃗⃗⃗⃗⃗C. 12AB⃗⃗⃗⃗⃗ +AD⃗⃗⃗⃗⃗⃗D. 34AB⃗⃗⃗⃗⃗ +12AD⃗⃗⃗⃗⃗⃗5.幂函数y=x−1及直线y=x,y=1,x=1将平面直角坐标系的第一象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数y=x12的图象经过的“卦限”是()A. ④⑦B. ④⑧C. ③⑧D. ①⑤6.从含有两件正品a1,a2和一件次品b的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,则取出的两件产品中恰有一件次品的概率是()A. 34B. 23C. 12D. 147. 基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt 描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT.有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为( )(ln2≈0.69)A. 1.2天B. 1.8天C. 2.5天D. 3.5天8. 已知函数f(x)={e x ,x ≥0lg(−x),x <0,若关于x 的方程f 2(x)+f(x)+t =0有三个不同的实根,则t 的取值范围是( )A. (−∞,−2]B. [1,+∞)C. [−2,1]D. (−∞,−2]∪[1,+∞)二、多选题(本大题共4小题,共20.0分)9. 设A ,B ,C 为三个事件,下列各式意义表述正确的是( )A. A −BC 表示事件A 不发生且事件B 和事件C 同时发生 B. A +B +C −表示事件A ,B ,C 中至少有一个没发生 C. A +B 表示事件A ,B 至少有一个发生D. A −B −C +A −BC −+AB −C −表示事件A ,B ,C 恰有一个发生10. 已知正数a ,b ,则下列不等式中恒成立的是( )A. a +b ≥2√abB. (a +b)(1a +1b )≥4 C. (a +b)2≥2(a 2+b 2)D. 2aba+b >√ab11. 下列结论正确的是( )A. 一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底B. 若a e 1⃗⃗⃗ +b e 2⃗⃗⃗ =c e 1⃗⃗⃗ +d e 2⃗⃗⃗ ,(a,b ,c ,d ∈R ,e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是单位向量),则a =c ,b =dC. 向量a ⃗ 与b ⃗ 共线⇔存在不全为零的实数λ1,λ2,使λ1a ⃗ +λ2b ⃗ =0⃗ D. 已知A ,B ,P 三点共线,O 为直线外任意一点,若OP ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ ,则x +y =1 12. 已知函数f(x)={|log 2x|(0<x <2)x 2−8x +13(x ≥2),若f(x)=a 有四个解x 1,x 2,x 3,x 4满足x 1<x 2<x 3<x 4,则下列命题正确的是( )A. 0<a <1B. x 1+2x 2∈(3,+∞)C. x 1+x 2+x 3+x 4∈(10,212)D. x 3∈[2,+∞)三、单空题(本大题共4小题,共20.0分) 13. lg2+lg5+2log 23的值为______ .14. 设a ⃗ ,b ⃗ 是两个不共线的向量,AB ⃗⃗⃗⃗⃗ =2a ⃗ −b ⃗ ,BC ⃗⃗⃗⃗⃗ =4a ⃗ +k b ⃗ ,A ,B ,C 三点共线,则k = ______ .15. 我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓放粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为______石;(结果四舍五入,精确到各位). 16. 已知定义在R 上函数f(x)=ln(√x 2+1−x)−e x −e −x e x +e −x+2x +1,已知定义在R 上函数y =g(x)满足g(x)+g(−x)=2,设函数f(x)与g(x)图象交点为(x 1,y 1),(x 2,y 2),(x n ,y n ),则f(2)+f(−2)的值为______ ;∑(n i=1x i +y i )的值为______ .(用n 表示) 四、解答题(本大题共6小题,共70.0分)17. 如图,已知M ,N ,P 是△ABC 三边BC ,CA ,AB 上的点,且BM ⃗⃗⃗⃗⃗⃗=14BC ⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗⃗ =14CA ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ =14AB ⃗⃗⃗⃗⃗ ,若AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,试用基底{a ⃗ ,b ⃗ }表示向量NP ⃗⃗⃗⃗⃗⃗ ,AM ⃗⃗⃗⃗⃗⃗ .18. 我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水进行了调查,通过抽样,获得了某年100个家庭的月均用水量(单位:t),将数据按照[0,1),[1,2),[2,3),[3,4),[4,5]分成5组,制成了如图所示的频率分布直方图.(Ⅰ)求图中a 的值;(Ⅱ)假设同组中的每个数据都用该组区间的中值点代替,估计全市家庭月均用水量的平均数.19. 已知函数f(x)=e x −ae −x 的反函数f −1(x)的图象经过点P(32,ln2).(Ⅰ)求函数f(x)的解析式;(Ⅱ)判断函数f(x)的奇偶性,并证明.20. 某项选拔共有四轮考核.每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为45、35、25、15,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第四轮才被淘汰的概率;(Ⅱ)求该选手至多进入第三轮考核的概率.(注:本小题结果可用分数表示)21.定义满足性质“y=f(x)(x∈D),对任意x,y,x+y2∈D均满足f(x+y2)≥12[f(x)+f(y)],当且仅当x=y时等号成立”的函数叫M函数.(Ⅰ)下列函数(1)g(x)=−x2;(2)m(x)=x2;(3)ℎ(x)=e x;(4)g(x)=log2x是M 函数是_____(直接写出序号).(Ⅱ)选择(Ⅰ)中一个M函数,加以证明;(Ⅲ)试利用M函数解决下列问题:若实数m,n满足2m+2n=1,求m+n的最大值.22.已知函数f(x)=2log a(mx+b)−log a x,其中b∈R.(Ⅰ)若m=b=2,且x∈[14,2]时,f(x)的最小值是−2,求实数a的值;(Ⅱ)若m=2,0<a<1,且x∈[14,2]时,f(x)≤0恒成立,求实数b的取值范围;(Ⅲ)若a=2,b=1,∀t∈[12,1],函数g(x)=f(x)−log2x在区间[t,t+1]上的最大值与最小值的差不大于2,求正数m的取值范围.答案和解析1.【答案】A【解析】解:a ⃗ =b ⃗ 时,有|a ⃗ |=|b ⃗ |成立,是充分条件; |a ⃗ |=|b ⃗ |时,a ⃗ =b ⃗ 不一定成立,不是必要条件; 所以“a ⃗ =b ⃗ ”是“|a ⃗ |=|b ⃗ |”的充分不必要条件. 故选:A .分别判断充分性和必要性是否成立即可.本题考查了平面向量的基本概念与充分、必要条件的判断问题,是基础题.2.【答案】C【解析】解:B ={x|y =log 2(2−x)}={x|2−x >0}={x|x <2}, 则∁R B ={x|x ≥2},则A ∩(∁R B)={x|2≤x <3}, 故选:C .求出集合B 的等价条件,结合集合补集交集的定义进行求解即可.本题主要考查集合的基本运算,求出集合的等价条件,结合集合的基本运算是解决本题的关键.比较基础.3.【答案】D【解析】解:样本平均数为x .,总体平均数为μ, 统计学中,利用样本数据估计总体数据, ∴样本平均数x .是总体平均数μ的估计值. 故选:D .统计学中利用样本数据估计总体数据,可知样本平均数是总体平均数的估计值. 本题考查了利用样本数据估计总体数据的应用问题,是基础题.4.【答案】D【解析】本题主要考查了平面向量的基本定理的简单应用,属于基础题.根据题意得:AF ⃗⃗⃗⃗⃗ =12(AC ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ ),结合向量加法的四边形法则及平面向量的基本定理可求. 【解答】解:根据题意得:AF ⃗⃗⃗⃗⃗ =12(AC ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ ), 又AC⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ , 所以AF ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )=34AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗⃗ . 故选D .5.【答案】D【解析】解:取x =12得y =(12)12=√12=√22∈(0,1),故在第⑤卦限;再取x =2得y =212=√2∈(1,2),故在第①卦限 故选:D .结合幂函数的五种形式,再代入12和2验证即可. 本题考查幂函数的图象,考查对函数图象的分析和理解.6.【答案】B【解析】解:从含有两件正品a 1,a 2和一件次品b 的3件产品中, 按先后顺序任意取出两件产品,每次取出后不放回, 基本事件总数n =3×2=6,取出的两件产品中恰有一件次品包含的基本事件个数m =2×1+1×2=4, 则取出的两件产品中恰有一件次品的概率是P =m n=46=23.故选:B .基本事件总数n =3×2=6,取出的两件产品中恰有一件次品包含的基本事件个数m =2×1+1×2=4,由此能求出取出的两件产品中恰有一件次品的概率.本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.【解析】【分析】根据所给模型求得r=0.38,令t=0,求得I,根据条件可得方程e0.38t=2,然后解出t即可.本题考查函数模型的实际运用,考查学生阅读理解能力,计算能力,属于中档题.【解答】解:把R0=3.28,T=6代入R0=1+rT,可得r=0.38,∴I(t)=e0.38t,当t=0时,I(0)=1,则e0.38t=2,≈1.8.两边取对数得0.38t=ln2,解得t=ln20.38故选:B.8.【答案】A【解析】解:设m=f(x),作出函数f(x)的图象如图:则m≥1时,m=f(x)有两个根,当m<1时,m=f(x)有1个根,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则等价为m2+m+t=0有2个不同的实根,且m≥1或m<1,当m=1时,t=−2,此时由m2+m−2=0得m=1或m=−2,满足f(x)=1有两个根,f(x)=−2有1个根,满足条件当m≠1时,设ℎ(m)=m2+m+t,则ℎ(1)<0即可,即1+1+t<0,则t <−2, 综上t ≤−2, 故选:A .利用换元法设m =f(x),将方程转化为关于m 的一元二次方程,利用根的分布建立不等式关系进行求即可.本题主要考查方程根的个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合以及换元法是解决本题的关键.9.【答案】ACD【解析】解:根据题意,依次分析选项:对于A ,A −BC 表示事件A 不发生且事件B 和事件C 同时发生,A 正确,对于B ,A +B +C 表示事件A 、B 、C 至少一个发生,则A +B +C −表示事件ABC 都没有发生,B 错误,对于C ,A +B 表示事件A ,B 至少有一个发生,C 正确,对于D ,A −B −C 表示事件A 、B 不发生且事件C 发生,A −BC −事件A 、C 不发生且事件B 发生,AB −C −事件B 、C 不发生且事件A 发生,则A −B −C +A −BC −+AB −C −表示事件A ,B ,C 恰有一个发生, 故选:ACD .根据题意,依次分析选项是否正确,综合即可得答案. 本题考查对立,互斥事件的定义以及概率性质,10.【答案】AB【解析】解:A :当a >0,b >0时,由基本不等式得,a +b ≥2√ab ,当且仅当a =b 时取等号,A 成立;(a +b)(1a +1b )=2+b a +a b ≥2+2√a b ⋅ba =4,当且仅当a =b 时取等号,B 成立;2(a 2+b 2)−(a +b)2=a 2+b 2−2ab =(a −b)2≥0,则(a +b)2≤2(a 2+b 2),C 不恒成立;因为a +b ≥2√ab ,所以2ab ≤(a +b)√ab ,所以2aba+b ≤√ab ,当且仅当a =b 时取等号,D 不恒成立. 故选:AB .由已知结合基本不等式及不等式的性质分别检验各选项即可判断. 本题主要考查了基本不等式,不等式的性质的应用,属于中档题.11.【答案】CD【解析】 【分析】本题主要考查基底的概念、平面向量共线的充要条件、平面向量共线定理,属于中档题. 根据基底的概念即可判断选项A ;当e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是共线向量时即可判断选项B ;根据向量共线定理即可判断选项C ,D . 【解答】解:根据基底的概念可知,平面内不共线的向量都可以作为该平面内向量的基底,故A 错误;当e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是共线向量时,结论不一定成立,故B 错误;若a ⃗ 与b ⃗ 均为零向量,则显然符合题意,且存在不全为零的实数λ1,λ2,使得λ1a ⃗ +λ2b ⃗ =0⃗ ; 若a ⃗ ≠0⃗ ,则由两向量共线知,存在λ,使得b ⃗ =λa ⃗ ,即λa ⃗ −b ⃗ =0⃗ ,符合题意,故C 正确;由于A ,B ,P 三点共线,所以AB ⃗⃗⃗⃗⃗ ,AP⃗⃗⃗⃗⃗ 共线, 由共线向量定理可知,存在实数λ使得AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,即OP ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =λ(OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ), 所以OP ⃗⃗⃗⃗⃗ =(1−λ)OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗⃗ , 故x =1−λ,y =λ, 所以x +y =1,故D 正确. 故选:CD .12.【答案】AC【解析】 【分析】本题考查函数零点与方程根的关系,考查数形结合思想,属于中档题.作函数f(x)={|log 2x|(0<x <2)x 2−8x +13(x ≥2)的图象,由图象可得x 1⋅x 2=1,x 3+x 4=8;从而逐项判断各选项即可得答案. 【解答】解:作函数f(x)={|log 2x|(0<x <2)x 2−8x +13(x ≥2)的图象如下,f(x)=a 有四个解,即y =a 与f(x)的图象有4个交点,x 1<x 2<x 3<x 4, 可得0<a <1,可知选项A 正确; 图象可得x 1⋅x 2=1, 则1x 1=x 2∵12<x 1<1,且1<x 2<2,∴1=x 1⋅x 2=1⋅x 1⋅2x 2≤1⋅(x 1+2x 2)2 令y =x 1+2x 2=x 1+2x 1,根据函数单调性可得y ∈(3,4.5).可知选项B 错误;∵12<x 1<1,且1<x 2<2,得1=x 1⋅x 2<(x 1+x 22)2,可得x 1+x 2>2,当且仅当x 1=x 2=1时,取等号. ∵x 3+x 4=8;∴x 1+x 2+x 3+x 4∈(10,212),可知选项C 正确; 从图象可知x 3∈[2,+∞)不正确; 故选:AC .13.【答案】4【解析】解:原式=lg10+3=1+3=4, 故答案为:4.根据对数的运算法则计算即可.本题考查了对数的运算法则,考查了运算能力,属于基础题.14.【答案】−2【解析】解:∵a ⃗ ,b ⃗ 是两个不共线的向量,AB ⃗⃗⃗⃗⃗ =2a ⃗ −b ⃗ ,BC ⃗⃗⃗⃗⃗ =4a ⃗ +k b ⃗ ,A ,B ,C 三点共线, ∴AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ , ∴42=k −1,解得k =−2.故答案为:−2.由A ,B ,C 三点共线,得AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,由此能求出k 的值.本题考查利用三点共线求参数的值,向量平行的性质等基础知识,考查运算求解能力,是基础题.15.【答案】169【解析】解:由题意,这批米内夹谷约为1534×28254≈169石, 故答案为:169.根据254粒内夹谷28粒,可得比例,即可得出结论.本题考查利用数学知识解决实际问题,考查学生的计算能力,比较基础.16.【答案】2 2n【解析】解:函数f(x)=ln(√x 2+1−x)−e x −e −x e x +e −x+2x +1,那么f(−x)=2+1+x)+e x −e −xe x +e −x −2x +1,则f(x)+f(−x)=2,∴f(2)+f(−2)=2,g(x)+g(−x)=2, 可知f(x)与g(x)的图象都关于点(0,1)对称,函数f(x)与g(x)图象交点为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可得这些交点也关于(0,1)对称;∴∑(n i=1x i +y i )=x 1+y 1+x 2+y 2+⋯+x n +y n =2n ; 故答案为2;2n .由f(x)+f(−x)=2,可知f(2)+f(−2)的值为2,g(x)+g(−x)=2,可知f(x)与g(x)的图象都关于点(0,1)对称,即可求解∑(n i=1x i +y i )的值.本题考查函数与方程的应用,函数的对称性的应用,考查分析问题解决问题的能力,属于中档题.17.【答案】解:因为CN ⃗⃗⃗⃗⃗⃗ =14CA ⃗⃗⃗⃗⃗ ,所以AN ⃗⃗⃗⃗⃗⃗ =34AC ⃗⃗⃗⃗⃗ , 所以NP ⃗⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ −AN ⃗⃗⃗⃗⃗⃗ =14AB ⃗⃗⃗⃗⃗ −34AC ⃗⃗⃗⃗⃗ =14a ⃗ −34b ⃗ , AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +14BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +14(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=34AB ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ =34a ⃗ +14b ⃗ .【解析】根据向量运算的三角形法则及共线向量定理,即可求得结论.本题主要考查向量加法的三角形法则和共线向量定理以及平面向量基本定理,属于基础题.18.【答案】解:(Ⅰ)由频率和为1,得a =1−0.12−0.22−0.36−0.12=0.18.(Ⅱ)计算平均数为x −=0.5×0.12+1.5×0.22+2.5×0.36+3.5×0.18+4.5×0.12=2.46(t),估计全市家庭月均用水量的平均数为2.46t .【解析】(Ⅰ)由频率和为1求出a 的值;(Ⅱ)利用该组区间的中值点代替同组中的数据,计算月均用水量的平均数即可. 本题考查了频率求值问题,也考查了平均数计算问题,是基础题.19.【答案】解:(Ⅰ)函数f(x)=e x −ae −x 的反函数f −1(x)的图象经过点P(32,ln2).所以函数f(x)经过(ln2,32),即当x =ln2时,f(ln2)=32,所以a =1, 所以f(x)=e x −e −x .(Ⅱ)由(1)知f(x)=e x −e −x ,则函数为奇函数.证明如下:因为f(x)的定义域为R ,且f(−x)=e −x −e x =−(e x −e −x )=−f(x). 所以函数f(x)为奇函数.【解析】(Ⅰ)直接利用原函数和反函数的关系式,求出a 的值,进一步得到f(x)的解析式;(Ⅱ)利用函数的奇偶性的定义进行判断即可.本题考查的知识要点:原函数和反函数的关系,函数的奇偶性的判断与证明,主要考查运算能力,属于基础题.20.【答案】解:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为A i (i =1,2,3,4),则P(A 1)=45,P(A 2)=35,P(A 3)=25,P(A 4)=15, ∴该选手进入第四轮才被淘汰的概率P 1=P(A 1A 2A 3A 4−) =P(A 1)P(A 2)P(A 3)P(P 4−) =45×35×25×45=96625.(Ⅱ)该选手至多进入第三轮考核的概率P 2=P(A 1−+A 1A 2−+A 1A 2A 3−)=P(A 1−)+P(A 1)P(A 2−)+P(A 1)P(A 2)P(A 3−) =15+45×25+45×35×35=101125【解析】(1)该选手进入第四轮才被淘汰,表示前三轮通过,第四轮淘汰,则该选手进入第四轮才被淘汰的概率P =P(A 1A 2A 3A 4−)=P(A 1)P(A 2)P(A 3)P(P 4−),根据已知条件,算出式中各数据量的值,代入公式即可求解.(2)求该选手至多进入第三轮考核表示该选手第一轮被淘汰,或是第二轮被淘汰,或是第三轮被淘汰,则该选手至多进入第三轮考核的概率P =P(A 1−+A 1A 2−+A 1A 2A 3−),根据已知条件,算出式中各数据量的值,代入公式即可求解.本小题主要考查相互独立事件概率的计算,运用数学知识解决问题的能力,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解.21.【答案】(Ⅰ)(1)(4).(Ⅱ)若选(1)g(x)=−x2,那么任取x,y∈R,则g(x+y2)=−(x+y2)2,g(x)+g(y)2=−x2+(−y2)2,所以g(x+y2)−g(x)+g(y)2=−(x+y2)2−−x2+(−y2)2=−2xy+x2+y24=(x−y)22≥0,当且仅当x=y时,取等号,所以g(x+y2)≥g(x)+g(y)2.若选(4)g(x)=log2x,任取x,y∈(0,+∞),则g(x+y2)=log2x+y2,g(x)+g(y)2=log2x+log2y2=log2√xy,所以g(x+y2)−g(x)+g(y)2=log2x+y2−log2√xy,因为x+y2≥√xy,(当且仅当x=y时,取等号),所以log2x+y2≥log2√xy,所以g(x+y2)−g(x)+g(y)2=log2x+y2−log2√xy≥0,所以g(x+y2)≥g(x)+g(y)2.(Ⅲ)利用g(x)=log2x,设x=2m,y=2n,则m=log2x,n=log2y,由(Ⅱ)知,log2x+y2≥log2√xy,(当且仅当x=y时,取等号),所以log212≥12(m+n),(当且仅当m=n时,取等号),所以−1≥12(m+n),所以m+n≤−2,所以m+n的最大值为−2.【解析】(Ⅰ)(1)(4).(Ⅱ)分别选(1)(4),结合M 函数的定义,即可得出证明. (Ⅲ)利用g(x)=log 2x ,设x =2m ,y =2n ,由(Ⅱ)知,log 2x+y 2≥log 2√xy ,(当且仅当x =y 时,取等号),推出log 212≥12(m +n),(当且仅当m =n 时,取等号),即可得出m +n 的最大值.本题考查“M 函数”的新定义,解题关键是对“M 函数”定义的理解,属于中档题.22.【答案】解:(Ⅰ)若m =b =2,则f(x)=2log a (2x +2)−log a x =log a (2x+2)2x=log a (4x +4x +8),当0<a <1时,f(x)在[14,1]上单调递增,(1,2]上单调递减,此时f(x)min =f(14)=−2,即log a (4×14+414+8)=log a 25=−2,∴a =±15,又∵0<a <1,∴a =15,当a >1时,f(x)在[14,1]上单调递减,(1,2]上单调递增,此时f(x)min =f(1)=−2,即log a (4+4+8)=log a 16=−2,解得a =±14,又a >1,故不符合题意, 综上所述,a 的值为15;(Ⅱ)若m =2,f(x)=2log a (2x +b)−log a x =log a (4x +b 2x+4b)=log a(2x+b)2x,由题意可知当x ∈[14,2]时,f(x)≤0恒成立,即(2x+b)2x≥1,即4x 2+(4b −1)x +b 2≥0在[14,2]上恒成立, 令ℎ(x)=4x 2+(4b −1)x +b 2,1°{−4b−18≤14ℎ(14)≥0ℎ(2)≥0,解得b ≥0,2°{−4b−18≥2ℎ(14)≥0ℎ(2)≥0,解得b ≤−4−√2,而2x +b >0,故不符合题意,3°{14<−4b−18<2△≤0,无解,综上所述:b ≥0;(Ⅲ)若a =2,b =1,f(x)=2log 2(mx +1)−log 2x =log 2(m 2x +2m +1x ), g(x)=f(x)−log 2x =log 2(m 2+2m x+1x 2)=2log 2mx+1x,令p(x)=mx+1x,则原问题转化成p(x)在区间[t,t +1]上的最大值与最小值的比不大于2,p(x)=mx+1x,x ∈[t,t +1],故p(x)max =m +1t ,p(x)min =m +1t+1, 故m +1t ≤2(m +1t+1),即m ≥1t −2t+1,t ∈[12,1], 令H(t)=1t −2t+1,H′(x)=−1t 2+2(t+1)2=t 2−2t−1t 2(t+1)2<0, 所以H(t)max =H(12)=23,故m ∈[23,+∞). 解得:m 的取值范围为[23,+∞).【解析】(Ⅰ)先利用对数的运算法则化简函数解析式,讨论a ,根据函数的单调性建立方程,解之即可;(Ⅱ)要使x ∈[14,2]时,f(x)≤0恒成立,转化成4x 2+(4b −1)x +b 2≥0在[14,2]上恒成立,利用二次函数的性质进行求解即可;(Ⅲ)利用函数的单调性求出函数g(x)在[t,t +1]的最大值和最小值,然后建立不等式解之即可.本题主要考查了函数恒成立问题,解题的关键是转化成利用函数单调性研究函数的最值,同时考查了学生运算求解的能力.。
2020-2021学年辽宁省大连117中学九年级(上)期末物理试卷一、单选题(本大题共12小题,共24.0分)1.下列电器中,利用电流的热效应工作的是( )A. 计算器B. 电冰箱C. 洗衣机D. 电饭煲2.四冲程柴油机在工作过程中,将机械能转化为内能的冲程是( )A. 吸气冲程B. 压缩冲程C. 做功冲程D. 排气冲程3.下列做法中,符合安全用电原则的是( )A. 用湿抹布擦拭插座B. 更换灯泡时先切断电源C. 搬动正在通电的电器D. 可在电线上晾晒衣服4.下列实例中,内能改变的方式与其他三项不同的是( )A. 发烧时,用冷毛巾给头部降温B. 人晒太阳时感觉暖和C. 搓手时,感到手变热D. 刚煮熟的鸡蛋放在冷水中降温5.下列各种情况下,物质的比热容会发生变化的是( )A. 水凝固成冰B. 一杯水倒去一半C. 让水吸收更多的热量D. 15℃的水变成45℃的水6.用两根绝缘细线,分别将甲、乙两个相同的轻质小球悬挂起来,两个小球都带正电,再将乙球慢慢靠近甲球时,会出现的情形是( )A. B. C. D.7.如图所示的电路中,灯L1、L2均能发光,且电流表能正确显示电路中电流大小的是( )A. B.C. D.8.关于热学知识,下列说法正确的是( )A. 物体的温度足够低时内能可能为零B. 升高相同的温度,比热容大的物体,吸收的热量多C. 热量总是从内能大的物体传递给内能小的物体D. 对物体做功,物体内能不一定增加9.如图所示的电路,电源电压为3V且保持不变,闭合开关S,电压表示数为2V.下列选项正确的是( )A. 电阻R1与R2并联B. R1、R2电阻值之比为2:1C. 电压表测R2两端电压D. 若断开开关,电压表示数为零10.家庭电路中使用电热水壶时,电灯会变暗。
简化的电路如图所示,设R为干路电线的等效电阻且保持不变,电源电压保持不变,闭合开关S后,下列说法的正确的是( )A. 灯两端的电压变小B. R两端的电压不变C. 电路的总电阻变大D. 电路的总功率变小11.如图所示的家庭电路,闭合开关S1和S2,灯L1发光,灯L2不发光。
2020-2021学年辽宁省锦州市九年级第一学期期末数学试卷一.选择题(共8小题).1.如图所示物体的俯视图是()A.B.C.D.2.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计盒子中大约有红球()A.16个B.14个C.20个D.30个3.已知△ABC∽△DEF,AB=3,DE=5,则△ABC与△DEF的面积之比为()A.B.C.D.4.关于x的一元二次方程x2+2x+k=0有两个实数根,则实数k的取值范围是()A.k≤1B.k<1C.k≥1D.k>15.下列说法正确的是()A.矩形的对角线互相垂直B.菱形的对角线相等C.正方形的对角线互相垂直且相等D.平行四边形的对角线相等6.如图,小明(用CD表示)站在旗杆(用AB表示)的前方8m处,某一时刻小明在地面上的影子比EC恰好与旗杆在地面上的影子EA重合.若CD=1.6m,CE=2m,则旗杆AB的高度为()A.6.4m B.8m C.9.6m D.10m7.如图,在▱ABCD中,AD=6,∠ADB=30°.按以下步骤作图:①以点C为圆心,以CD长为半径作弧,交BD于点F;②分别以点D,F为圆心,以CD长为半径作弧,两弧相交于点G.作射线CG交BD于点E.则BE的长为()A.3B.C.4D.38.如图,正方形ABCD的对角线AC,BD交于点O,E是BD上的一点,连接EC,过点B 作BG⊥CE于点G,交AC于点H,EF⊥EC交AB于点F.若正方形ABCD的边长为4,下列结论:①OE=OH;②EF=EC;③当G为CE中点时,BF=4﹣4;④BG•BH =BE•BO,其中正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(共8小题).9.已知关于x的一元二次方程x2﹣mx=0的一个根为1,则m=.10.某批篮球的质量检验结果如下:抽取的篮球数n10020040060080010001200优等品的频数m931923805617529411128优等品的频率0.9300.9600.9500.9350.9400.9410.940从这批篮球中,任意抽取一只篮球是优等品的概率的估计值是.(精确到0.01)11.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m,已知小军、小珠的身高分别为1.7m,1.5m,则路灯的高为m.12.若点A(﹣2,y1)和点B(﹣1,y2)在反比例函数y=﹣上的图象上,则y1与y2的大小关系为.13.2021年元旦联欢会上,某班同学之间互赠新年贺卡,共赠贺卡1190张,设全班有x名同学,则可列方程为.14.如图,在△ABC中,AB=AC,∠BAC=40°,以AB为边作正方形ABDE,连接CE,则∠AEC=.15.如图,在矩形ABCD中,对角线AC,BD交于点O,过点C作CE⊥CA,交BD的延长线于点E,若AB=2,BC=4,则DE的长为.16.如图,在菱形ABCD中,∠B=45°,BC=2,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH,则GH的最小值为.三、解答题(本大题共3小题,17题8分,18,19题各6分,共20分)17.用适当的方法解下列一元二次方程:(1)3x(2x﹣1)=2(2x﹣1);(2)2x2+1=4x.18.如图,在平面直角坐标系中,△ABC的顶点A的坐标为(﹣3,﹣1),顶点B,C都在小正方形的格点上.(1)点B的坐标为,点C的坐标为.(2)以原点O为位似中心,在所给的网格中画出一个△A1B1C1,使得△A1B1C1与△ABC 位似,且相似比为2:1.19.小明和小刚打算寒假去北京游玩,他们准备从锦州南站乘坐动车去北京,锦州南站每天开四个检票口,其中有三个电子检票口,分别记为A,B,C,一个人工检票口记为D(如图).(1)小明随机选择一个检票口进入候车大厅,那么他从电子检票口A进入的概率为;(2)若小明和小刚分别随机选择其中一个检票口进入候车大厅,请用树状图或列表法求他们选择不同电子检票口的概率.四、解答题(本大题共2小题,每题7分,共14分)20.如图,在矩形ABCD中,AB=10cm,AD=6cm.动点E从点A出发以1cm/s的速度沿AD向点D运动,动点F从点D出发以2cm/s的速度沿DC向点C运动,设运动时间为ts.(1)当△ABE∽△CBF时,求t的值;(2)当S△DEF=S△ABE时,求t的值.21.某小家电经销商销售一种成本为每个50元的台灯,当每个台灯的售价定为80元时,每周可卖出600个,为了尽可能让利于顾客,经销商决定降价销售.经市场调查发现,这种台灯每周的销量每增加100个,该台灯的售价相应降低2元.如果该经销商每周要获得利润22000元,那么这种台灯的售价应为多少元?五、解答题(本大题共3小题,22,23题各8分,24题10分,共26分)22.如图,点A,B在x轴上,以AB为边的正方形ABCD在x轴上方,点C的坐标为(1,4),反比例函数y=(k≠0)的图象经过CD的中点E,F是AD上的一个动点,将△DEF沿EF所在直线折叠得到△GEF.(1)求反比例函数y=(k≠0)的表达式;(2)若点G落在y轴上,求线段OG的长及点F的坐标.23.如图,过△ABC边AC的中点O,作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD,CE,若CE平分∠ACB,CE⊥BO于点F.(1)求证:①OC=BC;②四边形ABCD是矩形;(2)若BC=3,求DE的长.24.如图1,在Rt△ABC中,∠ACB=90°,AC=BC,D是AB的中点,过点C作射线CM 交AB于点P(点P不与点D重合),过点B作BE⊥CM于点E,连接DE,过点D作DF⊥DE交CM于点F.(1)求证:DE=DF;(2)如图2,若AE=AC,连接AF并延长到点G,使FG=AF,连接CG,EG,求证:四边形ACGE为菱形;(3)在(2)的条件下,求的值.参考答案一.选择题(共8小题).1.如图所示物体的俯视图是()A.B.C.D.解:从上面看,是一行3个全等的矩形,故选:C.2.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计盒子中大约有红球()A.16个B.14个C.20个D.30个解:由题意可得:=0.3,解得:x=14,经检验:x=14是分式方程的解.故选:B.3.已知△ABC∽△DEF,AB=3,DE=5,则△ABC与△DEF的面积之比为()A.B.C.D.解:∵△ABC∽△DEF,AB=3,DE=5,∴相似比为AB:DE=3:5,∴其面积之比为9:25.故选:A.4.关于x的一元二次方程x2+2x+k=0有两个实数根,则实数k的取值范围是()A.k≤1B.k<1C.k≥1D.k>1解:根据题意得△=22﹣4k≥0,解得k≤1.故选:A.5.下列说法正确的是()A.矩形的对角线互相垂直B.菱形的对角线相等C.正方形的对角线互相垂直且相等D.平行四边形的对角线相等解:A.因为矩形的对角线相等,所以A选项错误,不符合题意;B.因为菱形的对角线互相垂直,所以B选项错误,不符合题意;C.因为正方形的对角线互相垂直且相等,所以C选项正确,符合题意;D.因为平行四边形的对角线互相平分,所以D选项错误,不符合题意.故选:C.6.如图,小明(用CD表示)站在旗杆(用AB表示)的前方8m处,某一时刻小明在地面上的影子比EC恰好与旗杆在地面上的影子EA重合.若CD=1.6m,CE=2m,则旗杆AB的高度为()A.6.4m B.8m C.9.6m D.10m解:∵CD⊥AE,AB⊥AE,∴DC∥AB,∵AC=8m,EC=2m,∴AE=AC+EC=2+8=10(m),∴△DCE∽△BAE,∴,即,解得:AB=8,故选:B.7.如图,在▱ABCD中,AD=6,∠ADB=30°.按以下步骤作图:①以点C为圆心,以CD长为半径作弧,交BD于点F;②分别以点D,F为圆心,以CD长为半径作弧,两弧相交于点G.作射线CG交BD于点E.则BE的长为()A.3B.C.4D.3解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6,∴∠ADB=∠DBC=30°,由题意可得CG⊥BD,∴CE=BC=3,BE=EC=3,故选:D.8.如图,正方形ABCD的对角线AC,BD交于点O,E是BD上的一点,连接EC,过点B 作BG⊥CE于点G,交AC于点H,EF⊥EC交AB于点F.若正方形ABCD的边长为4,下列结论:①OE=OH;②EF=EC;③当G为CE中点时,BF=4﹣4;④BG•BH =BE•BO,其中正确的是()A.①②③B.①②④C.①③④D.①②③④解:∵BG⊥CE,EF⊥EC,∴∠FEC=∠BGC=90°,∵四边形ABCD是正方形,∴AO=OC=OB=OD,AC⊥BD,∵∠ECO+∠GHC=90°=∠OBH+∠BHO,∠BHO=∠CHG,∴∠OBH=∠ECO,又∵BO=CO,∠BOH=∠COE=90°,∴△BOH≌△COE(ASA),∴OE=OH,故①正确;如图,过点E作EP⊥BC于P,EQ⊥AB于Q,∵四边形ABCD是正方形,∴∠ABD=∠CBD=45°,又∵EP⊥BC,EQ⊥AB,∴EQ=EP,又∵EP⊥BC,EQ⊥AB,∠ABC=90°,∴四边形BPEQ是正方形,∴BQ=BP=EP=QE,∠QEP=90°=∠FEC,∴∠QEF=∠PEC,又∵∠EQF=∠EPC=90°,∴△QEF≌△PEC(ASA),∴QF=PC,EF=EC,故②正确;∵EG=GC,BG⊥EC,∴BE=BC=4,∴BP=EP=2,∴PC=4﹣2=QF,∴BF=BQ﹣QF=2﹣(4﹣2)=4﹣4,故③正确;∵∠BOH=∠BGE=90°,∠OBH=∠GBE,∴△BOH∽△BGE,∴,∴BH•BG=BE•BO,故④正确,故选:D.二、填空题(本题共8小题,每小题3分,共24分)9.已知关于x的一元二次方程x2﹣mx=0的一个根为1,则m=1.解:把x=1代入方程x2﹣mx=0得1﹣m=0,解得m=1.故答案为1.10.某批篮球的质量检验结果如下:抽取的篮球数n10020040060080010001200优等品的频数m931923805617529411128优等品的频率0.9300.9600.9500.9350.9400.9410.940从这批篮球中,任意抽取一只篮球是优等品的概率的估计值是0.94.(精确到0.01)解:从这批篮球中,任意抽取一只篮球是优等品的概率的估计值是0.94.故答案为0.94.11.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m,已知小军、小珠的身高分别为1.7m,1.5m,则路灯的高为3m.解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴=,=,即=,=,解得:AB=3.故答案是:3.12.若点A(﹣2,y1)和点B(﹣1,y2)在反比例函数y=﹣上的图象上,则y1与y2的大小关系为y1<y2.解:∵k=﹣4<0,∴反比例函数y=﹣上的图象在二、四象限,且在每一象限内y随x的增大而增大,∵点A(﹣2,y1)和点B(﹣1,y2)都在第二象限,且﹣2<﹣1,∴y1<y2.故答案为y1<y2.13.2021年元旦联欢会上,某班同学之间互赠新年贺卡,共赠贺卡1190张,设全班有x名同学,则可列方程为x(x﹣1)=1190.解:由题意可得,x(x﹣1)=1190,故答案为:x(x﹣1)=1190.14.如图,在△ABC中,AB=AC,∠BAC=40°,以AB为边作正方形ABDE,连接CE,则∠AEC=25°或65°.解:如图1,当正方形ABDE在AB的右侧时,∵AB=AC,∠BAC=40°,∴AC=AE,∠CAE=50°,∴∠AEC=65°;如图2,当正方形ABDE在AB的左侧时,∵AB=AC,∠BAC=40°,∴AC=AE,∠CAE=130°,∴∠AEC=25°,综上所述:∠AEC=25°或65°,故答案为:25°或65°.15.如图,在矩形ABCD中,对角线AC,BD交于点O,过点C作CE⊥CA,交BD的延长线于点E,若AB=2,BC=4,则DE的长为.解:如图,过点D作DH⊥AC于H,∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∵AB=2,BC=4,∴AC===2,∴OD=OC=,∵S△ADC=×AD×DC=×AC×DH,∴2×4=2×DH,∴DH=,∴OH===,∴HC=﹣=,∵CE⊥CA,DH⊥CA,∴CE∥DH,∴,∴,∴DE=.16.如图,在菱形ABCD中,∠B=45°,BC=2,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH,则GH的最小值为.解:连接AF,如图所示:∵四边形ABCD是菱形,∴AB=BC=2,∵G,H分别为AE,EF的中点,∴GH是△AEF的中位线,∴GH=AF,当AF⊥BC时,AF最小,GH得到最小值,则∠AFB=90°,∵∠B=45°,∴△ABF是等腰直角三角形,∴AF=AB=×2=,∴GH=,即GH的最小值为,故答案为:.三、解答题(本大题共3小题,17题8分,18,19题各6分,共20分)17.用适当的方法解下列一元二次方程:(1)3x(2x﹣1)=2(2x﹣1);(2)2x2+1=4x.解:(1)3x(2x﹣1)=2(2x﹣1),(3x﹣2)(2x﹣1)=0,3x﹣2=0或2x﹣1=0,∴x1=,x2=;(2)原方程化为一般形式为,2x2﹣4x+1=0,∵a=2,b=﹣4,c=1,∴b2﹣4ac=16﹣4×2×1=8>0,∴x==,∴x1=,x2=.18.如图,在平面直角坐标系中,△ABC的顶点A的坐标为(﹣3,﹣1),顶点B,C都在小正方形的格点上.(1)点B的坐标为(1,2),点C的坐标为(﹣2,3).(2)以原点O为位似中心,在所给的网格中画出一个△A1B1C1,使得△A1B1C1与△ABC 位似,且相似比为2:1.解:(1)由题意B(1,2),C(﹣2,3),故答案为:(1,2),(﹣2,3).(2)如图,△A1B1C1即为所求作.19.小明和小刚打算寒假去北京游玩,他们准备从锦州南站乘坐动车去北京,锦州南站每天开四个检票口,其中有三个电子检票口,分别记为A,B,C,一个人工检票口记为D(如图).(1)小明随机选择一个检票口进入候车大厅,那么他从电子检票口A进入的概率为;(2)若小明和小刚分别随机选择其中一个检票口进入候车大厅,请用树状图或列表法求他们选择不同电子检票口的概率.解:(1)小明随机选择一个检票口进入候车大厅,那么他从电子检票口A进入的概率为,故答案为:;(2)画树状图如图:共有16个等可能的结果,小明和小刚选择不同电子检票口的结果有6个,∴小明和小刚选择不同电子检票口的概率为=.四、解答题(本大题共2小题,每题7分,共14分)20.如图,在矩形ABCD中,AB=10cm,AD=6cm.动点E从点A出发以1cm/s的速度沿AD向点D运动,动点F从点D出发以2cm/s的速度沿DC向点C运动,设运动时间为ts.(1)当△ABE∽△CBF时,求t的值;(2)当S△DEF=S△ABE时,求t的值.解:(1)由题意得,AE=tcm,DF=2tcm,则CF=(10﹣2t)cm,∵△ABE∽△CBF,∴=,即=,解得,t=,∴当△ABE∽△CBF时,t=;(2)∵AE=tcm,∴DE=(6﹣t)cm,∴S△DEF=×DE×DF=×(6﹣t)×2t=﹣t2+6t,S△ABE=×AE×AB=×t×10=5t,由题意得,﹣t2+6t=5t,解得,t1=0(舍去),t2=1,∴当S△DEF=S△ABE时,t=1.21.某小家电经销商销售一种成本为每个50元的台灯,当每个台灯的售价定为80元时,每周可卖出600个,为了尽可能让利于顾客,经销商决定降价销售.经市场调查发现,这种台灯每周的销量每增加100个,该台灯的售价相应降低2元.如果该经销商每周要获得利润22000元,那么这种台灯的售价应为多少元?解:设每个台灯降x元,根据题意得,=22000,整理这个方程得,x2﹣18x+80=0,解得x=10,x=8,∵尽可能让利于顾客,∴x=8舍去,∴定价为70元.答:这种台灯的售价应为70元.五、解答题(本大题共3小题,22,23题各8分,24题10分,共26分)22.如图,点A,B在x轴上,以AB为边的正方形ABCD在x轴上方,点C的坐标为(1,4),反比例函数y=(k≠0)的图象经过CD的中点E,F是AD上的一个动点,将△DEF沿EF所在直线折叠得到△GEF.(1)求反比例函数y=(k≠0)的表达式;(2)若点G落在y轴上,求线段OG的长及点F的坐标.解:(1)设DC与y轴的交于点M,∵C(1,4),∴BC=4,MC=1,∵四边形ABCD正方形,∴CD=BC=4,∵点E是CD的中点,∴CE=CD=2,∴EM=EC﹣MC=1,∴E(﹣1,4),∴k=xy=﹣1×4=﹣4,∴反比例函数为y=﹣;(2)如图,过点F作FN⊥y轴于点N,由折叠可知,DE=EG=2,∠FGE=∠D=90°,在Rt△GME中,∠GME=90°,∴MG===.∴OG=OM﹣MG=4﹣,∵∠FNG=∠FGE=∠GME=90°,∴∠FGN+∠EGM=90°,∠FGN+∠GFN=90°,∴∠EGM=∠GFN,∴△EGM∽△GFN,∴,∴,∴GN=,∴ON=OM﹣MG﹣GN=4﹣﹣=4﹣2,∴F(﹣3,4﹣2).23.如图,过△ABC边AC的中点O,作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD,CE,若CE平分∠ACB,CE⊥BO于点F.(1)求证:①OC=BC;②四边形ABCD是矩形;(2)若BC=3,求DE的长.【解答】(1)证明:①∵CE平分∠ACB,∴∠OCE=∠BCE,∵BO⊥CE,∴∠CFO=∠CFB=90°,在△OCF与△BCF中,,∴△OCF≌△BCF(ASA),∴OC=BC;②∵点O是AC的中点,∴OA=OC,∵AD∥BC,∴∠DAO=∠BCO,∠ADO=∠CBO,在△OAD与△OCB中,,∴△OAD≌△OCB(ASA),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵OE⊥AC,∴∠EOC=90°,在△OCE与△BCE中,,∴△OCE≌△BCE(SAS),∴∠EBC=∠EOC=90°,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AD=BC=3,∠DAB=90°,AC=BD,∴OB=OC,∵OC=BC,∴OC=OB=BC,∴△OBC是等边三角形,∴∠OCB=60°,∴∠ECB=OCB=30°,∵∠EBC=90°,∴EB=EC,∵BE2+BC2=EC2,BC=3,∴EB=,EC=2,∵OE⊥AC,OA=OC,∴EC=EA=2,在Rt△ADE中,∠DAB=90°,∴DE===.24.如图1,在Rt△ABC中,∠ACB=90°,AC=BC,D是AB的中点,过点C作射线CM 交AB于点P(点P不与点D重合),过点B作BE⊥CM于点E,连接DE,过点D作DF⊥DE交CM于点F.(1)求证:DE=DF;(2)如图2,若AE=AC,连接AF并延长到点G,使FG=AF,连接CG,EG,求证:四边形ACGE为菱形;(3)在(2)的条件下,求的值.【解答】(1)证明:连接CD,如图1所示:∵∠ACB=90°,AC=BC,D是AB的中点,∴CD⊥AB,CD=AB=BD,∴∠CDB=90°,∵BE⊥CE,DF⊥DE,∴∠CEB=∠FDE=90°=∠CDB,∴∠CDF=∠BDE,∵∠COD=∠BOE,∠COD+∠OCD=90°,∠BOE+∠EBO=90°,∴∠EBO=∠OCD,即∠EBD=∠FCD,∴△BDE≌△CDF(ASA),∴DE=DF;(2)证明:由(1)得:△BDE≌△CDF,∴BE=CF,∵∠ACB=90°,∴∠ACF+∠BCE=∠CBE+∠BCE=90°,∴∠ACF=∠CBE,又∵AC=BC,∴△ACF≌△CBE(SAS),∴∠AFC=∠CEB=90°,∴AF⊥CE,∵AE=AC,EF=CF,∵FG=AF,∴四边形ACGE是平行四边形,∵AF⊥CE,∴四边形ACGE为菱形;(3)解:由(2)得:△ACF≌△CBE,CE=2EF=2CF,∴AF=CE,由(1)得:BE=CF,∴AF=2BE,∵∠AFE=∠CEB=90°,∠APF=∠BPE,∴△AFP∽△BEP,∴===2.。
2020-2021学年辽宁省抚顺市新抚区九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列方程中,是一元二次方程的为()A.x2=0B.x2﹣2y=0C.2x﹣3=0D.x2+=﹣3 2.(3分)一元二次方程x(x+5)=0的根是()A.x1=0,x2=5B.x1=0,x2=﹣5C.x1=0,x2=D.x1=0,x2=﹣3.(3分)点(﹣2,3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(﹣3,2)4.(3分)下列事件中,是必然事件的是()A.汽车走过一个红绿灯路口时,前方正好是绿灯B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.从一个只有白球的盒子里摸出一个球是白球5.(3分)一个不透明的盒子中装有2个白球,6个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A.B.C.D.6.(3分)⊙O为△ABC的内切圆,那么点O是△ABC的()A.三条中线交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线交点7.(3分)小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.8.(3分)如图,△OCD是由△OAB绕点O顺时针旋转40°后得到的图形,若∠AOD=90°,则∠BOC的度数是()A.5°B.10°C.15°D.20°9.(3分)如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,若DF恰好是同圆的一个内接正n边形的一边,则n的值为()A.8B.10C.12D.1510.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C .D .二、填空题(每小题3分,共24分)11.(3分)底面半径为3cm,母线长为5cm的圆锥的侧面积为cm2.12.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.13.(3分)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球试验次100100050001000050000100000数36387201940091997040008“摸出黑球”的次数“摸出黑0.3600.3870.4040.4010.3990.400球”的频率(结果保留小数点后三位)根据试验所得数据,估计“摸出黑球”的概率是.(结果保留小数点后一位)14.(3分)点A,B,C在⊙O上,∠AOB=100°,∠BOC=40°,则∠ABC=.15.(3分)已知二次函数y=x2﹣(m﹣1)x+1,当x≥1时,y随x的增大而增大,则m的取值范围是.16.(3分)一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是.17.(3分)奥运五环是奥林匹克的标志,是由皮埃尔•德•顾拜旦设计的,图案中包含了圆和圆的位置关系有.18.(3分)如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),弧AA1是以点B为圆心,BA为半径的圆弧;弧A1A2是以点O为圆心,OA1为半径的圆弧;弧A2A3是以点C为圆心,CA2为半径的圆弧;弧A3A4是以点A为圆心,AA3为半径的圆弧,继续以点B,O,C,A为圆心,按上述作法得到的曲线AA1A2A3A4A5…,称为正方形的“渐开线”,则弧A2019A2020的长是.三、解答题(第19题10分,第20题12分,共22分)19.(10分)如图,△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣4,1),C(﹣1,2).(1)作出△ABC以O为旋转中心,顺时针旋转90°的△A1B1C1;(2)作出△ABC关于原点O成中心对称的△A2B2C2,写出B2和C2的坐标;(3)直接写出△ABC绕原点O顺时针旋转一周扫过的图形面积.20.(12分)小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A、B、C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D、E表示),参加人员在每个阶段各随机抽取一个项目完成.(1)用画树状图或列表的方法,列出小明参加项目的所有等可能的结果:(2)求小明恰好抽中B、D两个项目的概率.四、(每题12分,共24分)21.(12分)如图,AB是⊙O的直径,点C为⊙O上一点,CF为⊙O的切线,OE⊥AB于点O,分别交AC,CF于D,F两点.(1)求证:ED=EC;(2)若EC=1,∠A=30°,求图中阴影部分的面积.22.(12分)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,上面的数字不小于2的概率为.(2)从中随机摸出一球不放回,再随机摸出一球,请用列表或画树状图的方法,求两次摸出小球上的数字和恰好是奇数的概率.五、(本题12分)23.(12分)如图,在△ABC中,∠ACB=90°,CA=CB,点O在△ABC的内部,⊙O经过B,C两点,交AB于点D,连接CO并延长交AB于点G,以GD,GC为邻边作平行四边形GDEC.(1)判断DE与⊙O的位置关系,并说明理由;(2)若DE=17,CE=13,求⊙O的半径.六、(本题12分)24.(12分)某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:售价x(元/件)606570销售量y(件)140013001200(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的50%,设销售这种衬衫每月的总利润为w(元),求w与x之间的函数关系式,x为多少时,w有最大值,最大利润是多少?七、解答题:(12分)25.(12分)如图①,C为线段BD上的一点,BC≠CD,分别以BC,BD为边在BD的上方作等边△ABC和等边△CDE,连接AE,F,G,H分别是BC,AE,CD的中点,连接FG,GH,FH.(1)△FGH的形状是;(2)将图①中的△CDE绕点C顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由;(3)若BC=2,CD=4,将△CDE绕点C旋转一周,当A,E,D三点共线时,直接写出△FGH的周长.八、(本题14分)26.(14分)如图,抛物线y=x2+bx+c经过A(﹣3,0),B(1,0)两点,与y轴交于点C,P为y轴上的动点,连接AP,以AP为对角线作正方形AMPN.(1)求抛物线的解析式;(2)当正方形AMPN与△AOP面积之比为5:2时,求点P的坐标;(3)当正方形AMPN有两个顶点在抛物线上时,直接写出点P的坐标.2020-2021学年辽宁省抚顺市新抚区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列方程中,是一元二次方程的为()A.x2=0B.x2﹣2y=0C.2x﹣3=0D.x2+=﹣3【解答】解:A、∵x2=0是一元二次方程,∴选项A符合题意;B、∵x2﹣2y=0含有两个未知数,∴x2﹣2y=0不是一元二次方程,选项B不符合题意;C、∵2x﹣3=0的未知数的最高次数是1,∴2x﹣3=0不是一元二次方程,选项C不符合题意;D、∵x2+=﹣3不是整式方程,∴x2+=﹣3不是一元二次方程,选项D不符合题意.故选:A.2.(3分)一元二次方程x(x+5)=0的根是()A.x1=0,x2=5B.x1=0,x2=﹣5C.x1=0,x2=D.x1=0,x2=﹣【解答】解:∵x(x+5)=0,∴x=0或x+5=0,解得:x1=0,x2=﹣5,故选:B.3.(3分)点(﹣2,3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(﹣3,2)【解答】解:∵点(﹣2,3)关于原点对称,∴点(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故选:C.4.(3分)下列事件中,是必然事件的是()A.汽车走过一个红绿灯路口时,前方正好是绿灯B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.从一个只有白球的盒子里摸出一个球是白球【解答】解:A、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件,不符合题意;B、任意买一张电影票,座位号是3的倍数,是随机事件,不符合题意;C、掷一枚质地均匀的硬币,正面向上,是随机事件,不符合题意;D、从一个只有白球的盒子里摸出一个球是白球,是必然事件,符合题意;故选:D.5.(3分)一个不透明的盒子中装有2个白球,6个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A.B.C.D.【解答】解:根据题意可得:一个不透明的盒子中装有2个白球,6个红球,共8个,摸到红球的概率为:=.故选:A.6.(3分)⊙O为△ABC的内切圆,那么点O是△ABC的()A.三条中线交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线交点【解答】解:如图,⊙O为△ABC的内切圆,切点分别是E、F、D,连接OE,OD,OF,∵⊙O为△ABC的内切圆,∴OE⊥AB,OF⊥AC,OD⊥BC,OE=OD=OF,∴O是△ABC的三角的平分线的交点,故选:D.7.(3分)小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.【解答】解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是.故选:B.8.(3分)如图,△OCD是由△OAB绕点O顺时针旋转40°后得到的图形,若∠AOD=90°,则∠BOC的度数是()A.5°B.10°C.15°D.20°【解答】解:根据旋转的定义可知∠AOC=∠BOD=40°,∵∠AOD=90°,∴∠BOC=90°﹣40°﹣40°=10°,故选:B.9.(3分)如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,若DF恰好是同圆的一个内接正n边形的一边,则n的值为()A.8B.10C.12D.15【解答】解:连接OA、OD、OF,如图,∵AD,AF分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF﹣∠AOD=30°,∴n==12,即DF恰好是同圆内接一个正十二边形的一边.故选:C.10.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A .B .C .D .【解答】解:当0<t≤2时,S =t2,当2<t≤4时,S =t2﹣(2t﹣4)2=﹣t2+8t﹣8,观察图象可知,S与t之间的函数关系的图象大致是C.故选:C.二、填空题(每小题3分,共24分)11.(3分)底面半径为3cm,母线长为5cm 的圆锥的侧面积为15πcm2.【解答】解:圆锥的侧面积=2π×5×3÷2=15πcm2.故答案为:15π.12.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.故答案为:k>且k≠1.13.(3分)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:100100050001000050000100000摸球试验次数“摸出黑36387201940091997040008球”的次数“摸出黑0.3600.3870.4040.4010.3990.400球”的频率(结果保留小数点后三位)根据试验所得数据,估计“摸出黑球”的概率是0.4.(结果保留小数点后一位)【解答】解:观察表格发现随着摸球次数的增多摸出黑球频率逐渐稳定在0.4附近,故摸到黑球的概率估计值为0.4;故答案为:0.4.14.(3分)点A,B,C在⊙O上,∠AOB=100°,∠BOC=40°,则∠ABC=110°或30°.【解答】解:①如图1,∵∠AOB和∠ACB是弧AB所对的角,∴∠AOB=2∠ACB,∵∠AOB=100°,∴∠ACB=50°,同理:∠BOC=40°,∴∠BAC=20°,∴∠ABC=180°﹣50°﹣20°=110°,②如图2,∵∠AOB=100°,∠BOC=40°,∴∠AOC=∠AOB﹣∠BOC=60°,∠ABC=AOC=30°故答案为110°或30°.15.(3分)已知二次函数y=x2﹣(m﹣1)x+1,当x≥1时,y随x的增大而增大,则m的取值范围是m≤3.【解答】解:∵a=1>0,∴抛物线的开口向上,又∵当x≥1时,y随x的增大而增大,∴抛物线的对称轴x≤1.∵二次函数的解析式为y=x2﹣(m﹣1)x+1,∴抛物线的对称轴为x=≤1,解得:m≤3.故答案为m≤3.16.(3分)一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是.【解答】解:由图可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴小球最终停留在黑色区域的概率是;故答案为:.17.(3分)奥运五环是奥林匹克的标志,是由皮埃尔•德•顾拜旦设计的,图案中包含了圆和圆的位置关系有外离和相交.【解答】解:由图案可知,图案中包含了圆和圆的位置关系有外离和相交,故答案为相外离和相交.18.(3分)如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),弧AA1是以点B为圆心,BA为半径的圆弧;弧A1A2是以点O为圆心,OA1为半径的圆弧;弧A2A3是以点C为圆心,CA2为半径的圆弧;弧A3A4是以点A为圆心,AA3为半径的圆弧,继续以点B,O,C,A为圆心,按上述作法得到的曲线AA1A2A3A4A5…,称为正方形的“渐开线”,则弧A2019A2020的长是1010π.【解答】解:A(1,1),由题意得,A1(2,0),A2(0,﹣2),A3(﹣3,1),A4(1,5),A5(6,0),A6(0,﹣6),A7(﹣7,1),A8(1,9)…,∴A4n(1,4n+1),A4n+1(4n+2,0),A4n+2(0,﹣(4n+2)),A4n+3(﹣(4n+3),1).∵2019=504×4+3,2020=505×4,∴A2019的坐标为(﹣2019,1),A2020的坐标为(1,2021),∴弧A2019A2020的半径为2020.∴弧A2019A2020==1010π,故答案为:1010π.三、解答题(第19题10分,第20题12分,共22分)19.(10分)如图,△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣4,1),C(﹣1,2).(1)作出△ABC以O为旋转中心,顺时针旋转90°的△A1B1C1;(2)作出△ABC关于原点O成中心对称的△A2B2C2,写出B2和C2的坐标;(3)直接写出△ABC绕原点O顺时针旋转一周扫过的图形面积.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,B2(4,﹣1),C2(1,﹣2);(3)OB==,OC==,所以△ABC绕原点O顺时针旋转一周扫过的图形面积=π×()2﹣π×()2=12π.20.(12分)小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A、B、C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D、E表示),参加人员在每个阶段各随机抽取一个项目完成.(1)用画树状图或列表的方法,列出小明参加项目的所有等可能的结果:(2)求小明恰好抽中B、D两个项目的概率.【解答】解:(1)画树状图:由树状图知共有6种等可能结果;(2)小明恰好抽中B、D两个项目的只有1种情况,所以小明恰好抽中B、D两个项目的概率为.四、(每题12分,共24分)21.(12分)如图,AB是⊙O的直径,点C为⊙O上一点,CF为⊙O的切线,OE⊥AB于点O,分别交AC,CF于D,F两点.(1)求证:ED=EC;(2)若EC=1,∠A=30°,求图中阴影部分的面积.【解答】(1)证明:连接OC,如图所示:∵CF为⊙O的切线,∴OC⊥CE,∴∠OCA+∠ACE=90°,∵OE⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACE=∠ODA=∠CDE,∴ED=EC;(2)解:∵∠A=30°,∠AOD=90°,∴∠ADO=∠CDE=∠ACE=60°,∴∠CED=60°,∠EOC=30°,∵∠OCE=90°,∴OC=CE•tan60°=1×=,∴图中阴影部分的面积=S△COE﹣S扇形COD=×OC×CE﹣=.22.(12分)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,上面的数字不小于2的概率为.(2)从中随机摸出一球不放回,再随机摸出一球,请用列表或画树状图的方法,求两次摸出小球上的数字和恰好是奇数的概率.【解答】解:(1)从中随机摸出一个小球,小球上写的数字所有等可能情况有:1,2,3,4,共4种,其中数字不小于2的情况有:2,3,4,共3种,则P(小球上写的数字不小于2)=;故答案为:;(2)根据题意列表得:1234 1﹣﹣﹣(1,2)(1,3)(1,4)2(2,1)﹣﹣﹣(2,3)(2,4)3(3,1)(3,2)﹣﹣﹣(3,4)4(4,1)(4,2)(4,3)﹣﹣﹣所有等可能的数有12种,两次摸出小球上的数字和恰好是奇数的情况有8种,则P(两次摸出小球上的数字和恰好是奇数)==.五、(本题12分)23.(12分)如图,在△ABC中,∠ACB=90°,CA=CB,点O在△ABC的内部,⊙O经过B,C两点,交AB于点D,连接CO并延长交AB于点G,以GD,GC为邻边作平行四边形GDEC.(1)判断DE与⊙O的位置关系,并说明理由;(2)若DE=17,CE=13,求⊙O的半径.【解答】(1)DE是⊙O的切线;证明:连接OD,∵∠ACB=90°,CA=CB,∴∠ABC=45°,∴∠COD=2∠ABC=90°,又∵四边形GDEC是平行四边形,∴DE∥CG,∴∠EDO+∠COD=180°,∴∠EDO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:设⊙O的半径为r,∵四边形GDEC为平行四边形,∴DG=CE=13,CG=DE=17,∵∠DOG=90°∴OD2+OG2=DG2,即r2+(17﹣r)2=132,解得r1=5,r2=12,当r=5时,OG=12,点G在⊙O外,∴r=5不成立,舍去,∴r=12.六、(本题12分)24.(12分)某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:售价x(元/件)606570销售量y(件)140013001200(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的50%,设销售这种衬衫每月的总利润为w(元),求w与x之间的函数关系式,x为多少时,w有最大值,最大利润是多少?【解答】解:(1)设y与x之间的函数关系式为y=kx+b,,解得,,即y与x之间的函数表达式是y=﹣20x+2600;(2)(x﹣50)(﹣20x+2600)=24000,解得,x1=70,x2=110,∵尽量给客户优惠,∴这种衬衫定价为70元;(3)由题意可得,w=(x﹣50)(﹣20x+2600),=﹣20x2+3600x﹣130000,w=﹣20(x﹣90)2+32000,∵该衬衫的每件利润不允许高于进货价的50%,每件售价不低于进货价,∴,解得,50≤x≤75,∵a=﹣20<0,抛物线开口向下,∴当x=75时,w取得最大值,此时w=27500,答:售价定为75元时,可获得最大利润,最大利润是27500元.七、解答题:(12分)25.(12分)如图①,C为线段BD上的一点,BC≠CD,分别以BC,BD为边在BD的上方作等边△ABC和等边△CDE,连接AE,F,G,H分别是BC,AE,CD的中点,连接FG,GH,FH.(1)△FGH的形状是等边三角形;(2)将图①中的△CDE绕点C顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由;(3)若BC=2,CD=4,将△CDE绕点C旋转一周,当A,E,D三点共线时,直接写出△FGH的周长.【解答】解:(1)∵△ABC和△CDE都是等边三角形,∴∠B=∠DCE=60°,AB=BC,CE=CD,∴CE∥AB,∵BC≠CD,∴CE≠AB,∴四边形ABCE是梯形,∵点F,G分别是BC,AE的中点,∴FG是梯形ABCE的中位线,∴FG∥AB,∴∠GFC=60°,同理:∠GHB=60°,∴∠FGH=180°﹣∠GFC﹣∠GHB=60°=∠GFC=∠GHB,∴△FGH是等边三角形,故答案为:等边三角形;(2)成立,理由如下:如图1,取AC的中点P,连接PF,PG,∵△ABC和△CDE都是等边三角形,∴AB=BC,CE=CD,∠BAC=∠ACB=∠ECD=∠B=60°,又F,G,H分别是BC,AE,CD的中点,∴FP=AB,FC=BC,CH=CD,PG=CE,PG∥CE,PF∥AB,∴FP=FC,PG=CH,∠GPC+∠PCE=180°,∠FPC=∠BAC=60°,∠PFC=∠B=60°,∴∠FPG=∠FPC+∠GPC=60°+∠GPC,∠GPC=180°﹣∠PCE,∴∠FCH=360°﹣∠ACB﹣∠ECD﹣∠PCE=360°﹣60°﹣60°﹣(180°﹣∠GPC)=60°+∠GPC,∴∠FPG=∠FCH,∴△FPG≌△FCH(SAS),∴FG=FH,∠PFG=∠CFH,∴∠PFH=∠GFC+∠CFH=∠GFC+∠PFG=∠PFC=60°,∴△FGH为等边三角形;(3)①当点D在AE上时,如图2,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC=2,∵△CDE是等边三角形,∴∠CED=∠CDE=60°,CE=CD=DE=4,过点C作CM⊥AE于M,∴DM=EM=DE=2,在Rt△CME中,根据勾股定理得,CM===2,在Rt△AMC中,根据勾股定理得,AM===4,∴AD=AM﹣DM=4﹣2=2,∵∠ACB=∠DCE=60°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,∴∠ACD=∠BCE,连接BE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD=2,∠ADC=∠BEC,∵∠ADC=180°﹣∠CDE=120°,∴∠BEC=120°,∴∠BEA=∠BEC﹣∠CED=60°,过点B作BN⊥AE于N,∴∠BNE=90°,在Rt△BNE中,∠EBN=90°﹣∠BEA=30°,∴EN=BE=1,∴BN=EN=,DN=DE﹣EN=3,连接BD,根据勾股定理得,BD===2,∵点H是CD的中点,点F是BC的中点,∴FH是△BCD的中位线,∴FH=BD=,由(2)知,△FGH是等边三角形,∴△FGH的周长为3FH=3,②当点D在AE的延长线上时,如图3,同①的方法得,FH=,∴△FGH的周长为3FH=3,即满足条件的△FGH的周长为3或3.八、(本题14分)26.(14分)如图,抛物线y=x2+bx+c经过A(﹣3,0),B(1,0)两点,与y轴交于点C,P为y轴上的动点,连接AP,以AP为对角线作正方形AMPN.(1)求抛物线的解析式;(2)当正方形AMPN与△AOP面积之比为5:2时,求点P的坐标;(3)当正方形AMPN有两个顶点在抛物线上时,直接写出点P的坐标.【解答】解:(1)把A(﹣3,0),B(1,0)代入y=x2+bx+c得,,解得,∴抛物线的关系式为y=x2+2x﹣3.(2)设P的纵坐标为y.∵正方形AMPN与△AOP面积之比为5:2.∴(32+y2)=××3×|y|.解得:y=±或=±6.∴点P的坐标为:P1(0,)或P2(0,﹣)或P3(0,6)或P4(0,﹣6).(3)设P(0,m),连接MN交AP于T,过点T作TJ⊥OA于J,过点P作PE⊥TJ于E,过点N作NF⊥TJ于F,过点M作MG⊥TJ于G.∵四边形AMPN是正方形,∴TA=TP=TM=TN,AP⊥MN,∵A(﹣3,0),P(0,m),∴T(﹣,m),∵∠PET=∠F=∠PTN=90°,∴∠PTE+∠NTF=90°,∠NTF+∠TNF=90°,∴∠PTE=∠TNF,∴△PET≌△TFN(AAS),∴ET=FN,PE=TF,同法可证△PET≌△TGM,∴MG=ET=FN,GT=PE=TF,∴M(﹣﹣,+),N(﹣+,﹣),当点M在抛物线上时,+=(﹣﹣)2+2(﹣﹣)﹣3,解得m=±,当点N在抛物线上时,﹣=(﹣+)2+2(﹣+)﹣3,解得m=2±∴满足条件的点P的坐标是:(0,﹣3)或(0,)或(0,﹣)或(0,﹣)或(0,2﹣)或(0,2+).。
2020-2021学年辽宁省本溪十二中九年级(上)第一次月考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)下列实数是无理数的是()A.﹣2B.C.D.2.(3分)如图,将小立方块①从6个大小相同的小立方块所搭的几何体中移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图改变C.俯视图改变,左视图改变D.主视图不变,左视图不变3.(3分)将不等式组的解集在数轴上表示,正确的是()A.B.C.D.4.(3分)下列计算正确的是()A.B.C.﹣(﹣a)4÷a2=a2D.5.(3分)在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是()A.中位数是3,众数是2B.众数是1,平均数是2C.中位数是2,众数是2D.中位数是3,平均数是2.57.(3分)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形8.(3分)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A.=B.=C.+=130D.﹣130=9.(3分)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长10.(3分)如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)一个铁原子的质量是0.000000000000000000000000093kg,将这个数据用科学记数法表示为kg.12.(3分)把多项式m2n+6mn+9n分解因式的结果是.13.(3分)点A的坐标是A(x,y),从1、2、3这三个数中任取一个数作为x的值,再从余下的两个数中任取一个数作为y的值.则点A落在直线y=﹣x+5与直线y=x及y 轴所围成的封闭区域内(含边界)的概率是.14.(3分)如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α=°.15.(3分)某中学规定学生体育成绩满分为100分,按课外活动成绩、期中成绩、期末成绩2:3:5的比,计算学期成绩.小明同学本学期三项成绩依次为90分、90分、80分,则小明同学本学期的体育成绩是分.16.(3分)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)17.(3分)如图,在边长为2的正方形EFGH中,M,N分别为EF与GH的中点,一个三角形ABC沿竖直方向向上平移,在运动的过程中,点A恒在直线MN上,当点A运动到线段MN的中点时,点E,F恰与AB,AC两边的中点重合,设点A到EF的距离为x,三角形ABC与正方形EFGH的公共部分的面积为y,则当y=,x的值为.18.(3分)如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA 为边作正方形ABCO,点B坐标为(1,1).过点B作EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1,以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2.….则点B2020的坐标.三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.20.(12分)在疫情期间,为落实“停课不停学”,某校对本校学生某一学科在家学习情况进行抽样调查,了解到学生的学习方式有:电视直播、任课教师在线辅导、教育机构远程教学、自主学习参与调查的学生只能选择一种学习方式,将调查结果绘制成不完整的扇形统计图和条形统计图.根据如图所示的统计图,解答下列问题.(1)本次接受调查的学生有名;(2)补全条形统计图;(3)根据调查结果,若本校有3900名学生,估计有多少名学生参与任课教师在线辅导?四、解答题(第21题12分,第22题12分,共24分)21.(12分)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积.22.(12分)如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.(1)求证:AE=C′E.(2)求∠FBB'的度数.(3)已知AB=2,求BF的长.五、解答题(本题12分)23.(12分)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t (分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是米/分钟,妈妈在家装载货物所用时间是分钟,点M的坐标是.(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.六、解答题(本题12分)24.(12分)2020年突如其来的新型冠状病毒疫情,给生鲜电商带来了意想不到的流量和机遇,据统计某生鲜电商平台1月份的销售额是1440万元,3月份的销售额是2250万元.(1)若该平台1月份到3月份的月平均增长率都相同,求月平均增长率是多少?(2)市场调查发现,某水果在“盒马鲜生”平台上的售价为20元/千克时,每天能销售200千克,售价每降价2元,每天可多售出100千克,为了推广宣传,商家决定降价促销,同时尽量减少库存,已知该水果的成本价为12元/千克,若使销售该水果每天获利1750元,则售价应降低多少元?七、解答题(本题12分)25.(12分)如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O为CF的中点,连接OE,OD.(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明).(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB=4,请直接写出点O经过的路径长.八、解答题(本题12分)26.(14分)如图,在平面直角坐标系中,直线l1:y=x+与x轴、y轴分别相交于点A、B,直线l2与直线y=﹣x平行,且与直线l1相交于点B,与x轴交于点C.(1)求点C坐标;(2)若点P是y轴右侧直线l1上一动点,点Q是直线l2上一动点,点D(﹣2,6),求当S△PBC=S四边形AOBD时,点P的坐标,并求出此时,PQ+DQ的最小值;(3)将△AOB沿着直线l2平移,平移后记为△A1O1B1,直线O1B1交l1于点M,直线A1B1交x轴于点N,当△B1MN是等腰三角形时,求点A1的横坐标.2020-2021学年辽宁省本溪十二中九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)下列实数是无理数的是()A.﹣2B.C.D.【解答】解:=3,则由无理数的定义可知,属于无理数的是.故选:D.2.(3分)如图,将小立方块①从6个大小相同的小立方块所搭的几何体中移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图改变C.俯视图改变,左视图改变D.主视图不变,左视图不变【解答】解:观察图形可知,将小立方块①从6个大小相同的小立方块所搭的几何体中移走后,所得几何体主视图不变,左视图和俯视图都改变.故选:C.3.(3分)将不等式组的解集在数轴上表示,正确的是()A.B.C.D.【解答】解:解不等式x+2≥0,得:x≥﹣2,又x<1,∴不等式组的解集为﹣2≤x<1,将不等式组的解集表示在数轴上如下:故选:A.4.(3分)下列计算正确的是()A.B.C.﹣(﹣a)4÷a2=a2D.【解答】解:A、2+3=(2+3)=5;故A错误;B、(+1)(1﹣)=1﹣2=﹣1;故B错误;C、﹣(﹣a)4÷a2=﹣a4÷a2=﹣a2;故C错误;D、(xy)﹣1(xy)2=(xy)﹣1+2=xy;故D正确;故选:D.5.(3分)在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵x2+2>0,∴点P(x2+2,﹣3)所在的象限是第四象限.故选:D.6.(3分)小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是()A.中位数是3,众数是2B.众数是1,平均数是2C.中位数是2,众数是2D.中位数是3,平均数是2.5【解答】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,处在中间位置的一个数为2,因此中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;故选:C.7.(3分)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形【解答】解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:B.8.(3分)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A.=B.=C.+=130D.﹣130=【解答】解:设甲每天做x个零件,根据题意得:,故选:A.9.(3分)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.10.(3分)如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是()A.B.C.D.【解答】解:根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<R时,y增量越来越大,当R<x<2R时,y增量越来越小,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故y关于x的函数图象是先凹后凸.故选:A.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)一个铁原子的质量是0.000000000000000000000000093kg,将这个数据用科学记数法表示为9.3×10﹣26kg.【解答】解:0.000000000000000000000000093=9.3×10﹣26,故答案为:9.3×10﹣26.12.(3分)把多项式m2n+6mn+9n分解因式的结果是n(m+3)2.【解答】解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.13.(3分)点A的坐标是A(x,y),从1、2、3这三个数中任取一个数作为x的值,再从余下的两个数中任取一个数作为y的值.则点A落在直线y=﹣x+5与直线y=x及y 轴所围成的封闭区域内(含边界)的概率是.【解答】解:解方程组得,∴直线y=﹣x+5与直线y=x的交点坐标为(3,2),如图,画树状图为:共有6种等可能的结果数,其中点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的点为(1,2),(1,3),(2,3),(3,2),所以点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率==.故答案为.14.(3分)如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α=48°.【解答】解:设l交A1A2于E、交A4A3于D,如图所示:∵六边形A1A2A3A4A5A6是正六边形,六边形的内角和=(6﹣2)×180°=720°,∴∠A1A2A3=∠A2A3A4==120°,∵五边形B1B2B3B4B5是正五边形,五边形的内角和=(5﹣2)×180°=540°,∴∠B2B3B4==108°,∴∠B4B3D=180°﹣108°=72°,∵A3A4∥B3B4,∴∠EDA3=∠B4B3D=72°,∴α=∠A2ED=360°﹣∠A1A2A3﹣∠A2A3A4﹣∠EDA3=360°﹣120°﹣120°﹣72°=48°,故答案为:48.15.(3分)某中学规定学生体育成绩满分为100分,按课外活动成绩、期中成绩、期末成绩2:3:5的比,计算学期成绩.小明同学本学期三项成绩依次为90分、90分、80分,则小明同学本学期的体育成绩是85分.【解答】解:90×+90×+80×=85(分),故答案为:85.16.(3分)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为(a+b).(用含a,b的代数式表示)【解答】解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=a,∴正方形ABCD的面积=4×a+b=a+b.故答案为(a+b).17.(3分)如图,在边长为2的正方形EFGH中,M,N分别为EF与GH的中点,一个三角形ABC沿竖直方向向上平移,在运动的过程中,点A恒在直线MN上,当点A运动到线段MN的中点时,点E,F恰与AB,AC两边的中点重合,设点A到EF的距离为x,三角形ABC与正方形EFGH的公共部分的面积为y,则当y=,x的值为或2+.【解答】解:如图1中,当过A在正方形内部时,连接EG交MN于O,连接OF,设AB交EH于Q,AC交FG于P.由题意,△ABC是等腰直角三角形,AQ=OE=OG=AP=OF,S△OEF=1,∵y=,∴S四边形AOEQ+S四边形AOFP=1.5,∴OA•2=1.5,∴OA=,∴AM=1+=;如图2中,当点A在正方形外部时,由题意,重叠部分是六边形WQRJPT,S重叠=S△ABC﹣2S△BQR﹣S△AWT,∴2.5=×2×2﹣1﹣×2AN×AN,解得AN=,∴AM=2+,综上所述,满足条件的AM的值为或2+,故答案为或2+.18.(3分)如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA 为边作正方形ABCO,点B坐标为(1,1).过点B作EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1,以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2.….则点B2020的坐标(2×32020﹣1,32020).【解答】解:∵点B坐标为(1,1),∴OA=AB=BC=CO=CO1=1,∵A1(2,3),∴A1O1=A1B1=B1C1=C1O2=3,∴B1(5,3),∴A2(8,9),∴A2O2=A2B2=B2C2=C2O3=9,∴B2(17,9),同理可得B3(53,27),B4(161,81),…由上可知,B n(2×3n﹣1,3n),∴当n=2020时,B n(2×32020﹣1,32020).故答案为:(2×32020﹣1,32020).三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.【解答】解:(﹣)÷=[+]•=(+)•=•==,∵a2+2a﹣15=0,∴a2+2a=15,当a2+2a=15时,原式=.20.(12分)在疫情期间,为落实“停课不停学”,某校对本校学生某一学科在家学习情况进行抽样调查,了解到学生的学习方式有:电视直播、任课教师在线辅导、教育机构远程教学、自主学习参与调查的学生只能选择一种学习方式,将调查结果绘制成不完整的扇形统计图和条形统计图.根据如图所示的统计图,解答下列问题.(1)本次接受调查的学生有60名;(2)补全条形统计图;(3)根据调查结果,若本校有3900名学生,估计有多少名学生参与任课教师在线辅导?【解答】解:(1)本次接受调查的学生有:9÷15%=60(名);故答案为:60;(2)选择C学习方式的人数有:60﹣9﹣30﹣6=15(人),补全统计图如下:(3)根据题意得:3900×=1850(名),答:估计有1850名学生参与任课教师在线辅导.四、解答题(第21题12分,第22题12分,共24分)21.(12分)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积.【解答】(1)证明:∵Δ=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即Δ>0,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该直角三角形的两直角边是1、3时,该直角三角形的面积为=;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的面积为=;综上,该直角三角形的面积为或.22.(12分)如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.(1)求证:AE=C′E.(2)求∠FBB'的度数.(3)已知AB=2,求BF的长.【解答】(1)证明:∵在Rt△ABC中,AC=2AB,∴∠ACB=∠AC′B′=30°,∠BAC=60°,由旋转可得:AB′=AB,∠B′AC′=∠BAC=60°,∴∠EAC′=∠AC′B′=30°,∴AE=C′E;(2)解:由(1)得到△ABB′为等边三角形,∴∠AB′B=60°,即∠BB'F=∠AB'B+∠AB'F=150°,∵BB'=B'F,∴∠FBB′=∠B'FB=15°;(3)法1:解:由AB=2,得到B′B=B′F=2,∠B′BF=15°,过B作B′H⊥BF,在Rt△BB′H中,cos15°=,∵cos15°=cos(45°﹣30°)=cos45°cos30°+sin45°sin30°=×+×=,∴BH=2×=,∴BF=2BH=+.法2:连接AF,过A作AM⊥BF,由(2)可得△AB′F是等腰直角三角形,△AB′B为等边三角形,∴∠AFB′=45°,∴∠AFM=30°,∠ABF=45°,在Rt△ABM中,AM=BM=AB•cos∠ABM=2×=,在Rt△AMF中,MF===,则BF=+.五、解答题(本题12分)23.(12分)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t (分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是120米/分钟,妈妈在家装载货物所用时间是5分钟,点M的坐标是(20,1200).(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.【解答】解:(1)妈妈骑车的速度为120米/分钟,妈妈在家装载货物时间为5分钟,点M的坐标为(20,1200).故答案为:120,5,(20,1200).(2)y2=,其图象如图所示,(3)由题意可知:小华速度为60米/分钟,妈妈速度为120米/分钟,①相遇前,依题意有60t+120t+360=1800,解得t=8分钟,②相遇后,依题意有,60t+120t﹣360=1800,解得t=12分钟.③依题意,当t=20分钟时,妈妈从家里出发开始追赶小华,此时小华距商店为1800﹣20×60=600米,只需10分钟,即t=30分钟,小华到达商店.而此时妈妈距离商店为1800﹣10×120=600米>360米,∴120(t﹣5)+360=1800×2,解得t=32分钟,∴t=8,12或32分钟时,两人相距360米六、解答题(本题12分)24.(12分)2020年突如其来的新型冠状病毒疫情,给生鲜电商带来了意想不到的流量和机遇,据统计某生鲜电商平台1月份的销售额是1440万元,3月份的销售额是2250万元.(1)若该平台1月份到3月份的月平均增长率都相同,求月平均增长率是多少?(2)市场调查发现,某水果在“盒马鲜生”平台上的售价为20元/千克时,每天能销售200千克,售价每降价2元,每天可多售出100千克,为了推广宣传,商家决定降价促销,同时尽量减少库存,已知该水果的成本价为12元/千克,若使销售该水果每天获利1750元,则售价应降低多少元?【解答】解:(1)设月平均增长率为x,依题意,得:1440(1+x)2=2250,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去).答:月平均增长率是25%.(2)设售价应降低y元,则每天可售出200+=(200+50y)千克,依题意,得:(20﹣12﹣y)(200+50y)=1750,整理,得:y2﹣4y+3=0,解得:y1=1,y2=3.∵要尽量减少库存,∴y=3.答:售价应降低3元.七、解答题(本题12分)25.(12分)如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O为CF的中点,连接OE,OD.(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明).(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB=4,请直接写出点O经过的路径长.【解答】解:(1)OE=OD,OE⊥OD;理由如下:由旋转的性质得:AF=AC,∠AFE=∠ACB,∵四边形ABCD是正方形,∴∠ACB=∠ACD=∠F AC=45°,∴∠ACF=∠AFC=(180°﹣45°)=67.5°,∴∠DCF=∠EFC=22.5°,∵∠FEC=90°,O为CF的中点,∴OE=CF=OC=OF,同理:OD=CF,∴OE=OD=OC=OF,∴∠EOC=2∠EFO=45°,∠DOF=2∠DCO=45°,∴∠DOE=180°﹣45°﹣45°=90°,∴OE⊥OD;(2)当45°<α<90°时,(1)中的结论成立,理由如下:连接CE,DF,如图所示:在正方形ABCD中,AB=AD∴AD=AE∵O为CF的中点,∴OC=OF∵AF=AC∴∠ACF=∠AFC∵∠DAC=∠EAF∴∠DAC﹣∠DAE=∠EAF﹣∠DAE∴∠EAC=∠DAF在△ACE和△AFD中,,∴△ACE≌△AFD(SAS)∴CE=DF,∠ECA=∠DF A又∵∠ACF=∠AFC∴∠ACF﹣∠ECA=∠AFC﹣∠DF A,∴∠ECO=∠DFO,在△EOC和△DOF中,,∵EC=DF,∠ECO=∠DFO,CO=FO∴△EOC≌△DOF(SAS)∴OE=OD.连接AO,则AO⊥CF,∴∠AOC=∠ADC=90°,∴A、C、O、D四点共圆,∴∠AOD=∠ACD=45°,同理A、E、O、F四点共圆,∴∠AOE=∠AFE=45°,∴∠DOE=45°+45°=90°,∴OD⊥OE.(3)连接AO,如图3所示:∵AC=AF,CO=OF,∴AO⊥CF,∴∠AOC=90°,∴点O在以AC为直径的圆上运动,∵α=360°,∴点O经过的路径长等于以AC为直径的圆的周长,∵AC=AB=×4=8,∴点O经过的路径长为:πd=8π.八、解答题(本题12分)26.(14分)如图,在平面直角坐标系中,直线l1:y=x+与x轴、y轴分别相交于点A、B,直线l2与直线y=﹣x平行,且与直线l1相交于点B,与x轴交于点C.(1)求点C坐标;(2)若点P是y轴右侧直线l1上一动点,点Q是直线l2上一动点,点D(﹣2,6),求当S△PBC=S四边形AOBD时,点P的坐标,并求出此时,PQ+DQ的最小值;(3)将△AOB沿着直线l2平移,平移后记为△A1O1B1,直线O1B1交l1于点M,直线A1B1交x轴于点N,当△B1MN是等腰三角形时,求点A1的横坐标.【解答】解:(1)直线l1:y=x+与x轴、y轴分别相交于点A、B,则点A、B的坐标分别为:(﹣,0)、(0,),直线l2与直线y=﹣x平行,且过点B,则直线l2的表达式为:y=﹣x+,令y=0,则x=3,故点C(3,0);(2)过点D分别作x、y轴的垂线交于点M、N,设点P(m,m+),S四边形AOBD=S矩形MDNO﹣(S△BND﹣S△AMD)=26﹣[2×(6﹣)+6×(2﹣)]=8,S△PBC=2×2m=8,解得:m=2,故点P(2,3),作点P关于直线l2的对称点P′,连接DP′交l2于点Q,则点Q为所求点,PQ+DQ的最小值为DP′,则点P′、P关于点B对称,由中点公式得:点P′(﹣2,﹣),而D(﹣2,6),故:DP′=7,故PQ+DQ的最小值为7;(3)设三角形OAB向左平移3m个单位,则向上平移了m个单位,则点B1的坐标(﹣3m,m+),点M(﹣3m,﹣3m+),则A1的横坐标为:﹣﹣3m,设直线A1B1的表达式为:y=x+b,将点B1的坐标代入上式并解得:直线A1B1的表达式为:y=x+4m+,令y=0,则点N(﹣4m﹣,0),则B1M2=(4m)2=48m2,NB12=(m+)2+(m+)2,MN2=(m+)2+(﹣3m)2,当B1M=B1N时,48m2=(m+)2+(m+)2,解得:m=;当B1M=MN时,同理可得:m=﹣4或﹣;当B1N=MN时,解得:m=0或﹣4(舍去0);综上A1的横坐标为:或或﹣或﹣4或﹣.。
2020-2021学年辽宁省大连市中山区九年级(上)期末语文试卷1.请用正楷字将下面的汉字抄写在田字格里,要求书写规范、端正、整洁。
千磨万击还坚劲2.下列词语中加点字的字音和字形都正确的一组是()A. 天骄.(jiāo)停滞.(dài)附庸.风雅(yōng)制.之不理(zhì)B. 墨.守(mò)秘.诀(mì)轻而易.举(yì)自惭.形秽(cán)C. 飘逸.(yì)鄙.夷(bí)富丽堂.皇(táng)相得异.彰(yì)D. 觅.食(mì)虚忘.(wàng)随机应.变(yīng)与日俱.增(jù)3.默写填空。
不以物喜,不以己悲,______ ,______ 。
(范仲淹《岳阳楼记》)(2)______ ,______ 。
停杯投箸不能食,拔剑四顾心茫然。
(李白《行路难》)崇祯五年十二月,余住西湖。
______ ,______ 。
(张岱《湖心亭看雪》)少年不识愁滋味,爱上层楼。
______ ,______ 。
(辛弃疾《丑奴儿•书博山道中壁》)刘禹锡的《酬乐天扬州初逢席上见赠》中既有对友人的感谢之情,也表达了共勉之意的诗句是:______ ,______ 。
俗话说:“别时容易见时难。
”困于战火的杜甫只能空发“烽火连三月,家书抵万金”的感慨;归期不定的李商隐只能憧憬“何当共剪西窗烛,却话巴山夜雨时”的幸福;兄弟分离的苏轼只能遥寄“______ ,______ ”的祝愿。
(用苏轼(《水调歌头》)中的诗句填空)4.按要求完成文后各题。
①嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆,探月工程嫦娥五号任务圆满取得成功。
②探月工程是《国家中长期科学和技术发展规划纲要(2006-2020年)》确定的16个国家科技重大专项,数十万名科技工作者自立项以来团结协作,集智攻关,高质量高效益完成六次探测任务。
2020-2021 学年辽宁省大连市沙河口区五年级(上)期末数学试卷一、填空(本题共10 小题,共21 分)1.(3 分)比一比,在圆圈里填上“>”“<”或“=”。
4.2÷7〇4.2÷0.7 1.7×0.5〇1.7÷0.5 0.333……〇0.03÷0.1 2.(1 分)农民伯伯榨出28 升花生油,分别装入4.5 升的油桶中,需要准备个这样的油桶。
3.(5 分)圈一圈,填一填。
按照圈的过程写出乘法算式:。
4.(1 分)用“↓”在图中标出公交车和动车平均每小时行驶的大致距离。
5.(1 分)0.82 港元可以兑换1 元人民币,100 港元可以兑换元人民币。
6.(2 分)3.05 的1.2 倍是;的2.5 倍是6.25。
7.(2 分)的分数单位是,再加上个这样的分数单位就是最小的合数.8.(2 分)35 和42 的最大公因数是;最小公倍数是。
9.(3 分)在如图表示出、1、的大致位置。
10.(1 分)如图所示,把一个长方形分成:一个梯形和一个三角形。
已知梯形的面积比三角形的面积大18 平方厘米,那么梯形的上底长为厘米。
二、选择题(将正确的答案序号填在括号中,本题共5 小题,每题1 分,共5 分)11.(1 分)如图的竖式中,余下的4 添0 后,表示40 个()A.1 B.0.1 C.0.01 D.0.00112.(1 分)淘气想把平行四边形的面积转化成长方形面积,()种不能拼成长方形。
A.A B.B C.C D.D13.(1 分)观察分数墙,1 个与()个相等.A.2 B.3 C.4 D.614.(1 分)如图中的阴影部分是一片湿地,估一估,这片湿地的面积最接近()公顷.(每个小方格代表一公顷)A.25 B.65 C.120 D.15015.(1分)下面有4 个袋子,每个袋子中分别装有8 个小球(小球除颜色外完全一样).小聪选择其中一个袋子进行摸球试验,每次任意摸出一个球,记录结果后再放回袋子摇匀.他一共摸了40 次,摸出红球29 次,黄球11 次.小聪选择的袋子最有可能的是()A. B.C. D.三、计算下列各题(共36 分)16.(10 分)直接写得数。