天然气水合物勘探和开采方法研究进展
- 格式:pdf
- 大小:249.70 KB
- 文档页数:3
天然气水合物研究历程及发展趋势摘要综合国内外关于天然气水合物的研究,概述其从发现、初步研究到深入研究的历程,总结了各阶段国内外天然气水合物研究的成果和进展。
从1810年发现天然气水合物以来,世界各地的科学家对气水化合物的类型和物化性质、自然赋存条件和成藏条件、资源评价、勘探开发手段等进行了广泛而卓有成效的研究。
总结世界各国天然气水合物的研究现状并指出了其发展趋势。
研究表明我国的许多海区具有天然气水合物形成的条件,希望2020年能够进行商业开采。
关键词:天然气水合物(gas hydrates)是一种由气体和水形成的冰状白色固态晶体,常在一种特定的高压低温条件下形成并稳定存在,广泛发育在浅海底层沉积物和深海大陆斜坡沉积地层以及极地地区的永久冻土层中。
目前各国科学家对全球天然气水合物的资源量较为一致的评价为2×1016m3,是剩余天然气储量的136倍(1·56×1 014 m3),如果将此储量折算为地球上的有机碳资源,它将占总资源的一半以上。
1国外天然气水合物的研究现状由于当前化石燃料(包括煤、石油与天然气),特别是其中的石油和天然气能源的短缺,使人们对天然气水合物这种高效潜在能源格外关注,自20世纪90年代以来,世界各国对潜力巨大的新型能源—天然气水合物的研究做了大量投入,已经取得了重大进展。
1995年,美国在海上钻井平台(简称ODP)第164航次中,率先在布莱克海脊布设了3口勘探井,首次有计划地取得了天然气水合物样品。
美国参议院委员会在1998年5月一致通过1418号议案—“天然气水合物研究与资源开发计划”。
把天然气水合物资源作为国家发展的战略能源列入长远计划,决定批准用于天然气水合物资源研究开发的每年投入为2 000万美元,计划到2015年实现商业性开采。
2002年4月,在圣彼德堡召开的国际海洋矿产会议上,美国地质调查局的W·J·Wintres展示的天然气水合物和沉积物检验实验室装置(简称GHASTLI)代表了当前天然气水合物模拟实验的最高水平,正在进行的是自然界和实验室形成的天然气水合物-沉积物的物理性质的研究。
天然气水合物资源评价及开发技术研究天然气水合物 (Methane Hydrate) 是一种在高压和低温环境下自然形成的亚稳定物质,其主要成分为甲烷和水。
由于其丰富的储量和广泛的分布,天然气水合物在全球范围内备受关注。
然而,开发利用天然气水合物的技术和风险评估仍然是一个挑战性的研究领域。
一、天然气水合物资源评价天然气水合物储量极为丰富。
据估计,全球天然气水合物储量达到 100,000 亿立方米以上(当量于 10,000 亿吨标煤),其中大概有 35,000 亿立方米可以开采。
而我国境内天然气水合物资源储量不仅占了全球的份额,而且以南海为中心,还处在区域集中和高品质分布的优势。
在天然气水合物资源评价中,最为关键的是确定天然气水合物储层是否具有商业开发价值。
评价方法可以主要分为实验室评价和现场勘探,具体方法包括储层抽取、样品分析、实验模拟、建模计算等。
现场勘探中,钻井是目前最主要的评价方法之一。
利用钻井记录解释结合获取的地震资料,结合潜在储层特征,包括钻井测井和地震反演,可以快速获得储层信息,确定探测区域的勘探价值和发展潜力。
此外,海底振荡探查法、测井、地震等方法也可以用于天然气水合物资源勘探与评价中。
二、天然气水合物开发技术研究目前,天然气水合物的常规开采技术主要为钻孔挖掘或热力学法开采。
其中,热力学法开采是指利用热力作用来改变天然气水合物的相态,从而使之解离并释放出天然气。
目前还存在一些问题,例如储层条件复杂、开采成本高、环境风险大等。
为了解决这些问题,需要研究和开发新的天然气水合物开采技术。
其中,最为引人注目的是微生物技术。
与常规开采技术相比,微生物技术解决了不需要破坏水合物层结构就能够提高开采效率、降低环境风险、并同时降低能源消耗等问题。
微生物技术的原理是通过资源细菌和微型生物的种类去解离天然气水合物,这样不但不会破坏水合物层结构,而且可以获得海水中的微生物能够消耗甲烷,保证了开采过程中的环保性。
天然气水合物的研究与开发的论文【摘要】人类的生存发展离不开能源。
当人类学会使用第一个火种时便开始了能源应用的漫长历史。
几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。
主体能源的更替充分反映出人类社会和经济的进步与发展。
第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。
实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。
一、天然气水合物是人类未来能源的希望人类的生存发展离不开能源。
当人类学会使用第一个火种时便开始了能源应用的漫长历史。
几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。
主体能源的更替充分反映出人类社会和经济的进步与发展。
第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。
实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。
核聚变能主要寄希望于3he,它的资源量虽然在地球上有限(10~15t),但在月球的月壤中却极为丰富(100-500万t)。
氢能是清洁、高效的理想能源,燃烧耐仅产生水(h2o),并可再生,氢能主要的载体是水,水体占据着地球表面的2/3以上,蕴藏量大。
天然气水合物的主要成分是甲烷(c4h)和水,甲烷气燃烧十分干净,为清洁的绿色能源,其资源量特别巨大,开发技术较为现实,有可能成为21世纪的主体能源,是人类第四代能撅的最佳候选。
天然气水合物(gas hydrate)是一种白色固体结晶物质,外形像冰,有极强的燃烧力,可作为上等能源,俗称为”可燃冰”。
天然气水合物由水分子和燃气分子构戚,外层是水分子格架,核心是燃气分子(图1)。
燃气分子可以是低烃分子、二氧化碳或硫化氢,但绝大多数是低烃类的甲烷分子(c4h),所以天然气水合物往往称之为甲烷水合物(methane hydrate)。
天然气水合物的开发利用技术分析天然气水合物是一种天然气的新型储存形式,是由甲烷和水分子结晶形成的,储存量极其巨大。
因此,发掘和利用这种天然气储量已成为全球能源界和科技界的研究热点之一。
本文将对天然气水合物的开发利用技术进行分析。
一、天然气水合物的开采技术天然气水合物的开采技术主要有以下几种:钻孔法、注水法、热解法和超声波荡涤法。
1. 钻孔法钻孔法是使用钻探设备在海底或陆地上开采水合物的一种方法。
通过钻孔设备将泥沙层和水合物层分离,然后以泥浆或水将水合物层中的水分冲刷掉,从而破坏了水合物的晶体结构,使之变化成气体。
这种方法适用于水合物分布较为均匀、饱和度高的海域和陆地。
2. 注水法注水法是将淡水或高压水注入到水合物层中,使之溶解成气体,然后通过开采口抽取天然气。
该方法不仅可用于海底,也可用于陆地上,但它在开采效率、生产成本等方面存在一定的局限性。
3. 热解法热解法是利用热量将水合物层的结构破坏,从而释放天然气的一种方法。
发展迅速、效果明显,但是热能的使用成本较高。
目前这种方法还处于研究阶段。
4. 超声波荡涤法超声波荡涤法是利用超声波对水合物层进行荡涤,从而使天然气释放。
这种方法可以在不破坏水合物结构的情况下实现气体释放,不会对环境造成不良影响。
然而,该技术的高成本和复杂性限制了其应用范围。
二、天然气水合物的输送技术天然气水合物采集后需要输送至加工厂进行加工和利用,主要的输送技术有管道输送、船运输和悬浮巨型平台输送。
1. 管道输送管道输送是一种传统的气体输送方式,它是将水合物压缩成气态后装入管道中,通过锚定在海底的管道输送至加工厂。
该方法可靠性高、成本低,但需要大规模基建,而且对环境产生一定影响。
2. 船运输船运输是将水合物转运至市场的一种常见方式。
这种方法适用于水合物储量分布较为分散的海域,便于灵活调配资源。
但是它的运输成本较高,需要专门的运输船只。
3. 悬浮巨型平台输送悬浮巨型平台输送是一种新型的输送方式,它可以充分利用海洋空间,通过巨型平台将水合物输送至加工厂。
天然气水合物开发现状及研究进展天然气水合物(NGH),也称气体水合物,是由天然气与水分子在高压(>10MPa)和低温(0~10℃)条件下合成的一种固态结晶物质。
因天然气水合物中80%~90%的成分是甲烷,故也称甲烷水合物。
天然气水合物多呈白色或浅灰色晶体,外貌类似冰雪,可以象酒精块一样被点燃,所以,也有人叫它“可燃冰”。
一、天然气水合物的形成条件及分布天然气水合物的形成有三个基本条件,缺一不可。
首先温度不能太高;第二压力要足够大,但不需太大;0℃时,30个大气压以上就可生成;第三,地底要有气源。
天然气水合物受其特殊的性质和形成时所需条件的限制,只分布于特定的地理位置和地质构造单元内。
一般来说,除在高纬度地区出现的与永久冻土带相关的天然气水合物之外,在海底发现的天然气水合物通常存在于水深300~500m以下(由温度决定),主要附存于陆坡、岛屿和盆地的表层沉积物或沉积岩中,也可以散布于洋底以颗粒状出现。
这些地点的压力和温度条件使天然气水合物的结构保持稳定。
深海钻探发现,天然气水合物以冰状或更多地以水合物胶结的火山灰和细砂产出,其时代为晚中新世—晚上新世。
天然气水合物与火山灰或火山砂共存,暗示了其形成与火山喷发有某种联系。
天然气水合物形成于低温高压条件下,分布限于极地地区,深海地区及深水湖泊中。
在极地地区天然气水合物通常与大陆和大陆架上的永冻沉积物有关;在海洋里,天然气水合物主要分布于外大陆边缘和洋岛的周围,水深超过大约300 m。
天然气水合物的稳定温度为1~21.1℃,分布的最大下限深度不超过海底下2000m[2]。
深海钻探已经表明天然气水合物既可以产于被动大陆边缘,也可产于活动大陆边缘。
但大多数天然气水合物样品来自于活动边缘[2]。
据估计,陆地上20.7%和大洋底90%的地区,具有形成天然气水合物的有利条件。
绝大部分的天然气水合物分布在海洋里,其资源量是陆地上的100倍以上。
在标准状况下,一单位体积的天然气水合物分解可产生164单位体积的甲烷气体,因而是一种重要的潜在未来资源。
天然气水合物的开采与应用天然气水合物,简称天然气冰,是固态的天然气和水混合体,主要由甲烷组成。
在高压低温的环境下形成,通常存在于海底深处。
天然气水合物是一种崭新的能源来源,被誉为能源领域的“黑马”。
不仅具有较高的能量密度和广泛应用前景,而且储量巨大。
据国际能源署预计,全球天然气水合物储量为气体当量2.5万亿至3万亿立方米,约为全球天然气储量的2000倍。
因此,开采与应用天然气水合物具有重要的战略意义和深远的经济意义。
一、天然气水合物的开采目前,天然气水合物的开采技术还处于起步阶段。
其开采方式主要分为两种:海洋开采和陆地开采。
海洋开采是目前天然气水合物开采的主要方式。
目前被认为最有潜力的区域是东海、南海和北极地区。
这些地区都是高压低温的海底环境,适合天然气水合物的形成和储存。
目前,日本、韩国、美国等国家已进行了国内水合物沉积规模和分布的调研和评估。
陆地开采主要是指天然气水合物的煤层气开采。
这种开采方式目前在中国较为流行,主要选择煤层气富集区域。
在我国,这种方式的开发具有较高的经济、环保和社会效益。
二、天然气水合物的应用天然气水合物具有很高的能量含量和广泛的应用前景,可以替代传统燃料,实现能源结构的转型。
其应用领域主要包括燃料、化工、热电联产等。
1.燃料领域天然气水合物可以清洁高效地燃烧,是替代煤炭和油类燃料的一种重要选择。
它的主要优点是燃烧后不会产生大气污染物和温室气体,且能够降低车载和船舶的运输成本。
目前,日本和韩国等国家已将天然气水合物列为稳定的燃料资源,是实现低碳经济、环保经济的一个良好选择。
2.化工领域天然气水合物可以通过裂解甲烷等方式,生产出丰富的化学原料,如丙烯、丁烯等。
这些物质广泛应用于塑料、橡胶、合成纤维、服装、医疗等行业,对提高我国化学工业的核心竞争力和推动经济发展具有重要意义。
3.热电联产利用天然气水合物进行热电联产,可以有效解决城市和工业部门的供热和供电需求。
特别是在冷地区,天然气水合物具有广阔的应用前景。
天然气水合物开发与应用研究天然气水合物(Natural gas hydrate)是一种新兴的天然气能源,是由天然气和水结晶形成的固体物质。
在地球上广泛存在,是一种巨大的潜在能源,有着丰富的矿物质储量和广泛的分布区域,是未来能源领域的重要关键技术之一。
本文将从天然气水合物的基本概念、开发和应用及其未来发展方向等方面加以探讨。
一、天然气水合物的基本概念天然气水合物是一种天然存在的固态烃类化合物,其化学式为(CH4)x.6H2O。
因其外形和石头类似,也被称为“冰石”。
它的稳定域分布在深海和陆地的寒冷区域,深度在300-4000米之间。
天然气水合物在现代地质历史上形成,其来源主要是孢粉屑、腐殖质、生物类和沉积物中的有机物,通过生物和地球化学作用而生成。
天然气水合物是一种非常致密的储层,具有高热值、清洁、低碳排放、储存巨大等优点。
二、天然气水合物的开发和应用天然气水合物的开发和应用始于上世纪70年代,但因技术瓶颈和成本高昂等原因,一直没有得到广泛应用。
随着技术的不断进步,天然气水合物的开发和应用正在逐步实现。
1.开发方面天然气水合物开发主要分为海上和陆上两个方面。
(1)海上方面在海底水合物开发中,主要通过海底冰山钻探、钻井、钻孔和开凿钻孔等手段进行。
在寒冷的海底环境下,天然气水合物结晶不断生长和维持的条件是水的超饱和度、气体压力和温度条件。
而水合物与底部沉积物交界处的过渡带,也是非常重要的探测层位之一。
目前,日本、韩国、美国等国家均已投入了大量资金和技术人员,开展海上天然气水合物的开发和研究。
(2)陆上方面在陆地天然气水合物的开发中,由于地表温度较高,需要使用冷却剂来制冷,减少温度。
通常选择废弃油井井筒或钻探孔等结构来进行开采。
目前美国、日本、中国等国都有陆上天然气水合物的研究和开发工作。
2.应用方面在天然气水合物的应用方面,可广泛应用于城市燃气、热电联产、液化天然气和化学品生产等领域。
天然气水合物可以直接用于燃气流程,使燃烧的能源跟佐料和废水的排放保持在可控制的极限范围之内,大大提高了燃烧的能效和安全性。
天然气水合物的开发与利用技术随着人类经济的发展和城市化进程的推进,能源需求日益增长,为了满足能源需求,人们对所有的潜在能源资源展开了深入的研究,天然气水合物就是其中之一。
天然气水合物是一种新型的天然气资源,是在海洋和极地地区的超低温高压条件下,甲烷在水分子的帮助下形成的冰-like物质。
虽然这种资源自20世纪70年代以来就已经被发现,但是由于技术落后,难以开采和利用,因此直到近年来才引起人们的重视。
本文旨在探讨天然气水合物的开发与利用技术。
一、天然气水合物的开采技术天然气水合物开采技术是目前研究的核心问题之一。
在开采天然气水合物的过程中存在许多技术难题,如海洋环境复杂、气水合物粘稠、通气性差、开采力学问题、成本问题等。
在这些问题之中,目前最重要的难题是如何保持天然气水合物固态结构。
保持天然气水合物固态结构的方法有许多。
其中一种比较有前途的方法是利用二氧化碳替换水分子。
由于二氧化碳分子比水分子小,可以穿透到气水合物的结构中,并把水分子代替掉。
这种方法可以在不改变气水合物结构的情况下,提高透气率和渗透性,从而有效地提高开采效率。
此外,还有一种比较成熟的天然气水合物开采技术,即利用减压法。
减压法是指通过降低环境压力,使天然气水合物失去稳定性,并将其中的天然气释放出来。
这种方法的优点是简单易行,但在实际操作中存在一些问题,如天然气的释放速度慢,容易导致爆炸等危险。
二、天然气水合物的利用技术天然气水合物开采虽然存在诸多技术难题,但其所蕴含的能源资源巨大,具有广阔的应用前景。
当前,天然气水合物的利用技术主要分为三大类,即燃料利用、化学利用和CO2封存利用。
1、燃料利用天然气水合物中,甲烷含量非常高,其三维晶体结构中储存的天然气比煤、石油等传统燃料更加丰富、干净、高效。
因此,天然气水合物在燃料领域的利用非常广泛。
可以用于工业生产、城市供热、燃料电池等多个领域。
其热值高、燃烧无害,相对于煤炭、石油等传统燃料来源,它的环保性与经济性更占优势。
《多孔介质天然气水合物开采的基础研究》篇一一、引言多孔介质天然气水合物(Natural Gas Hydrate,简称NGH)作为一种清洁、高效的能源资源,其开采技术的研发对于保障国家能源安全、优化能源结构、促进可持续发展具有重要意义。
多孔介质中天然气水合物的开采涉及到复杂的物理、化学过程,对其基础研究的深入,将有助于提升开采效率,降低环境影响,为大规模商业化开采奠定基础。
本文将就多孔介质天然气水合物开采的基础研究进行详细阐述。
二、多孔介质天然气水合物的特性多孔介质中的天然气水合物主要由天然气分子和水分子的氢键结合形成,具有高能量密度、清洁环保等优点。
其存在于海底、冻土等低温高压环境下,与常规能源相比,具有较大的开发潜力。
然而,由于多孔介质的复杂性,天然气水合物的开采过程中存在诸多挑战,如开采过程中的稳定性控制、能量消耗等。
三、多孔介质天然气水合物开采的基础研究(一)储层物性研究储层物性研究是天然气水合物开采的基础。
通过对储层的地质结构、孔隙度、渗透率等参数进行详细分析,可以了解储层的物理性质,为后续的开采方案设计提供依据。
此外,还需对储层中的流体性质进行研究,包括水合物与水的相平衡关系、流体在多孔介质中的流动特性等。
(二)开采技术与方法研究针对多孔介质的特点,开发出适用于天然气水合物开采的技术与方法。
目前,常见的开采方法包括热激法、降压法、化学试剂法等。
其中,热激法通过加热降低水合物的稳定性,使水合物分解;降压法通过降低储层压力,使水合物达到相平衡条件而分解;化学试剂法则通过添加特定化学试剂,破坏水合物的结构,使其分解。
这些方法各有优缺点,需根据实际情况选择合适的方法。
(三)开采过程中的稳定性控制研究在天然气水合物开采过程中,需对储层的稳定性进行控制。
一方面要防止因开采过程中的扰动导致储层坍塌、裂缝等地质灾害;另一方面要确保水合物的分解过程在可控范围内进行,避免因过度分解导致资源浪费和环境破坏。
天然气水合物的开发利用与技术研究一、天然气水合物的概述天然气水合物(Natural gas hydrates)是一种富含甲烷的固态化合物,其结构类似于冰,由水分子构成的笼状结构里充满了甲烷等天然气。
天然气水合物在富含甲烷的海洋和陆地沉积物中广泛存在,是目前已知的最大天然气资源。
由于能源危机的逐渐严重以及对清洁能源的强烈需求,天然气水合物作为一种新的天然气资源正在成为全球关注的研究热点。
二、天然气水合物的开发利用技术1. 技术路线天然气水合物的开发利用需要先进行采气和处理气两个阶段。
采气阶段主要包括建设钻探设备和开采平台,采用热解法、减压法、化学物质注入法等技术破坏天然气水合物的稳定态,使其释放出甲烷等天然气并收集其采出物;处理气阶段主要包括压缩、液化等技术,以满足输送、储存和利用的需求。
2. 技术研究天然气水合物作为一种新的能源资源,其研究领域也在不断扩张。
研究者需要对天然气水合物的形成、稳定性、成藏条件、开采、储运等方面进行深入思考和探索。
开发天然气水合物的技术需要全方位的提升和创新,涉及到物理学、化学、地学等多学科领域,也需持续性地深入研究去探究其更广泛的使用价值。
此外,针对天然气水合物资源的长远发展还需要寻求合适的经济和环保解决方案。
三、天然气水合物的利用价值1. 替代化石燃料天然气水合物是一种更加环保、经济、清洁的天然气资源。
与传统燃料相比,大幅度减少温室气体和硫氧化物排放,有望成为未来主要的能源来源。
同时,天然气水合物的采取,也将减少对传统石油和煤炭燃料的依赖,实现能源和环保可以并存的目标。
2. 工业上的应用天然气水合物可以应用在各领域,如海工上提供燃料,能供公司食堂做饭,也可以用在农业,把天然气水合物化为沼气,燃起来就可以给地里的作物、温室热内一加热等等。
其在工业上的使用方式也许还有很多未经开发出来的方式。
四、在天然气水合物开发利用中的挑战1. 技术的难度天然气水合物的开采涉及到多个领域的知识,在技术细节和采集设备的开发中需要解决多种问题。
天然气水合物的研究和应用天然气水合物(Natural Gas Hydrates,NGHs)是一种广泛存在于海底等低温高压环境中的天然气储存形式。
其中天然气以限制性捆绑水分子的形式被固定在水合物分子中,带来了巨大的储气量和储量潜力,同时也面临着技术难度、环境保护和经济效益等问题。
本文将就天然气水合物的研究、应用和未来展望进行探讨。
一、天然气水合物的发现和性质在19世纪,人们就已经在冰球岛的壳牌油田开掘中发现了天然气水合物。
随着海洋科学和石油勘探技术的发展,人们对天然气水合物的形成、分布、储量等方面有了更深入的认识。
目前已经发现了全球超过30个国家的水合物分布,总量估计达到10万亿立方米以上,比当前已开采的石油、天然气总量还要多。
天然气水合物的形成需要低温高压环境,一般在水深500米以上的海底沉积物中形成。
水合物分子为八面体结构,每个八面体分子中由6个水分子包围着1个天然气分子。
天然气分子主要是甲烷和少量乙烷等烷烃,烷烃的数量和种类取决于地质和气候条件。
天然气水合物的密度为0.9 g/cm³,比一般气体的密度大20到30倍,因此也被称为“固态天然气”。
二、天然气水合物的开采难题由于天然气水合物深藏于海底,固态且密度大,开采难度极大,需要高度发展的技术和设备支持。
一般而言,天然气水合物的开采并不直接进行,而是通过将水合物升到一定深度使其转变为气态天然气,再通过管道输送到海面上。
但这种技术和设备的研发和运用需要消耗大量的资源和能源,并且需要面对海底环境、恶劣天气和地震等因素的影响,也就带来了极大的经济和环境风险。
三、天然气水合物的应用前景天然气水合物储量丰富,意味着对于全球能源短缺问题的缓解有着重要意义。
同时,纯度高、热值佳、易于储存等天然气水合物的特点,使其在能源领域拥有极为广泛的应用前景。
目前,日本、韩国、中国等国家均在积极探索天然气水合物的开发与利用途径。
除了在能源领域的应用,天然气水合物还有着广泛的研究价值。