指数与指数函数
- 格式:doc
- 大小:249.50 KB
- 文档页数:3
指数函数知识点总结指数函数是高中数学中的重要内容,也是数学课本上的一个章节。
本文将从定义、性质、图像、运算等方面对指数函数的知识点进行总结,以帮助读者更好地理解和掌握指数函数的相关内容。
一、定义指数函数是以一个正常数b(b>0,b≠1)为底的幂函数,函数公式为f(x)=b^x,其中b称为底数,x称为指数,f(x)称为指数函数。
指数函数在生活中的例子有人口增长、细菌繁殖等。
二、性质1.定义域:指数函数的定义域是所有实数。
2.值域:对于b>1的指数函数,值域为(0,+∞);对于0<b<1的指数函数,值域为(0,+∞)。
3.奇偶性:指数函数当底数为奇函数时为奇函数,当底数为偶函数时为偶函数。
4.单调性:对于b>1的指数函数,其在定义域上是增函数;对于0<b<1的指数函数,其在定义域上是减函数。
5.渐近线:指数函数没有水平渐近线,但有垂直渐近线x=0。
6.交点与性质:当x=0时,指数函数的值为1,表示该点在y轴上;当b>1时,指数函数经过(1,b)点,当0<b<1时,指数函数经过(1,1/b)点。
三、图像1.b>1的指数函数的图像:在x轴左侧(负半轴)逐渐趋于0,在x轴右侧(正半轴)逐渐增大,图像位于y轴的上方。
2.0<b<1的指数函数的图像:在x轴左侧(负半轴)逐渐减小,在x轴右侧(正半轴)逐渐趋于0,图像位于y轴的下方。
四、运算1.指数函数的乘法法则:b^m*b^n=b^(m+n),底数相同的指数函数相乘时,指数相加。
2.指数函数的除法法则:(b^m)/(b^n)=b^(m-n),底数相同的指数函数相除时,指数相减。
3.指数函数的幂次法则:(b^m)^n=b^(m*n),指数函数的幂次公式,即指数的指数等于底数的两个指数相乘。
五、常用函数2. 对数函数:对数函数是指指数函数的反函数,记作y = logb(x),其中b为底数,x为指数。
指数以及指数函数的整理讲义经典-(含答案)指数与指数函数⼀、指数(⼀)n 次⽅根:1的3次⽅根是( )A .2B .-2C .±2D .以上都不对 2、若4a -2+(a -4)0有意义,则实数a 的取值范围是( )A .a ≥2B .a ≥2且a ≠4C .a ≠2D .a ≠4(⼆)、 n 为奇数,a a n n = n 为偶数,??<-≥==0,0,a a a a a a n n1.下列各式正确的是( )=-3 =a =2 D .a 0=12、.(a -b )2+5(a -b )5的值是( )A .0B .2(a -b )C .0或2(a -b )D .a -b 3、若xy ≠0,那么等式 4x 2y 2=-2xy y 成⽴的条件是( )A .x >0,y >0B .x >0,y <0C .x <0,y >0D .x <0,y <0 4、求下列式⼦(1).334433)32()23()8(---+-(2)223223--+132811621258---????;;;243的结果为 A 、5B 、5C 、-5D 、-53、把下列根式写成分数指数幂的形式:(1)32ab (2)()42a -(3)3432x x x(四)、实数指数幂的运算性质(1)r a ·s r r a a += ),,0(R s r a ∈>;(2)rs s r a a =)( ),,0(R s r a ∈>;(3)sr r a a ab =)( ),,0(R s r a ∈>.1.对于a >0,b ≠0,m 、n ∈N *,以下运算中正确的是( )A .a m a n =a mnB .(a m )n =am +nC .a m b n =(ab )m +nD .(b a )m=a -m b m2、若0,x >则13111424(2x +3)(2x -3)-4x = .3.计算-13-(-78)0+[(-2)3]-43+16-+|-|12=________.题型⼀: 1、求值:(1-;(22、已知*N n ∈,化简()()()()=+++++++++----11111233221n n Λ_____。
指数的运算与指数函数4.1指数的运算【知识梳理】1. 整数指数幂1)定义:我们把n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数。
在上述定义中,n 为整数时,这样的幂叫做整数指数幂。
2)整数指数幂的运算法则:(1)n m a a = (2)=n m a )((3)=n maa (4)=m ab )(3)此外,我们作如下规定:零次幂:)0(10≠=a a ; 负整数指数幂:),0(1+-∈≠=N n a a a nn; 2. 根式:1)n 次方根:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *。
注:①当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数,分别表示为n a -,n a ;负数的偶次方根在实数范围内不存在;②当n 是奇数时,正数的n 次方根是一个正数;负数的n 次方根是一个负数,都表示为na ;③0的任何次方根都是0,记作00=n。
2)正数a 的正n 次方根叫做a 的n 次算数根。
当na 有意义时,n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.注:当n 是奇数时,a a nn =;当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn ;3. 有理指数幂1)我们进行如下规定: n na a=1 (0>a )那么,我们就将整数指数幂推广到分数指数幂。
此外,下面定义也成立: )1,,,0(*>∈>=n N n m a a a n m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm注:0的正分数指数幂等于0,0的负分数指数幂没有意义。
2)规定了分数指数幂的意义后,指数的概念就从整数指数幂推广到了有理数指数幂。
3)有理指数幂的运算性质:(1)r a ·sr r aa +=),,0(Q s r a ∈>; (2)rs s r a a =)(),,0(Q s r a ∈>;(3)s r r a a ab =)(),0,0(Q r b a ∈>> 题型一 根式与幂的化简与求值 【例1】.求下列各式的值:(1)223223-++ (2)347246625-+--+【例2】.计算下列各式的值: (1)()[]75.0343031162)87(064.0---+-+-- (2)()()()012132232510002.0833-+--+⎪⎭⎫⎝⎛----【例3】.化简下列各式:(1)()0,0332>>b a b a ab ba (2)212121211111a a a a a ++------【过关练习】1.求值:(1)335252-++ (2)3332332313421248a a b a ab b ba a ⋅⎪⎪⎭⎫ ⎝⎛-÷++-2.化简:(1)111113131313132---+++++-x xx x x x x x(2)()()14214214433332)1()1(1))((----------++-++-++-+a a a a a a a a a a a a a a a a3.下列关系式中,根式与分数指数幂的互化正确的是_____.())0()4)(0()1()3();0()2();0()1(434334316221>=>=<=>-=--a a a a x xxy y y x x x题型二 含附加条件的求值问题 【例1】(1)若3193=⋅ba,则下列等式正确的是( ) A. 1-=+b a B. 1=+b a C. 12-=+b a D.12=+b a(2)若,123-=++x x x 则2827211227281x x x x x x x x ++⋅⋅⋅++++++⋅⋅⋅++----的值是_____.【例2】(1)已知,32,21==y x 求yx y x y x y x +---+的值; (2)已知b a ,是方程0462=+-x x 的两个根,且0>>b a ,求ba ba +-的值.【过关练习】 1.已知.88(22的值常数),求x x xxa --+=+2.已知32121=+-a a ,求21212323----aa a a 的值.3. 已知122+=xa ,求xx xx aa a a --++33的值题型三 解含幂的方程与等式的证明 【例1】解下列方程 (1)x x )41(212=+ (2)03241=-++x x【例2】已知433cz by ax ==,且1111=++zy x ,求证31313131222)(c b a cz by ax ++=++【过关练习】 1. 解下列方程(1)2291381+⎪⎭⎫⎝⎛=⨯x x (2)0123222=-⨯++x x2.设c b a ,,都是正数,且cb a 643==,求证ba c 122+=.4.2 指数函数及其性质【知识梳理】1. 指数函数 函数 )1,0(≠>=a a a y x叫做指数函数. 2. 指数函数的性质(1)定义域 :实数集合R ; (2)值域 :0>y ;(3) 奇偶性:指数函数是非奇非偶函数(4)单调性:1>a 时,函数 )1,0(≠>=a a a y x在),(+∞-∞上为增函数;10<<a 时,函数)1,0(≠>=a a a y x 在),(+∞-∞上为减函数;(5)函数值:0=x 时,1=y ,图象恒过点(0,1);(6)当0,1>>x a 时1>y ;0,1<>x a 时,10<<y .当10<<a ,0>x 时,10<<y ;0,10<<<x a 时,1>y .题型一 指数函数的概念例1 .已知指数函数)3)(2(--+=a a a y x的图像经过点(2,4),求a 的值.【过关练习】.若指数函数)(x f 的图像经过点(2,9),求)(x f 的解析式及)1(-f 的值.题型二 指数型复合函数的定义域和值域 【例1】.求下列函数的定义域和值域 (1) xy 31-= (2)412-=x y(3)xy -=)32( (4)32221--⎪⎭⎫ ⎝⎛=x x y【例2】.求函数[]2,2,221341-∈+⎪⎭⎫⎝⎛⨯-⎪⎭⎫ ⎝⎛=x y xx 的值域.【例3】.如果函数[]1,1-)1,0(122在且≠>-+=a a a a y x x上有最大值14,试求a 的值.【过关练习】1.求函数xy ⎪⎭⎫⎝⎛-=211的定义域和值域.2.已知集合⎭⎬⎫⎩⎨⎧∈==+R x y y A x,)21(12,则满足B B A =⋂的集合B 可以是( )A. ⎭⎬⎫⎩⎨⎧21,0 B. ⎭⎬⎫⎩⎨⎧<<210x x C.{}11≤≤-x x D.{}0>x x 3.函数22212+-=+x xy 的定义域为M ,值域[]2,1P ,则下列结论一定正确的个数是( )。
指数函数知识点总结指数函数是高中数学中的重要内容,它在数学和科学领域中都有着广泛的应用。
指数函数的概念和性质对于学生来说是一个比较抽象和难以理解的内容,但只要我们掌握了其中的一些关键知识点,就能够很好地理解和运用指数函数。
本文将对指数函数的知识点进行总结,希望能够帮助学生更好地掌握这一部分内容。
一、指数函数的定义。
指数函数是以指数为自变量的函数,一般写作y=a^x,其中a是底数,x是指数,y是函数值。
当底数a大于1时,函数呈现增长趋势;当底数a在0和1之间时,函数呈现下降趋势。
指数函数的图像一般为一条曲线,随着指数的增大或减小而逐渐增长或减小。
二、指数函数的性质。
1. 指数函数的定义域是实数集,值域是正实数集。
2. 当底数a大于1时,函数呈现增长趋势;当底数a在0和1之间时,函数呈现下降趋势。
3. 指数函数的图像一般为一条曲线,随着指数的增大或减小而逐渐增长或减小。
4. 指数函数的图像经过点(0,1),并且不过x轴。
三、指数函数的运算。
1. 指数函数的乘法,a^m a^n = a^(m+n)。
2. 指数函数的除法,a^m / a^n = a^(m-n)。
3. 指数函数的幂运算,(a^m)^n = a^(mn)。
四、指数函数的应用。
1. 指数函数在经济学中的应用,例如复利计算、指数增长模型等。
2. 指数函数在生物学中的应用,例如细菌繁殖、人口增长等。
3. 指数函数在物理学中的应用,例如放射性衰变、电路中的电流变化等。
五、指数函数的解析式和图像。
1. 当底数a大于1时,指数函数的解析式为y=a^x,图像为逐渐增长的曲线。
2. 当底数a在0和1之间时,指数函数的解析式为y=a^x,图像为逐渐减小的曲线。
六、指数函数与对数函数的关系。
指数函数和对数函数是互为反函数的函数关系,它们之间有着密切的联系。
指数函数的解析式为y=a^x,对数函数的解析式为y=loga(x),它们之间的关系可以通过换底公式进行转换。
指数函数运算公式8个指数函数,也称为幂函数,是数学中的一种常见函数类型。
它的一般形式可以表示为y = ax^n,其中a是常数,n是指数。
在指数函数的运算中,有一些常见的公式可以帮助简化计算。
下面是8个常见的指数函数运算公式:1.指数函数的乘法公式:若要计算两个指数函数相乘,即y=a1x^n1*a2x^n2,可以将底数先相乘,再将指数相加,即y=(a1*a2)x^(n1+n2)。
2.指数函数的除法公式:若要计算两个指数函数相除,即y=(a1x^n1)/(a2x^n2),可以将底数先相除,再将指数相减,即y=(a1/a2)x^(n1-n2)。
3. 指数函数的幂运算公式:若要计算一个指数函数的幂,即y =(ax^n)^m,可以将指数相乘,即y = ax^(n * m)。
4. 幂函数的指数公式:若要计算一个幂函数的指数,即y =a^(bx^n),可以将指数和底数都取对数,即y = e^(ln(a^(bx^n))),然后根据对数的运算公式进一步简化。
5. 指数函数的倒数公式:若要计算一个指数函数的倒数,即y = 1/ (ax^n),可以将指数取相反数,即y = (ax^(-n))。
6. 指数函数的根式公式:若要计算一个指数函数的根式,即y =(ax^n)^(1/m),可以将指数和根式互相消去,即y = a^(1/m) * x^(n/m)。
7. 指数函数的对数公式:若要计算一个指数函数的对数,即y =loga(ax^n),可以将对数和指数互相消去,即y = n * loga(x)。
8. 对数函数的指数公式:若要计算一个对数函数的指数,即y = loga^(bx^n),可以将指数取为e的幂,即y = e^(bx^n * ln(a))。
这些指数函数运算公式可以在解决数学问题、化简复杂表达式以及研究数学模型等方面发挥重要作用。
通过熟练掌握这些公式,并结合其他数学知识和技巧,可以更加灵活地运用指数函数进行计算和分析。
指数函数知识点专题复习一、基础知识 1.指数函数的概念函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数. 形如y =ka x ,y =a x +k (k ∈R 且k ≠0,a >0且a ≠1)的函数叫做指数型函数,不是指数函数. 2.指数函数y =a x (a >0,且a ≠1)的图象与性质二、常用结论指数函数图象的特点(1)指数函数的图象恒过点(0,1),(1,a ),⎪⎭⎫⎝⎛-a 1,1,依据这三点的坐标可得到指数函数的大致图象. (2)函数y =a x 与y =xa ⎪⎭⎫⎝⎛1(a >0,且a ≠1)的图象关于y 轴对称.(3)底数a 与1的大小关系决定了指数函数图象的“升降”:当a >1时,指数函数的图象“上升”;当0<a <1时,指数函数的图象“下降”. 三、考点解析考点一 指数函数的图象及应用例、(1)函数f (x )=21-x 的大致图象为( )(2)若函数y=|3x-1|在(-∞,k]上单调递减,则k的取值范围为________.变式练习1.[变条件]本例(1)中的函数f(x)变为:f(x)=2|x-1|,则f(x)的大致图象为()2.[变条件]本例(2)变为:若函数f(x)=|3x-1|-k有一个零点,则k的取值范围为________.3.若函数y=21-x+m的图象不经过第一象限,求m的取值范围.考点二指数函数的性质及应用考法(一)比较指数式的大小例、已知a=243,b=425,c=2513,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b考法(二)解简单的指数方程或不等式例、若偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为________.[解题技法]简单的指数方程或不等式问题的求解策略:(1)a f(x)=a g(x)⇔f(x)=g(x).(2)a f(x)>a g(x),当a>1时,等价于f(x)>g(x);当0<a<1时,等价于f(x)<g(x).(3)解决简单的指数不等式的问题主要利用指数函数的单调性,要特别注意底数a的取值范围,并在必要时进行分类讨论.考法(三)指数型函数性质的综合问题例、已知函数f(x)=34231+-⎪⎭⎫⎝⎛xax(1)若a=-1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.[解题技法]与指数函数有关的复合函数的单调性:形如函数y=a f(x)的单调性,它的单调区间与f(x)的单调区间有关:(1)若a>1,函数f(x)的单调增(减)区间即函数y=a f(x)的单调增(减)区间;(2)若0<a <1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调减(增)区间.即“同增异减”. 跟踪训练 1.函数y =12221-+⎪⎭⎫ ⎝⎛x x 的值域是( )A .(-∞,4)B .(0,+∞)C .(0,4]D .[4,+∞) 2.设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a 3.设函数f (x )=x 2-a与g (x )=a x (a >1且a ≠2)在区间(0,+∞)上具有不同的单调性,则M =(a -1)0.2与N =1.01⎪⎭⎫⎝⎛a 的大小关系是( ) A .M =N B .M ≤N C .M <N D .M >N4.已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.课后作业1.函数f (x )=1-e |x |的图象大致是( )2.已知函数f (x )=4+2a x-1的图象恒过定点P ,则点P 的坐标是( )A .(1,6)B .(1,5)C .(0,5)D .(5,0) 3.已知a =20.2,b =0.40.2,c =0.40.6,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .c >a >bD .b >c >a 4.函数f (x )=xx +-⎪⎭⎫⎝⎛221的单调递增区间是( )A.]21,(-∞ B.]21,0[ C.)21[∞+, D.]121[, 5.函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <06.已知函数f (x )=⎩⎪⎨⎪⎧1-2-x ,x ≥0,2x -1,x <0,则函数f (x )是( )A .偶函数,在[0,+∞)上单调递增B .偶函数,在[0,+∞)上单调递减C .奇函数,且单调递增D .奇函数,且单调递减7.已知a =3.331⎪⎭⎫ ⎝⎛,b =9.331⎪⎭⎫⎝⎛,则a ________b .(填“<”或“>”)8.函数y =x ⎪⎭⎫ ⎝⎛41-x⎪⎭⎫⎝⎛21+1在[-3,2]上的值域是________.9.已知函数f (x )=a x +b (a >0,且a ≠1)的定义域和值域都是[-1,0],则a +b =________.10.已知函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则f (-4)与f (1)的大小关系是________.11.已知函数f (x )=ax⎪⎭⎫⎝⎛21,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.12.已知函数f (x )=ax -⎪⎭⎫⎝⎛32.(1)求f (x )的单调区间;(2)若f (x )的最大值是94,求a 的值.。
指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式(1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a n n =)((注意a 必须使n a 有意义)。
2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m na a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)mnm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。
(2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质n 为奇数 n 为偶数注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。
即无论在轴的左侧还是右侧,底数按逆时针方向变大。
(二)对数与对数函数 1、对数的概念 (1)对数的定义如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。
(2)几种常见对数2、对数的性质与运算法则(1)对数的性质(0,1a a >≠且):①1log 0a =,②lo g 1aa =,③lo g Na a N =,④lo g N a aN =。
函数一轮复习学案五(指数与指数函数)知识梳理一.指数的概念与分数指数幂1、根式的概念:一般地,如果一个数的n 次方等于)1(*N n n a ∈>且,那么这个数叫做a 的n 次方根。
也就是说,若a x n =,则x 叫做a 的n 次方根,其中*1N n n ∈>且。
式子n a 叫做根式,n 叫做根指数,a 叫做被开方数。
2、根式的性质:(1)当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示。
(2)当n 为偶数时,正数的n 次方根有两个,它们互为相反数,这时正数的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示。
正负两个n 次方根能够合写为)0(>±a a n 。
此时,负数没有n 次方根。
(3)()a a nn=;(4)当n 为奇数时,a a n n =;当n 为偶数时,⎩⎨⎧<-≥==)0()0(a a a a a a n n(5)零的任何次方根都是零。
3、分数指数幂的意义: (1))1,,0(*>∈>=n N n m a a a n m nm 且,;(2))1,,0(1≥∈>=⨯-n N n m a aanm nm ,且4、指数的运算法则: (1)),,0(Q s Q r a aa a sr sr∈∈>=⋅+;(2))(Q s Q r a a a a sr sr∈∈>=÷-,,0 (3)()),,0(Q s Q r a a a rs sr∈∈>=;(4)()),,0(Q s Q r a a a ab sr r∈∈>⋅=二.指数函数的图像和性质1、指数函数的概念:一般地,函数)10(≠>=a a a y x且叫做指数函数,其中x 是自变量, 的定义域是R 。
3、深化:(1)指数函数的定义必须符合xa y =才能够,如函数xy 32⨯=不是指数函数。
指数函数知识点总结指数函数是高中数学中的重要知识点之一,也是解决实际问题的重要数学模型之一。
它以指数为自变量的函数,表达式为y=a^x,其中a为底数,x为指数,y为函数值。
一、指数函数的定义指数函数是自变量的指数变化与与其函数值的关系。
指数函数的定义域是实数集R,值域是正实数集,即f(x)>0。
二、指数函数的图像1. 底数大于1的指数函数:当a>1时,指数函数的图像在x轴右侧向上增长,且逐渐加速增长,图像开口向上;2. 0<a<1的指数函数:当0<a<1时,指数函数的图像在x轴右侧向上增长,但增长速度逐渐减缓,图像开口向下;3. 底数等于1的指数函数:当a=1时,指数函数的图像是一条平行于x轴的直线,函数值恒为1。
三、指数函数的性质1. 指数函数的奇偶性:当底数为负数时,指数函数是偶函数;当底数为正数时,指数函数是奇函数;2. 指数函数的单调性:当底数大于1时,指数函数是增函数;当0<a<1时,指数函数是减函数;3. 指数函数的性质:指数函数的函数值不会等于0,即f(x)≠0;指数函数关于y轴对称,即关于y轴对称轴反射对称;4. 指数函数的极限:当x趋于无穷大时,指数函数以无穷大增长,并没有上界;当x趋于负无穷大时,指数函数趋于0。
四、指数函数与直线的相交性质1. 幂函数与指数函数的相交性质:幂函数y=x^n与指数函数y=a^x的图像在第一象限有且只有一个交点;2. 幂函数与指数函数的比较性质:当x趋于无穷大时,指数函数的增长速度快于幂函数;当x趋于负无穷大时,指数函数的增长速度慢于幂函数。
五、指数函数的应用1. 复利问题:指数函数可以用来解决复利问题,如存款定期利息的计算等;2. 比较问题:指数函数可以用来比较两个量的大小,特别是涉及到增长速度的比较问题;3. 自然现象的描述:指数函数可以用来描述一些自然现象,如人口增长、物种灭绝等;4. 经济问题:指数函数可以用来描述经济增长、货币贬值等问题。
b b 3结合课堂,完成笔记: 一、初中指数运算:例:(-2)0=(-1)0 = 0.80 = 110 = 。
例:a 2 ⋅ a 4 = ; 52 ⋅54 ⋅55 =32 ⋅34 ⋅35 ⋅37 = 。
例:a 2 ÷ a 4= 32 ⋅ 7635 ⋅ 75= 。
例:已知a m= 2,a n = 5。
求a 3m +2n 的值。
求a 2m -3n 的值。
例 :a 12= a 2⨯6 = == a 3⨯4 = = 。
例:(a ⋅ b )3=(a3⋅ b4 )5= 。
⎛ a ⎫5⎛ a 2⎫5例 : ⎪ ⎝ ⎭= ⎪ = 。
⎝ ⎭怪笔随记—指数运算与指数函数练哈子 不 做 懒 鬼5 a 8 ⎝b 6 5 1 5 a 45 b 36 12 3 ⎢ )2 )2 11 3 例 : = 。
a -2 = 。
= 。
23a 4例:3 4 = 。
例 :a = 。
= 。
= 。
((a )3 )4= 。
⎛((a )34 ⎫2 ⎪= 。
例 :a ⋅ 4 a 2 ⋅ 3 a⎝ ⎭= 。
(注:以上a > 0)三、指数运算—化简求值- 1 ⎛ ⎫2a 2⋅ ⎪ ⋅ 例: a ⋅ 3 a2= 。
例:3m -2n ⎭ = 。
(a 、 b > 0)例:已知10m = 3,10n = 2。
求10 2= 。
例:⎡(- 2 ⎤- 1⎥ = 。
例:2 3 ⨯ 31.5 ⨯ = 。
⎣ ⎦ 2 ⎛ 3 ⎫3- ⎡ 3⎤- 4: -3 ⎝ ⎪ + 0.04 ⎭2 + ⎣(-2) ⎦3 +16-0.75 - 3π 0 = 。
5 234 3a8例 :x 的取值范围为= 。
x 的取值范围为= 。
例例= 。
= 。
= 。
= 。
= 。
= 。
例 :a ∈ R ,下列表达式一定有意义的是 。
12A :a -2B :a 4C :a 3D :a四、指数函数:2 例:下列函数是指数函数的是: 。
(1) y = x 4 (2) y = (-4)x (3) y = 2 ⋅3x (4) y = 3x +1 (5) y = π x例:若f (x ) = (2a +1)x 为增函数,则a 的取值范围为= 。
- 1 -
指数与指数函数
一、选择题:
1.化简[32)5(]43的结果为 ( )
A.5 B.5 C.-5 D.-5
2.化简46394369)()(aa的结果为 ( )
A.a16 B.a8 C.a4 D.a2
3.设函数的取值范围是则若0021,1)(,.0,,0,12)(xxfxxxxfx ( )
A.(-1,1) B.(-1,+)
C.),0()2,( D.),1()1,(
4.设5.1344.029.01)21(,8,4yyy,则 ( )
A.y3>y1>y2 B.y2>y1>y3 C.y1>y2>y3 D.y1>y3>y2
5.当x∈[-2,2)时,y=3-x-1的值域是 ( )
A.[-98,8] B.[-98,8] C.(91,9) D.[91,9]
6.在下列图象中,二次函数y=ax2+bx+c与函数y=(ab)x的图象可能是 ( )
7.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是 ( )
A.(0,1) B.(21,1) C.(-∞,0) D.(0,+∞)
8.若122xa,则xxxxaaaa33等于 ( )
A.22-1 B.2-22 C.22+1 D. 2+1
9.设f(x)满足f(x)=f(4-x),且当x>2 时f(x)是增函数,则a=f(1.10.9),b= f(0.91.1),c=
- 2 -
)4(log21f
的大小关系是 ( )
A.a>b>c B.b>a>c C.a>c>b D.c>b>a
10.若集合}1|{},2|{xyyPyyMx,则M∩P= ( )
A.}1|{yy B.}1|{yy C.}0|{yy D.}0|{yy
11.若集合S={y|y=3x,x∈R},T={y|y=x2-1,x∈R},则S∩T是 ( )
A.S B.T C. D.有限集
12.下列说法中,正确的是 ( )
①任取x∈R都有3x>2x
②当a>1时,任取x∈R都有ax>a-x
③y=(3)-x是增函数
④y=2|x|的最小值为1
⑤在同一坐标系中,y=2x与y=2-x的图象对称于y轴
A.①②④ B.④⑤ C.②③④ D.①⑤
二、填空题:
13.计算:210319)41()2(4)21( = .
14.函数xay在]1,0[上的最大值与最小值的和为3,则a .
15.函数y=121x的值域是_ _______.
16.不等式1622xx的解集是 .
三、解答题:
17.已知函数f(x)=ax+b的图象过点(1,3),且它的反函数f-1(x)的图象过(2,0)点,试确定
f(x)的解析式.
18.已知,32121xx求3212323xxxx的值.
- 3 -
19.求函数y=3322xx的定义域、值域和单调区间.
20.若函数y=a2x+b+1(a>0且a≠1,b为实数)的图象恒过定点(1,2),求b的值.
21.设0≤x≤2,求函数y=1224221aaxx的最大值和最小值.
22.设a是实数,2()()21xfxaxR,试证明:对于任意,()afx在R上为增函数.