2021版高考文科数学人教通用版大一轮复习基础自查学案:7.3 空间点、直线、平面之间的位置关系
- 格式:doc
- 大小:210.50 KB
- 文档页数:5
2021年高考数学大一轮复习空间点、直线、平面之间的位置关系课实用文档2021年高考数学大一轮复习空间点、直线、平面之间的位置关系课时跟踪检测(四十四)理(含解析)一、选择题1.l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( )A .l 1⊥l 2,l 2⊥l 3?l 1∥l 3B .l 1⊥l 2,l 2∥l 3?l 1⊥l 3C .l 1∥l 2∥l 3?l 1,l 2,l 3共面D .l 1,l 2,l 3共点?l 1,l 2,l 3共面2.(xx・云南思茅模拟)设m ,n 是空间两条直线,α,β是空间两个平面,则下列选项中不正确的是( )A .当n ⊥α时,“n ⊥β”是“α∥β”的充要条件B .当m ?α时,“m ⊥β”是“α⊥β”的充分不必要条件C .当m ?α时,“n ∥α”是“m ∥n ”的必要不充分条件D .当m ?α时,“n ⊥α”是“m ⊥n ”的充分不必要条件3.(xx・济宁一模)直线l 1,l 2平行的一个充分条件是( )A .l 1,l 2都平行于同一个平面B .l 1,l 2与同一个平面所成的角相等C .l 1平行于l 2所在的平面D .l 1,l 2都垂直于同一个平面4.(xx・太原期末检测)已知平面α和直线l ,则α内至少有一条直线与l ( )A .平行B .相交C .垂直D .异面5.(xx・江西七校联考)已知直线a 和平面α,β,α∩β=l ,a ?α,a ?β,且a 在α,β内的射影分别为直线b 和c ,则直线b 和c 的位置关系是( )A .相交或平行B .相交或异面C .平行或异面D .相交、平行或异面6.(xx・全国大纲卷)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A.16B.36C.13D.33精品文档二、填空题7.(xx・济南一模)在正四棱锥V-ABCD中,底面正方形ABCD 的边长为1,侧棱长为2,则异面直线VA与BD所成角的大小为________.8.(xx・福建六校联考)设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a?平面α,b?平面β,则a,b一定是异面直线.上述命题中正确的命题是________(写出所有正确命题的序号).9.(xx・揭阳模拟)如图所示,在正三棱柱ABC-A1B1C1中,D是AC的中点,AA1∶AB=2∶1,则异面直线AB1与BD所成的角为________.10.在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有________条.三、解答题11.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点,(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.实用文档精品文档实用文档12.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD=∠FAB =90°,BC 12AD ,BE 12FA ,G ,H 分别为FA ,FD 的中点.(1)求证:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?答案1.选B 若l 1⊥l 2,l 2⊥l 3,则l 1,l 3有三种位置关系,可能平行、相交或异面,A 不正确;当l 1∥l 2∥l 3或l 1,l 2,l 3共点时,l 1,l 2,l 3可能共面,也可能不共面,C ,D 不正确;当l 1⊥l 2,l 2∥l 3时,则有l 1⊥l 3,故选B.2.选C C 中,当m ?α时,若n ∥α,则直线m ,n 可能平行,可能异面;若m ∥n ,则n ∥α或n ?α,所以“n ∥α”是“m ∥n ”的既不充分也不必要条件,故选C.3.选D 对A ,当l 1,l 2都平行于同一个平面时,l 1与l 2可能平行、相交或异面;对B ,当l 1,l 2与同一个平面所成角相等时,l 1与l 2可能平行、相交或异面;对C ,l 1与l 2可能平行,也可能异面,只有D 满足要求,故选D.4.选C 直线l 与平面α斜交时,在平面α内不存在与l 平行的直线,∴A 错;l ?α时,在平面α内不存在与l 异面的直线,∴D 错;l ∥α时,在平面α内不存在与l 相交的直线,∴B 错.无论哪种情形在平面α内都有无数条直线与l 垂直.5.选D 依题意,直线b 和c 的位置关系可能是相交、平行或异面,故选D.6.选B 法一:设正四面体ABCD 的棱长为2.如图,取AD 的中点F ,连接EF ,CF .在△ABD 中,由AE =EB ,AF =FD ,得EF ∥BD ,且EF =12BD =1. 故∠CEF 为直线CE 与BD 所成的角或其补角.在△ABC 中,CE =32AB =3;在△ADC 中,CF =32AD =3.精品文档实用文档在△CEF 中,cos ∠CEF =CE 2+EF 2-CF 22CE ・EF=32+12-3223×1=36. 所以直线CE 与BD 所成角的余弦值为36.法二:设正四面体ABCD 的棱长为2.如图,取AD 的中点F ,连接EF ,CF . 在△ABD 中,由AE =EB ,AF =FD ,得EF ∥BD ,且EF =12BD =1.故∠CEF 为直线CE 与BD 所成的角或其补角.在△ABC 中,CE =32AB =3;在△ADC 中,CF =32AD =3. 取EF 的中点H ,连接CH ,则EH =12EF =12,且CH ⊥EF . 在Rt △CEH 中,cos ∠CEF =EH CE =123=36. 所以直线CE 与BD 所成角的余弦值为36. 7.解析:如图,设AC ∩BD =O ,连接VO ,因为四棱锥V -ABCD 是正四棱锥,所以VO ⊥平面ABCD ,故BD ⊥VO .又四边形ABCD 是正方形,所以BD ⊥AC ,所以BD ⊥平面VAC ,所以BD ⊥VA ,即异面直线VA 与BD 所成角的大小为π2.答案:π2 8.解析:由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行或异面,故②错;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③错;a ?α,b ?β,并不能说明a 与b “不同在任何一个平面内”,故④错.精品文档实用文档答案:① 9.解析:如图,取A 1C 1的中点D 1,连接B 1D 1,因为D 是AC 的中点,所以B 1D 1∥BD ,所以∠AB 1D 1即为异面直线AB 1与BD 所成的角.连接AD 1,设AB =a ,则AA 1=2a ,所以AB 1=3a ,B 1D 1=32a ,AD 1=14a 2+2a 2=32a . 所以,在△AB 1D 1中,由余弦定理得,cos ∠AB 1D 1=AB 21+B 1D 21-AD 212AB 1・B 1D 1=3a 2+34a 2-94a 22×3a ×32a =12,所以∠AB 1D 1=60°. 答案:60°10.解析:法一:在EF 上任意取一点M ,直线A 1D 1与M 确定一个平面,这个平面与CD 有且仅有1个交点N ,M 取不同的位置就确定不同的平面,从而与CD 有不同的交点N ,而直线MN 与这3条异面直线都有交点.如图所示.法二:在A 1D 1上任取一点P ,过点P 与直线EF 作一个平面α,因CD 与平面α不平行,所以它们相交,设它们交于点Q ,连接PQ ,则PQ 与EF 必然相交,即PQ 为所求直线.由点P 的任意性,知有无数条直线与三条直线A 1D 1,EF ,CD 都相交.答案:无数11.解:(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt△EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.精品文档实用文档12.解:(1)证明:由题设知,FG =GA ,FH =HD ,所以GH 12AD .又BC 12AD ,故GH BC .所以四边形BCHG 是平行四边形.(2)C ,D ,F ,E 四点共面.理由如下:由BE 12AF ,G 是FA 的中点知,BE GF ,所以EF BG .由(1)知BG ∥CH ,所以EF ∥CH ,故EC ,FH 共面.又点D 在直线FH 上,所以C ,D ,F ,E 四点共面.***** 6138 WY***** 72FD N***** 5A3E p精品文档z***** 5344 ` ***** 98B3 W V***** 64B5 撵。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
核心素养测评四十四空间点、直线、平面之间的位置关系(25分钟50分)一、选择题(每小题5分,共35分)1.在下列命题中,不是公理的是( )A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线【解析】选A.选项A是面面平行的性质定理,是由公理推证出来的,而公理是不需要证明的.2.若直线a,b,c满足a∥b,a,c异面,则b与c ( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线【解析】选C.若a∥b,a,c是异面直线,那么b与c不可能平行,否则由公理4知a∥c.3.空间四边形ABCD中,E,F分别为AC,BD的中点,若CD=2AB,EF⊥AB,则EF与CD所成的角为( )A.30°B.45°C.60°D.90°【解析】选A.取AD的中点H,连接FH,EH,在△EFH中,∠EFH=90°,HE=2HF,从而∠FEH=30°,即EF与CD所成角为30°.4.空间四点A,B,C,D共面而不共线,那么这四点中( )A.必有三点共线B.必有三点不共线C.至少有三点共线D.不可能有三点共线【解析】选B.如图①②所示,A,C,D均不正确,只有B正确.5.如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是( )A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行【解析】选D.连接B1C,B1D1,则点M是B1C的中点,MN是△B1CD1的中位线,所以MN∥B1D1,因为CC1⊥B1D1,AC⊥B1D1,BD∥B1D1,所以MN⊥CC1,MN⊥AC,MN∥BD.又因为A1B1与B1D1相交,所以MN与A1B1不平行.6.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为( ) A. B. C. D.【解析】选B.画出正四面体ABCD的直观图,如图所示.设其棱长为2,取AD的中点F,连接EF,设EF的中点为O,连接CO,则EF∥BD,则∠FEC就是异面直线CE与BD所成的角.△ABC为等边三角形,则CE⊥AB,易得CE=,同理可得CF=,故CE=CF.因为OE=OF,所以CO⊥EF.又EO=EF=BD=,所以cos∠FEC===.7.如图所示为一正方体的平面展开图,在这个正方体中,有下列四个说法: 世纪金榜导学号①AF⊥GC;②BD与GC成异面直线且夹角为60°;③BD∥MN;④BG与平面ABCD所成的角为45°.其中正确的个数是( )A.1B.2C.3D.4【解析】选B.将平面展开图还原成正方体(如图所示).对于①,由图形知AF与GC异面垂直,故①正确;对于②,BD与GC显然成异面直线.连接EB,ED,则BM∥GC,所以∠MBD即为异面直线BD与GC所成的角(或其补角).在等边△BDM中,∠MBD=60°,所以异面直线BD与GC所成的角为60°,故②正确;对于③,BD与MN为异面垂直,故③错误;对于④,由题意得GD⊥平面ABCD,所以∠GBD是BG与平面ABCD所成的角.但在Rt△BDG中,∠GBD不等于45°,故④错误.二、填空题(每小题5分,共15分)8.如图,在正方体ABCD-A1B1C1D1中,M,N分别是棱CD,CC1的中点,则异面直线A1M与DN所成的角的大小是________.【解析】如图,取CN的中点K,连接MK,则MK为△CDN的中位线,所以MK∥DN.所以∠A1MK为异面直线A1M与DN所成的角.连接A1C1,AM.设正方体的棱长为4,则A1K==,MK=DN==,A1M==6,所以A1M2+MK2=A1K2,所以∠A1MK=90°.答案:90°9.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.世纪金榜导学号【解析】EF与正方体左、右两侧面均平行.所以与EF相交的侧面有4个.答案:410.设a,b,c是空间中的三条直线,下面给出五个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线;⑤若a,b与c成等角,则a∥b.上述命题中正确的命题是________(只填序号). 世纪金榜导学号【解析】由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行,也可以异面,故②不正确;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③不正确;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④不正确;当a,b与c成等角时,a与b可以相交、平行,也可以异面,故⑤不正确. 答案:①(15分钟35分)1.(5分)设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围是( )A.(0,)B.(0,)C.(1,)D.(1,)【解析】选A.如图所示的四面体ABCD中,设AB=a,则由题意可得CD=,其他棱的长都为1,故三角形ACD及三角形BCD都是以CD为斜边的等腰直角三角形,显然a>0.取CD中点E,连接AE,BE,则AE⊥CD,BE⊥CD且AE=BE==,显然A,B,E三点能构成三角形,应满足任意两边之和大于第三边,可得2×>a,解得0<a<.2.(5分)设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是( )A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD=BCD.若AB=AC,DB=DC,则AD⊥BC【解析】选C.由公理1知,命题A正确.对于B,假设AD与BC共面,由A正确得AC与BD共面,这与题设矛盾,故假设不成立,从而结论正确.对于C,如图,当AB=AC,DB=DC,使二面角A-BC-D的大小变化时,AD与BC 不一定相等,故不正确.对于D,如图,取BC的中点E,连接AE,DE,则由题设得BC⊥AE,BC⊥DE. 根据线面垂直的判定定理得BC⊥平面ADE,从而AD⊥BC.【变式备选】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN 成60°角;④DE与MN垂直.以上四个结论中,正确结论的序号是________.【解析】还原成正四面体A-DEF,其中H与N重合,A,B,C三点重合. 易知GH与EF异面,BD与MN异面.连接GM,因为△GMH为等边三角形,所以GH与MN成60°角,易证DE⊥AF,又MN∥AF,所以MN⊥DE.因此正确结论的序号是②③④.答案:②③④3.(5分)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( ) A. B. C. D.【解析】选A.方法一:因为α∥平面CB1D1,平面ABCD∥平面A1B1C1D1,α∩平面ABCD=m,平面CB1D1∩平面A1B1C1D1=B1D1,所以m∥B1D1.因为α∥平面CB1D1,平面ABB1A1∥平面DCC1D1,α∩平面ABB1A1=n,平面CB1D1∩平面DCC1D1=CD1,所以n∥CD1.所以B1D1,CD1所成的角等于m,n所成的角,即∠B1D1C等于m,n所成的角.因为△B1D1C为正三角形,所以∠B1D1C=60°,所以m,n所成的角的正弦值为.方法二:由题意画出图形如图,将正方体ABCD-A1B1C1D1平移,补形为两个全等的正方体如图,易证平面AEF∥平面CB1D1,所以平面AEF即为平面α,m即为AE,n即为AF,所以AE与AF所成的角即为m与n所成的角.因为△AEF是正三角形,所以∠EAF=60°,故m,n所成角的正弦值为.4.(10分)已知:空间四边形ABCD(如图所示),E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且CG=BC,CH=DC.求证: 世纪金榜导学号(1)E,F,G,H四点共面.(2)三直线FH,EG,AC共点.【证明】(1)连接EF,GH,因为E,F分别是AB,AD的中点,所以EF∥BD.又因为CG=BC,CH=DC,所以GH∥BD,所以EF∥GH,所以E,F,G,H四点共面.(2)易知FH与直线AC不平行,但共面,所以设FH∩AC=M,所以M∈平面EFHG,M∈平面ABC.又因为平面EFHG∩平面ABC=EG,所以M∈EG,所以三直线FH,EG,AC共点.5.(10分)如图所示,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值. 世纪金榜导学号【解析】如图所示,取AC的中点F,连接EF,BF,在△ACD中,E,F分别是AD,AC的中点,所以EF∥CD,所以∠BEF或其补角即为异面直线BE与CD所成的角.在Rt△EAB中,AB=AC=1,AE=AD=,所以BE=.在Rt△EAF中,AF=AC=,AE=,所以EF=.在Rt△BAF中,AB=1,AF=,所以BF=.在等腰三角形EBF中,cos∠FEB===.所以异面直线BE与CD所成角的余弦值为.关闭Word文档返回原板块快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。
课时规范练41 点与直线、两条直线的位置关系基础巩固组1.(2019河北衡水二中模拟,3)直线l 在直线m :x+y+1=0的上方,且l ∥m ,它们的距离是√2,则直线l 的方程是 ( )A.x+y-1=0B.x+y+3=0C.x+y+1=0D.x+y+3=0或x+y-1=02.若把直线y=3x 绕原点逆时针旋转90°,再向右平移1个单位长度,所得到的直线为( )A.y=-13x+13B.y=-13x+1C.y=3x-3D.y=13x+13.(2019湖南益阳模拟,5)已知A (1,2),B (3,1)两点到直线l 的距离分别是√2,√5−√2,则满足条件的直线l 共有 ( )A.1条B.2条C.3条D.4条4.(2019河南南阳模拟,6)若关于x ,y 的二元一次方程组{mx +4y =m +2,x +my =m 有无穷多组解,则m 的取值为( ) A.1 B.2 C.3D.45.已知平行四边形ABCD 的一条对角线固定在A (3,-1),C (2,-3)两点,点D 在直线3x-y+1=0上移动,则点B 的轨迹方程为( )A.3x-y-20=0B.3x-y-10=0C.3x-y-9=0D.3x-y-12=06.直线x-2y+1=0关于直线x=1对称的直线方程是()A.x+2y-1=0B.2x+y-1=0C.2x+y-3=0D.x+2y-3=07.(2019辽宁葫芦岛二模,6)当点P(3,2)到直线mx-y+1-2m=0的距离最大时,m的值为()A.3B.0C.-1D.18.若直线mx-(m+2)y+2=0与3x-my-1=0互相垂直,则点(m,1)到y轴的距离为.9.(2019湖北仙桃市、天门市、潜江市联考,14)直线l1,l2分别过点M(1,4),N(3,1),它们分别绕点M和N旋转,但必须保持平行,那么它们之间的距离d的最大值是.10.(2019吉林长春模拟,14)设△ABC的一个顶点是A(-3,1),∠B,∠C的平分线所在直线的方程分别为x=0,y=x,则直线BC的方程为.11.已知点P(x,y)到A(0,4)和B(-2,0)的距离相等,则2x+4y的最小值为.综合提升组12.设直线l1:x-2y+1=0与直线l2:mx+y+3=0的交点为A,P,Q分别为l1,l2上任意两点,点M为PQ的中点,若|AM|=12|PQ|,则m的值为()A.2B.-2C.3D.-313.若直线l:y=kx-√3与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是()A.π6,π3B.π6,π2C.π3,π2D.[π6,π2]14.(2019江苏如皋质量调研,14)如图,已知△ABC为等腰直角三角形,其中∠BAC=90°,且AB=2,光线从AB边的中点P出发,经BC,CA反射后又回到点P(反射点分别为Q,R),则光线经过的路径总长PQ+QR+RP=.15.已知直线y=2x是△ABC中∠C的平分线所在的直线,若点A,B的坐标分别是(-4,2),(3,1),则点C的坐标为.创新应用组16.如图,已知直线l1∥l2,点A是l1,l2之间的定点,点A到l1,l2之间的距离分别为3和2,点B是l2上的一动点,作AC⊥AB,且AC与l1交于点C,则△ABC的面积的最小值为.17.(2019贵州遵义模拟,14)若曲线C上任意一点与直线l上任意一点的距离都大于1,则称曲线C“远离”直线l,在下列曲线中,“远离”直线l:y=2x的曲线有(写出所有符合条件的曲线的编号).①曲线C:2x-y+√5=0;②曲线C:y=-x2+2x-9;③曲线C:x2+(y-5)2=0;④曲线C:y=e x+1;⑤曲线C:y=ln x-2.4参考答案课时规范练41点与直线、两条直线的位置关系1.A 因为l ∥m ,且直线l 在m :x+y+1=0上方,所以可设直线l 的方程是x+y+c=0(c<1),因为它们的距离是√2, 则√2=√2,∴c=-1,或c=3(舍去),所以直线l 的方程是x+y-1=0,故选A .2.A 将直线y=3x 绕原点逆时针旋转90°得到直线y=-1x ,再向右平移1个单位长度,所得直线的方程为y=-1(x-1),即y=-1x+1.故选A .3.C 当A ,B 两点位于直线l 的同一侧时,一定存在这样的直线l ,且有两条.又|AB|=√(3-1)2+(1-2)2=√5,而点A 到直线l 与点B 到直线l 的距离之和为√2+√5−√2=√5,所以当A ,B 两点位于直线l 的两侧时,存在一条满足条件的直线.综上可知满足条件的直线共有3条.故选C .4.B 关于x ,y 的二元一次方程组{mx +4y =m +2,x +my =m有无穷多组解,所以直线mx+4y=m+2与直线x+my=m 重合,所以m1=4m =m+2m ,解得m=2,即m 的取值为2,故选B . 5.A 设AC 的中点为O ,则O 52,-2.设B (x ,y )关于点O 的对称点为(x 0,y 0),即D (x 0,y 0),则{x 0=5-x ,y 0=-4-y ,因为点D 在直线3x-y+1=0上,所以3x 0-y 0+1=0,得点B 的轨迹方程为3x-y-20=0. 6.D 设所求直线上任一点(x ,y ),则它关于直线x=1的对称点(2-x ,y )在直线x-2y+1=0上,即2-x-2y+1=0,化简得x+2y-3=0.7.C 直线mx-y+1-2m=0可化为y=m (x-2)+1,故直线过定点Q (2,1),当PQ 和直线垂直时,距离取得最大值,故m·k PQ =m·2-13-2=m·1=-1,m=-1,故选C .8.0或5 当m=0时,mx-(m+2)y+2=-2y+2=0,即y=1,3x-my-1=3x-1=0,即x=13,此时两直线垂直,点(m ,1)到y 轴的距离为0;当m ≠0时,由题意有mm+2·3m =-1,解得m=-5,点(m ,1)到y 轴的距离为5.9.√13 因为直线l 1,l 2分别过点M (1,4),N (3,1),它们分别绕点M 和N 旋转,且两直线保持平行,因此当两条平行直线l 1,l 2都与MN 垂直时,它们之间的距离d 取得最大值为|MN|=√(1-3)2+(4-1)2=√13.10.y=2x-5 ∵∠B ,∠C 的平分线所在直线分别是x=0,y=x ,∴AB 与BC 关于x=0对称,AC 与BC 关于y=x 对称.A (-3,1)关于x=0的对称点A'(3,1)在直线BC 上,A 关于y=x 的对称点A ″(1,-3)也在直线BC 上.由两点式,所求直线BC 的方程为y=2x-5.11.4√2 由题意得,点P 在线段AB 的垂直平分线上,则易得点P 的轨迹方程为x+2y=3,所以2x +4y ≥2√2x ·4y =2√2x+2y =4√2,当且仅当x=2y=32时等号成立,故2x +4y 的最小值为4√2.12.A 根据题意画出图形,如图所示.直线l 1:x-2y+1=0与直线l 2:mx+y+3=0的交点为A ,M 为PQ 的中点, 若|AM|=12|PQ|,则PA ⊥QA ,即l 1⊥l 2,∴1×m+(-2)×1=0,解得m=2.故选A . 13.B 联立两直线方程得{y =kx -√3,2x +3y -6=0,可得两直线的交点坐标为3√3+62+3k ,6k -2√32+3k ,∵两直线的交点在第一象限,∴{3√3+62+3k >0,6k -2√32+3k>0,不等式组的解为k>√33,若直线l 的倾斜角为θ,则tan θ>√33,∴θ∈π6,π2,故选B .14.√10 以A 为坐标原点,AB ,AC 分别为x 轴、y 轴建立平面直角坐标系,因为△ABC 为等腰直角三角形,其中∠BAC=90°,且AB=2,则l BC :x+y-2=0,点P (1,0),所以点P 关于y 轴的对称点为P 1(-1,0),设点P 关于直线l BC :x+y-2=0的对称点为P 2(x 0,y 0),则y0x 0-1=1且x 0+12+y 02-2=0,解得P 2(2,1),则PQ+QR+RP=P 2Q+QR+RP 1=P 1P 2=√10.15.(2,4) 设点A (-4,2)关于直线y=2x 的对称点为(x ,y ),则{y -2x+4×2=-1,y+22=2×-4+x 2,解得{x =4,y=-2,∴BC 所在直线方程为y-1=-2-14-3(x-3),即3x+y-10=0.同理可得点B (3,1)关于直线y=2x 的对称点为(-1,3),∴AC 所在直线方程为y-2=3-2-1-(-4)(x+4),即x-3y+10=0. 联立{3x +y -10=0,x -3y +10=0,解得{x =2,y =4,则C (2,4). 16.6 以A 为坐标原点,平行于l 1的直线为x 轴,建立如图所示的平面直角坐标系,设B (a ,-2),C (b ,3).∵AC⊥AB,∴ab-6=0,ab=6,b=6a.Rt△ABC的面积S=12√a2+4·√b2+9=12√a2+4·√36a2+9=12√72+9a2+144a2≥12√72+72=6(当且仅当a2=4时取等号).17.②③⑤对于①,由两条平行线间的距离公式得两直线距离为√55=1,不符合题意.对于②,设y=2x+b与抛物线相切,即2x+b=-x2+2x-94,也即x2+b+94=0,判别式-4(b+94)=0,b=-94,故切线方程为2x-y-94=0,与2x-y=0的距离为94√5=4√5=√8180>1,符合题意.对于③,方程表示点(0,5),到直线2x-y=0的距离为√5=√5>1,符合题意.对于④,取点(0,2),到直线2x-y=0的距离为=√45<1,不符合题意.对于⑤,令y'=1x=2,解得x=12,切点为(12,ln12-2),到直线2x-y=0的距离为√5>1,符合题意.综上所述,符合题意的有②③⑤.快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。
, 第八章立体几何初步)第1课时空间点、直线、平面之间的位置关系(对应学生用书(文)106~108页、(理)108~110页)理解空间点、线、面的基本位置关系;会用数学语言规范地表述空间点、线、面的位置关系.了解公理1,2,3及公理3的推论1,2,3,并能正确判定;了解平行公理和等角定理.理解空间直线、平面位置关系的定义,能判定空间两直线的位置关系;了解异面直线所成的角.1. (必修2P24练习2改编)用集合符号表示“点P在直线l外,直线l在平面α内”为________.答案:P∉l,l⊂α解析:考查点、线、面之间的符号表示.2. (必修2P28练习2改编)已知AB∥PQ,BC∥QR,若∠ABC=45°,则∠PQR=________.答案:45°或135°解析:由等角定理可知∠PQR与∠ABC相等或互补,故答案为45°或135°.3. (原创)若直线l上有两个点在平面α外,则________.(填序号)①直线l上至少有一个点在平面α内;②直线l上有无穷多个点在平面α内;③直线l上所有点都在平面α外;④直线l上至多有一个点在平面α内.答案:④解析:由已知得直线l⊄α,故直线l上至多有一个点在平面α内.4. (必修2P31习题15改编)如图所示,设E,F,G,H依次是空间四边形ABCD的边AB,BC,CD,DA上除端点外的点,AEAB=AHAD=λ,CFCB=CGCD=μ,则下列结论中不正确的是________.(填序号)①当λ=μ时,四边形EFGH是平行四边形;②当λ≠μ时,四边形EFGH是梯形;③当λ≠μ时,四边形EFGH一定不是平行四边形;④当λ=μ时,四边形EFGH是梯形.答案:④解析:由AEAB=AHAD=λ,得EH∥BD,且EHBD=λ,同理得FG∥BD 且FGBD=μ,当λ=μ时,EH∥FG且EH=FG.当λ≠μ时,EH∥FG,但EH≠FG,只有④错误.5. (必修2P 30练习2改编)在正方体A 1B 1C 1D 1ABCD 中,与AB 异面的棱有______________________.答案:A 1D 1,DD 1,CC 1,C 1B 11. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.公理3:经过不在同一条直线上的三点,有且只有一个平面. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面. 2. 空间两条直线的位置关系位置关系 共面情况 公共点个数 相交直线 在同一平面内 有且只有一个 平行直线 在同一平面内 没有 异面直线 不同在任何一个平面内 没有(1) 公理4:平行于同一条直线的两条直线互相平行.(2) 定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.4. 异面直线的判定(1) 判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线.(2) 符号表示:若l ⊂α,A ∉α,B ∈α,B ∉l ,则直线AB 与l 是异面直线. 5. 异面直线所成的角(1) 定义:设a ,b 是异面直线,经过空间任意一点O ,作直线a′∥a ,b ′∥b ,我们把直线a′与b′所成的锐角(或直角)叫做异面直线a ,b 所成的角.(2) 范围:⎝⎛⎦⎤0,π2.(3) 若异面直线a ,b 所成的角是直角,就称异面直线a ,b 互相垂直.记作a ⊥b. [备课札记],1平面的基本性质),1)如图,正方体ABCDA1B1C1D1中,点E,F分别为CC1,AA1的中点,画出平面BED1F和平面ABCD的交线.解:如图,在平面ADD1A1内延长D1F与DA交于一点P,则P∈平面BED1F.∵DA⊂平面ABCD,∴P∈平面ABCD,∴点P是平面ABCD与平面BED1F的一个公共点.又点B是两平面的一个公共点,∴PB为两平面的交线.备选变式(教师专享)如图,在直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.解:显然点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵E∈AC,AC⊂平面SAC,∴E∈平面SAC.同理,可证E∈平面SBD,∴点E在平面SBD和平面SAC的交线上,连结SE,则直线SE是平面SBD和平面SAC的交线.,2共点、共线、共面问题), 2) 如图,在四边形ABCD 和四边形ABEF 中,BC ∥AD ,BC =12AD ,BE ∥FA ,BE =12FA ,点G ,H 分别为FA ,FD 的中点.(1) 求证:四边形BCHG 是平行四边形. (2) C ,D ,F ,E 四点是否共面?为什么?(1) 证明:因为点G ,H 分别为FA ,FD 的中点,所以GH ∥AD ,GH =12AD.又BC ∥AD ,BC =12AD ,所以GH ∥BC ,且GH =BC ,所以四边形BCHG 为平行四边形.(2) 解:C ,D ,F ,E 四点共面.理由如下:由BE ∥FA ,BE =12FA ,点G 为FA 的中点知,BE ∥FG ,BE =FG ,所以四边形BEFG 为平行四边形,所以EF ∥BG. 由(1)知BG ∥CH ,BG =CH ,所以EF ∥CH ,所以EF 与CH 共面. 又D ∈FH ,所以C ,D ,F ,E 四点共面. 变式训练如图,在直四棱柱ABCDA 1B 1C 1D 1中,点E ,F 分别是AB ,BC 的中点,A 1C 1与B 1D 1交于点O.求证:A 1,C 1,F ,E 四点共面.证明:如图,连结AC ,因为点E ,F 分别是AB ,BC 的中点,所以EF 是△ABC 的中位线,所以EF ∥AC.由直棱柱知AA 1綊CC 1,所以四边形AA 1C 1C 为平行四边形,所以AC ∥A 1C 1. 所以EF ∥A 1C 1,故A 1,C 1,F ,E 四点共面., 3 空间直线位置关系问题), 3) 如图,在正方体ABCDA 1B 1C 1D 1中,点M ,N 分别是A 1B 1,B 1C 1的中点.求证:(1) AM 和CN 共面;(2) D 1B 和CC 1是异面直线.证明:(1) 如图,连结MN,A1C1,AC.∵点M,N分别是A1B1,B1C1的中点,∴MN∥A1C1.∵A1A綊C1C,∴四边形A1ACC1为平行四边形,∴A1C1∥AC,∴MN∥AC,∴A,M,N,C四点共面,即AM和CN共面.(2) ∵ ABCDA1B1C1D1是正方体,∴B,C,C1,D1不共面.假设D1B与CC1不是异面直线,则存在平面α,使D1B⊂平面α,CC1⊂平面α,∴D1,B,C,C1∈α,这与B,C,C1,D1不共面矛盾.∴假设不成立,即D1B与CC1是异面直线.变式训练已知空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD的中点.(1) 求证:BC与AD是异面直线;(2) 求证:EG与FH相交.证明:(1) 假设BC与AD不是异面直线,则BC与AD共面.不妨设它们所共平面为α,则B,C,A,D∈α,所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾.所以BC与AD是异面直线.(2) 如图,连结AC,BD,则EF∥AC,HG∥AC,因此EF∥HG;同理EH∥FG,则EFGH为平行四边形.又EG,FH是平行四边形EFGH的对角线,所以EG与FH相交.1. 在下列命题中,不是公理的是________.(填序号)①如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;②过不在同一条直线上的三点,有且只有一个平面;③如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内;④平行于同一个平面的两个平面相互平行.答案:④解析:④不是公理,是个常用的结论,需经过推理论证;①②③是平面的基本性质公理.2. 一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上结论中正确的是________.(填序号)答案:①③解析:把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.3. 在正方体ABCDA1B1C1D1中,点E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有________条.答案:无数解析:在A1D1,C1D1上任取一点P,M,过点P,M与直线EF作一个平面α,因CD与平面α不平行,所以它们相交,设α∩CD =Q,连结PQ,则PQ与EF必然相交,即PQ为所求直线.由点P的任意性知,有无数条直线与直线A1D1,EF,CD都相交.4. 如图,在正方体ABCDA1B1C1D1中,点E,F,G分别是棱CC1,BB1及DD1的中点.求证:∠BGC=∠FD1E.证明:∵点E,F,G分别是正方体的棱CC1,BB1,DD1的中点,∴CE平行且等于GD1,BF平行且等于GD1,则四边形CED1G与四边形BFD1G均为平行四边形.则GC∥D1E,GB∥D1F.∵∠BGC与∠FD1E对应两边的方向分别相同,∴∠BGC=∠FD1E.5. 如图,在正方体ABCDA1B1C1D1中,对角线A1C与平面BDC1交于点O,AC,BD 交于点M,点E为AB的中点,点F为AA1的中点.求证:(1) C1,O,M三点共线;(2) E,C,D1,F四点共面;(3) CE,D1F,DA三线共点.证明:(1) ∵ C 1,O ,M ∈平面BDC 1,又C 1,O ,M ∈平面A 1ACC 1,由公理3知,点C 1,O ,M 在平面BDC 1与平面A 1ACC 1的交线上,∴ C 1,O ,M 三点共线.(2) ∵ 点E ,F 分别是AB ,A 1A 的中点,∴ EF ∥A 1B. ∵ A 1B ∥CD 1,∴ EF ∥CD 1.∴ E ,C ,D 1,F 四点共面.(3) 由(2)可知,E ,C ,D 1,F 四点共面.∵ EF ∥A 1B ,EF =12A 1B ,∴ EF =12D 1C ,∴ D 1F ,CE 为相交直线,记交点为P.则P ∈D 1F ⊂平面ADD 1A 1,P ∈CE ⊂平面ADCB ,∴ P ∈平面ADD 1A 1∩平面ADCB =AD ,∴ CE ,D 1F ,DA 三线共点.1. 如图,在正方体ABCDEFMN 中,①BM 与ED 平行;②CN 与BM 是异面直线;③CN 与BE 是异面直线;④DN 与BM 是异面直线.以上四个命题中,正确的命题是________.(填序号)答案: ②④解析:观察图形,根据异面直线的定义可知,BM 与ED 是异面直线,CN 与BM 是异面直线,CN 与BE 不是异面直线,DN 与BM 是异面直线,故①③错误,②④正确.即正确的命题是②④.2. 在空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,点M ,N 分别是BC ,AD 的中点,求直线AB 和MN 所成的角.解:如图,取AC 的中点P.连结PM ,PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN =30°或∠MPN =150°. 若∠MPN =30°,因为PM ∥AB ,所以∠PMN 是AB 与MN 所成的角(或所成角的补角).又AB =CD ,所以PM =PN ,则△PMN 是等腰三角形,所以∠PMN =75°, 即直线AB 与MN 所成的角为75°.若∠MPN =150°,易知△PMN 是等腰三角形,所以∠PMN =15°, 即直线AB 与MN 所成的角为15°.故直线AB 和MN 所成的角为75°或15°.3. 已知在棱长为a 的正方体ABCDA 1B 1C 1D 1中,点M ,N 分别是棱CD ,AD 的中点.求证:(1) 四边形MNA 1C 1是梯形; (2) ∠DNM =∠D 1A 1C 1.证明:(1) 如图,连结AC ,在△ACD 中,∵ 点M ,N 分别是CD ,AD 的中点, ∴ MN 是三角形ACD 的中位线,∴ MN ∥AC ,MN =12AC.由正方体的性质得AC ∥A 1C 1,AC =A 1C 1,∴ MN ∥A 1C 1且MN =12A 1C 1,即MN ≠A 1C 1,∴ 四边形MNA 1C 1是梯形.(2) 由(1)知MN ∥A 1C 1.又∵ ND ∥A 1D 1, ∴ ∠DNM 与∠D 1A 1C 1相等或互补.而∠DNM 与∠D 1A 1C 1均是直角三角形中的锐角, ∴ ∠DNM =∠D 1A 1C 1.1. 证明点线共面的常用方法:一是依据题中所给部分条件先确定一个平面,然后证明其余的点或线都在平面内;二是将所有元素分成几个部分,然后分别确定几个平面,再证这些平面重合;三是采用反证法.2. 证明三线共点的方法:通常先证明两条直线的交点在第三条直线上,而第三条直线是分别经过这两条直线的两个平面的一条交线.3. 异面直线的证明方法:一是应用判定定理(过平面内一点与平面外一点的连线与平面内不经过该点的直线是异面直线);二是采用反证法.判定异面直线时通常采用排除法(既不相交也不平行)或判定定理.4. 对于异面直线所成的角,要注意角的范围是⎝⎛⎦⎤0,π2以及两条直线垂直的定义,平移法是解决此类问题的关键.[备课札记]第2课时直线与平面的位置关系(1)(对应学生用书(文)109~110页、(理)111~112页)了解直线与平面的位置关系,了解线面平行的有关概念;除了能熟练运用线面平行的判定定理和性质定理外,还能运用定义判断位置关系.①要熟练掌握线面平行的定义、判定及性质.②要注意线线关系、线面关系以及面面关系的转化.对于直线与平面所成的角,点到面的距离了解即可.1. (必修2P35练习2改编)给出下列条件:① l∥α;② l与α至少有一个公共点;③ l与α至多有一个公共点.则能确定直线l在平面α外的条件为________.(填序号) 答案:①③解析:直线l在平面α外:l∥α或直线l与平面α仅有一个交点.2. (必修2P35练习7改编)在梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α内的直线的位置关系是________.答案:平行或异面解析:因为AB∥CD,AB⊂平面α,CD⊄平面α,所以CD∥平面α,所以CD与平面α内的直线可能平行,也可能异面.3. (必修2P35练习4改编)在正六棱柱ABCDEFA1B1C1D1E1F1的表面中,与A1F1平行的平面是________.答案:平面ABCDEF、平面CC1D1D解析:在正六棱柱中,易知A1F1∥AF,AF⊂平面ABCDEF,且A1F1⊄平面ABCDEF,所以A1F1∥平面ABCDEF.同理,A1F1∥C1D1,C1D1⊂平面CC1D1D,且A1F1⊄平面CC1D1D,所以A1F1∥平面CC1D1D.其他各面与A1F1均不满足直线与平面平行的条件.故答案为平面ABCDEF与平面CC1D1D.4. (原创)P为矩形ABCD所在平面外一点,矩形对角线的交点为O,M为PB的中点,给出下列四个命题:①OM∥平面PCD;② OM∥平面PBC;③ OM∥平面PDA;④ OM∥平面PBA.其中正确命题的个数是________.答案:2解析:由已知OM∥PD,得OM∥平面PCD且OM∥平面PAD.故正确的只有①③.5. (必修2P41习题5改编)在四面体ABCD中,点M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.答案:平面ABC、平面ABD解析:如图,连结AM并延长交CD于E,连结BN并延长交CD于F,由重心性质可知,E,F重合为一点,且该点为CD的中点E,由EMMA =ENNB=12,得MN∥AB,因此,MN∥平面ABC,且MN∥平面ABD.1. 一条直线和一个平面的位置关系有且只有以下三种:位置关系直线a在平面α内直线a与平面α相交直线a与平面α平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示a⊂αa∩α=A a∥α图形表示2. 直线与平面平行判定定理性质定理文字如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行符号图形作用线线平行⇒线面平行线面平行⇒线线平行,1基本概念辨析),1)下列命题中真命题的个数为W.①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线b⊂α,则a∥α;④若直线a∥b,b⊂α,那么直线a平行于平面α内的无数条直线.答案:1解析:∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内,∴l不一定平行于α.∴①是假命题.∵直线a在平面α外,包括两种情况:a∥α和a与α相交,∴a 和α不一定平行.∴②是假命题.∵直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴a不一定平行于α.∴③是假命题.∵ a∥b,b⊂α,那么a⊂α或a∥α,∴a可以与平面α内的无数条直线平行.∴④是真命题.综上可知,真命题的个数为1.备选变式(教师专享)下列命题中正确的是W.(填序号)①若直线a不在平面α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.答案:④⑤解析:如图①,a∩α=A时,a⊄α,∴①错误;直线l与α相交时,l上有无数个点不在α内,∴②错误;l∥α时,α内的直线与l平行或异面,∴③错误;l∥α,l与α无公共点,∴l与α内任一直线都无公共点,④正确;如图②,长方体ABCDA1B1C1D1中,A1C1与B1D1都与平面ABCD平行,∴⑤正确.,2线面平行的判定),2)如图,在底面为平行四边形的四棱锥PABCD中,点E是PC的中点.求证:PA∥平面BDE.证明:如图,连结AC交BD于点O,连结OE.在平行四边形ABCD中,O是AC的中点,又E是PC的中点,∴OE∥PA.∵PA⊄平面BDE,OE⊂平面BDE,∴PA∥平面BDE.变式训练如图,在三棱柱A1B1C1ABC中,E,F分别是A1B,AC1的中点.求证:EF∥平面ABC.证明:如图,连结A1C,因为三棱柱A1B1C1ABC中,四边形AA1C1C是平行四边形,所以点F在A1C上,且为A1C的中点.在△A1BC中,因为E,F分别是A1B,A1C的中点,所以EF∥BC.因为BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.备选变式(教师专享)如图,在正方体ABCDA1B1C1D1中,点M,N,P分别为棱AB,BC,C1D1的中点.求证:AP∥平面C1MN.证明:在正方体ABCDA1B1C1D1中,因为点M,P分别为棱AB,C1D1的中点,所以AM=PC1.又AM ∥CD ,PC 1∥CD ,故AM ∥PC 1,所以四边形AMC 1P 为平行四边形.从而AP ∥C 1M. 又AP ⊄ 平面C 1MN ,C 1M ⊂平面C 1MN , 所以AP ∥平面C 1MN., 3 线面平行的性质), 3) 如图,在直三棱柱ABCA 1B 1C 1中,AC ⊥BC ,CC 1=4,M 是棱CC 1上的一点.若点N 是AB 的中点,且CN ∥平面AB 1M ,求CM 的长.解:(解法1)如图①,取AB 1的中点P ,连结NP ,PM.①因为点N 是AB 的中点,所以NP ∥BB 1.因为CM ∥BB 1,所以NP ∥CM ,所以NP 与CM 共面.因为CN ∥平面AB 1M ,平面CNPM ∩平面AB 1M =MP ,所以CN ∥MP.所以四边形CNPM 为平行四边形,所以CM =NP =12CC 1=2.(解法2)如图②,设NC 与CC 1确定的平面交AB 1于点P ,连结NP ,PM.②因为CN ∥平面AB 1M ,CN ⊂平面CNPM ,平面AB 1M ∩平面CNPM =PM ,所以CN ∥MP. 因为BB 1∥CM ,BB 1⊄平面CNPM ,CM ⊂平面CNPM ,所以BB 1∥平面CNPM. 又BB 1⊂平面ABB 1,平面ABB 1∩平面CNPM =NP ,所以BB 1∥NP ,所以CM ∥NP ,所以四边形CNPM 为平行四边形.因为点N 是AB 的中点,所以CM =NP =12BB 1=12CC 1=2.(解法3)如图③,取BB 1的中点Q ,连结NQ ,CQ.③因为点N 是AB 的中点,所以NQ ∥AB 1. 因为NQ ⊄平面AB 1M ,AB 1⊂平面AB 1M , 所以NQ ∥平面AB 1M.因为CN ∥平面AB 1M ,NQ ∩NC =N ,NQ ,NC ⊂平面NQC , 所以平面NQC ∥平面AB 1M.因为平面BCC 1B 1∩平面NQC =QC ,平面BCC 1B 1∩平面AB 1M =MB 1,所以CQ ∥MB 1. 因为BB 1∥CC 1,所以四边形CQB 1M 是平行四边形,所以CM =B 1Q =12CC 1=2.(解法4)如图④,分别延长BC ,B 1M ,设交点为S ,连结AS.④因为CN ∥平面AB 1M ,CN ⊂平面ABS , 平面ABS ∩平面AB 1M =AS ,所以CN ∥AS. 由于AN =NB ,所以BC =CS.又CM ∥BB 1,同理可得SM =MB 1,所以CM =12BB 1=12CC 1=2.备选变式(教师专享)如图,在斜三棱柱ABCA 1B 1C 1中,AC 1与A 1C 交于点O ,E 是棱AB 上一点,且OE ∥平面BCC 1B 1.求证:点E 是AB 的中点.证明:连结BC 1,因为OE ∥平面BCC 1B 1,OE ⊂平面ABC 1,平面BCC 1B 1∩平面ABC 1=BC 1,所以OE ∥BC 1.在斜三棱柱ABCA 1B 1C 1中,侧面AA 1C 1C 是平行四边形,AC 1∩A 1C =O , 所以点O 是AC 1的中点,所以AE EB =AO OC 1=1,即点E 是AB 的中点.1. 如图,在直三棱柱ABCA 1B 1C 1中,已知AB =AC ,点M ,N ,P 分别为BC ,CC 1,BB 1的中点.求证:A 1N ∥平面AMP.证明:取C 1B 1的中点D ,连结A 1D ,DN ,DM ,B 1C.由于点D ,M 分别为C 1B 1,CB 的中点,所以DM ∥CC 1且DM =CC 1,故DM ∥AA 1且DM =AA 1,则四边形A 1AMD 为平行四边形,所以A 1D ∥AM.又A 1D ⊄平面APM ,AM ⊂平面APM ,所以A 1D ∥平面APM.由于D ,N 分别为C 1B 1,CC 1的中点,所以DN ∥B 1C.又点P ,M 分别为BB 1,CB 的中点,所以MP ∥B 1C.所以DN ∥MP.又DN ⊄平面APM ,MP ⊂平面APM , 所以DN ∥平面APM.由于A 1D ∩DN =D ,所以平面A 1DN ∥平面APM. 由于A 1N ⊂平面A 1DN ,所以A 1N ∥平面APM.2. 如图,在四棱锥EABCD 中,四边形ABCD 为矩形,点M ,N 分别是AE ,CD 的中点.求证:直线MN ∥平面EBC.证明:取BE 中点F ,连结CF ,MF.因为点M 是AE 的中点,所以MF 綊12AB.又点N 是矩形ABCD 边CD 的中点,所以NC 綊12AB ,所以MF 綊NC ,所以四边形MNCF 是平行四边形,所以MN ∥CF.又MN ⊄平面EBC ,CF ⊂平面EBC ,所以MN ∥平面EBC.3. 如图,在正三棱柱ABCA′B′C′中,D是AA′上的点,点E是B′C′的中点,且A′E∥平面DBC′.试判断D点在AA′上的位置,并给出证明.解:点D为AA′的中点.证明如下:如图,取BC的中点F,连结AF,EF,设EF与BC′交于点O,连结DO,BE,C′F,在正三棱柱ABCA′B′C′中,点E是B′C′的中点,所以EF∥BB′∥AA′,且EF=BB′=AA′,所以四边形A′EFA是平行四边形.因为A′E∥平面DBC′,A′E⊂平面A′EFA,且平面DBC′∩平面A′EFA=DO,所以A′E∥DO.在正三棱柱ABC-A′B′C′中,点E是B′C′的中点,所以EC′∥BC且EC′=BF,所以四边形BFC′E是平行四边形,所以点O是EF的中点.因为在平行四边形A′EFA中,A′E∥DO,所以点D为AA′的中点.4. 如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD是菱形,点E是A1C1的中点.求证:BE∥平面ACD1.证明:如图,连结B1D1交A1C1于点E,连结BD交AC于点O,连结OD1.∵在直四棱柱ABCDA1B1C1D1中,底面ABCD是菱形,∴D1E∥BO且D1E=BO,∴四边形BED1O是平行四边形,∴BE∥OD1.∵OD1⊂平面ACD1,BE⊄平面ACD1,∴ BE ∥平面ACD 1.5. 如图,在四棱锥PABCD 中,PC ⊥平面PAD ,AB ∥CD ,CD =2AB =2BC ,点M ,N 分别是棱PA ,CD 的中点.求证:PC ∥平面BMN.证明:设AC ∩BN =O ,连结MO ,AN.因为AB =12CD ,AB ∥CD ,点N 为CD 的中点,所以AB =CN ,AB ∥CN ,所以四边形ABCN 为平行四边形, 所以O 为AC 的中点.又点M 为PA 的中点,所以MO ∥PC. 因为MO ⊂平面BMN ,PC ⊄ 平面BMN , 所以PC ∥平面BMN.1. 如图,在三棱锥PABC中,点M,N分别为AB,PA的中点.求证:PB∥平面MNC.证明:因为点M,N分别为AB,PA的中点,所以MN∥PB.因为MN⊂平面MNC,PB⊄平面MNC,所以PB∥平面MNC.2. 如图,在直三棱柱ABCA1B1C1中,点D是AB的中点.求证:BC1∥平面A1CD.证明:连结AC1,设交A1C于点O,连结OD.∵四边形AA1C1C是矩形,∴O是AC1的中点.∵在△ABC1中,O,D分别是AC1,AB的中点,∴OD∥BC1.∵OD⊂平面A1CD,BC1⊄平面A1CD,∴BC1∥平面A1CD.3. 如图,在长方体ABCDA1B1C1D1中,点P∈BB1(P不与B,B1重合).PA∩A1B=M,PC∩BC1=N.求证:MN∥平面ABCD.证明:连结AC,A1C1,在长方体ABCDA1B1C1D1中,AA1∥CC1,且AA1=CC1,∴四边形ACC1A1是平行四边形.∴AC∥A1C1.∵AC⊄平面A1BC1,A1C1⊂平面A1BC1,∴AC∥平面A1BC1.∵AC⊂平面PAC,平面A1BC1∩平面PAC=MN,∴AC∥MN.∵MN⊄平面ABCD,AC⊂平面ABCD,∴MN∥平面ABCD.1. 判定或证明直线与平面平行的常用方法(1)利用直线与平面平行的定义(无公共点).(2)利用直线与平面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用平面与平面平行的性质(α∥β,a⊂α⇒a∥β).注意不管用哪种方法,都应将相应的条件写全,缺一不可.2. 直线与平面平行的性质定理的作用是证线线平行,应用时常常需构造辅助平面,和在平面几何中添加辅助线一样,在构造辅助平面时要确认这个平面的存在性.3. 证明平行问题时要注意“转化思想”的应用,要抓住线线、线面、面面之间的平行关系,实现“空间问题”与“平面问题”之间的转化.[备课札记]第3课时直线与平面的位置关系(2)(对应学生用书(文)111~113页、(理)113~115页)了解直线与平面的位置关系,了解空间垂直的有关概念;熟练运用线面垂直的判定定理和性质定理. 要注意线线垂直、线面垂直的转化.可以按照要证明的目标重新整理知识点.1. (必修2P38练习2(3)改编)已知直线l,a,b,平面α.若l∥a,a⊥α,b⊥α,则l与b的位置关系是W.答案:平行解析:由线面垂直的性质可知,若a⊥α,b⊥α,则a∥b.因为l∥a,所以l∥b.2. 已知两条异面直线平行于一平面,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是 W.(填序号)① 平行;② 垂直;③ 斜交;④ 不能确定. 答案:②解析:设a ,b 为异面直线,a ∥平面α,b ∥平面α,直线l ⊥a ,l ⊥b.过a 作平面β∩α=a′,则a ∥a ′,∴ l ⊥a ′.同理过b 作平面γ∩α=b′,则l ⊥b ′.∵ a ,b 异面,∴ a ′与b′相交,∴ l ⊥α.3. 设l ,m 表示直线,m 是平面α内的任意一条直线,则“l ⊥m ”是“l ⊥α”成立的 条件.(选填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)答案:充要解析:由线面垂直的定义知,直线垂直于平面内任意一条直线,则直线与平面垂直,说明是充分条件,反之,直线垂直于平面,则直线垂直于平面内任意一条直线,说明是必要条件,则“l ⊥m ”是“l ⊥α”成立的充要条件.4. (必修2P 42习题9改编)如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上不同于A ,B 的任一点,则图中直角三角形的个数为 W.答案:4解析:因为AB 是圆O 的直径,所以AC ⊥BC ,△ACB 是直角三角形;由PA ⊥平面ABC 可得,PA ⊥AB ,PA ⊥AC ,所以△PAB 与△PAC 是直角三角形;因为PA ⊥平面ABC ,且BC ⊂平面ABC ,所以PA ⊥BC.又BC ⊥AC ,PA ∩AC =A ,所以BC ⊥平面PAC.而PC ⊂平面PAC ,所以BC ⊥PC ,△PCB 是直角三角形.故直角三角形的个数为4.5. (必修2P 38练习3改编)在正方体ABCDA 1B 1C 1D 1中,已知AB =1,则点C 到平面B 1BDD 1的距离为 W.答案:22解析:连结AC ,则AC ⊥BD ,又BB 1⊥AC ,故AC ⊥平面B 1BDD 1,所以点C 到平面B 1BDD 1的距离为12AC =22.1. 直线与平面垂直的定义:如果一条直线a 与一个平面α内的任意一条直线都垂直,我们就说直线a 与平面α互相垂直,记作a ⊥α,直线a 叫做平面α的垂线,平面α叫做直线a 的垂面,垂线和平面的交点称为垂足W.2. 结论:过一点有且只有一条直线与已知平面垂直,过一点有且只有一个平面与已知直线垂直.3. 直线与平面垂直判定定理性质定理文字如果一条直线与一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面如果两条直线垂直于同一个平面,那么这两条直线平行符号图形作用线线垂直⇒线面垂直线面垂直⇒线线平行从平面外一点引平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.5. 直线和平面的距离一条直线和一个平面平行,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离.6. 直线与平面所成的角(1)斜线一条直线与一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线与平面的交点叫做斜足,斜线上一点与斜足间的线段叫做这个点到平面的斜线段.(2)射影过平面α外一点P向平面α引斜线和垂线,那么过斜足Q和垂足P1的直线就是斜线在平面内的正投影(简称射影),线段P1Q就是斜线段PQ在平面α内的射影,如图.(3)直线和平面所成的角平面的一条斜线与它在这个平面内的射影所成的锐角,叫做这条直线与这个平面所成的角.特别地,如果直线和平面垂直,那么就说这条直线与平面所成的角是直角;如果直线与平面平行或在平面内,则它们所成的角是0°的角.[备课札记],1直线与平面垂直的判定),1)如图,在直四棱柱ABCDA1B1C1D1中,点E,F分别是AB,BC的中点,A1C1与B1D1交于点O.若底面ABCD是菱形,且OD⊥A1E,求证:OD⊥平面A1C1FE.证明:连结BD,因为直棱柱中DD1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,所以DD1⊥A1C1.因为底面A1B1C1D1是菱形,所以A1C1⊥B1D1.又DD1∩B1D1=D1,所以A1C1⊥平面BB1D1D.因为OD⊂平面BB1D1D,所以OD⊥A1C1.又OD⊥A1E,A1C1∩A1E=A1,A1C1⊂平面A1C1FE,A1E⊂平面A1C1FE,所以OD⊥平面A1C1FE.变式训练如图,在三棱锥PABC中,平面PAB⊥平面ABC,PA⊥PB,M,N分别为AB,PA的中点.若AC=BC,求证:PA⊥平面MNC.证明:因为M,N分别为AB,PA的中点,所以MN∥PB.又因为PA⊥PB,所以PA⊥MN.因为AC=BC,AM=BM,所以CM⊥AB.因为平面PAB⊥平面ABC,CM⊂平面ABC,平面PAB∩平面ABC=AB,所以CM⊥平面PAB.因为PA⊂平面PAB,所以CM⊥PA.又因为PA⊥MN,MN⊂平面MNC,CM⊂平面MNC,MN∩CM=M,所以PA⊥平面MNC.,2直线与平面垂直性质的应用),2)如图,在四棱锥PABCD中,AD⊥平面PAB,AP⊥AB.(1)求证:CD⊥AP;(2)若CD⊥PD,求证:CD∥平面PAB.证明:(1)因为AD⊥平面PAB,AP⊂平面PAB,所以AD⊥AP.因为AP⊥AB,AB∩AD=A,AB⊂平面ABCD,AD⊂平面ABCD,所以AP⊥平面ABCD.因为CD⊂平面ABCD,所以CD⊥AP.(2)因为CD⊥AP,CD⊥PD,且PD∩AP=P,PD⊂平面PAD,AP⊂平面PAD,所以CD⊥平面PAD①.因为AD⊥平面PAB,AB⊂平面PAB,所以AB⊥AD.因为AP⊥AB,AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以AB⊥平面PAD②.由①②得CD∥AB,因为CD⊄平面PAB,AB⊂平面PAB,所以CD∥平面PAB.变式训练如图,在正方体ABCDA1B1C1D1中,EF与异面直线AC,A1D都垂直相交.求证:(1)EF⊥平面AB1C;(2)EF∥BD1.证明:(1)在正方体ABCDA1B1C1D1中,A1B1∥AB∥CD,且A1B1=AB=CD,所以四边形A1B1CD是平行四边形,所以A1D∥B1C.因为EF⊥A1D,所以EF⊥B1C.又因为EF⊥AC,AC∩B1C=C,AC⊂平面AB1C,B1C ⊂平面AB1C,所以EF⊥平面AB1C.(2)连结BD,则BD⊥AC.因为DD 1⊥平面ABCD ,AC ⊂平面ABCD , 所以DD 1⊥AC.因为AC ⊥BD ,DD 1∩BD =D ,DD 1⊂平面BDD 1B 1,BD ⊂平面BDD 1B 1, 所以AC ⊥平面BDD 1B 1.又BD 1⊂平面BDD 1B 1, 所以AC ⊥BD 1.同理可证BD 1⊥B 1C ,又AC ∩B 1C =C ,AC ⊂平面AB 1C ,B 1C ⊂平面AB 1C , 所以BD 1⊥平面AB 1C. 又EF ⊥平面AB 1C , 所以EF ∥BD 1., 3 直线与平面垂直的探索题), 3) 在正三棱柱ABCA 1B 1C 1中,点D 是BC 的中点,BC =BB 1. (1) 若P 是CC 1上任一点,求证:AP 不可能与平面BCC 1B 1垂直; (2) 试在棱CC 1上找一点M ,使MB ⊥AB 1.(1) 证明:(反证法)假设AP ⊥平面BCC 1B 1, ∵ BC ⊂平面BCC 1B 1,∴ AP ⊥BC.又正三棱柱ABCA 1B 1C 1中,CC 1⊥BC ,AP ∩CC 1=P ,AP ⊂平面ACC 1A 1,CC 1⊂平面ACC 1A 1,∴ BC ⊥平面ACC 1A 1.而AC ⊂平面ACC 1A 1, ∴ BC ⊥AC ,这与△ABC 是正三角形矛盾, 故AP 不可能与平面BCC 1B 1垂直. (2) 解:M 为CC 1的中点.∵ 在正三棱柱ABCA 1B 1C 1中,BC =BB 1, ∴ 四边形BCC 1B 1是正方形.∵ 点M 为CC 1的中点,点D 是BC 的中点, ∴ △B 1BD ≌△BCM ,∴ ∠BB 1D =∠CBM ,∠BDB 1=∠CMB.∵ ∠BB 1D +∠BDB 1=π2,∴ ∠CBM +∠BDB 1=π2,∴ BM ⊥B 1D.∵ △ABC 是正三角形,D 是BC 的中点, ∴ AD ⊥BC.∵ 平面ABC ⊥平面BB 1C 1C ,平面ABC ∩平面BB 1C 1C =BC ,AD ⊂平面ABC ,∴AD⊥平面BB1C1C.∵BM⊂平面BB1C1C,∴AD⊥BM.∵AD∩B1D=D,∴BM⊥平面AB1D.∵AB1⊂平面AB1D,∴MB⊥AB1.备选变式(教师专享)如图,在棱长为1的正方体ABCDA1B1C1D1中,点E是棱BC的中点,点F是棱CD 上的动点.试确定点F的位置,使得D1E⊥平面AB1F.解:如图,连结A1B,CD1,则A1B⊥AB1.∵在正方体ABCDA1B1C1D1中,D1A1⊥平面ABB1A1,AB1⊂平面ABB1A1,∴A1D1⊥AB1.又A1D1∩A1B=A1,A1D1,A1B⊂平面A1BCD1,∴AB1⊥平面A1BCD1.又D1E⊂平面A1BCD1,∴AB1⊥D1E.于是使D1E⊥平面AB1F等价于使D1E⊥AF.连结DE,易知D1D⊥AF,若有AF⊥平面D1DE,只需证DE⊥AF.∵四边形ABCD是正方形,点E是BC的中点,∴当且仅当点F是CD的中点时,DE⊥AF,即当点F是CD的中点时,D1E⊥平面AB1F.1. 如图,在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1,问BC边上是否存在点Q,使得PQ⊥QD,并说明理由.解:假设存在点Q,使得PQ⊥QD.连结AQ.∵PA⊥平面ABCD,且DQ⊂平面ABCD,∴PA⊥DQ.。
2021年高考数学一轮复习精品学案(人教版A版)空间向量及应用2021年高考数学一轮复习精品学案(人教版a版)-空间向量及应用2021年高考数学一轮复习精品学案(人教版a版)空间向量及其应用领域一.【课标要求】(1)空间向量及其运算①经历向量及其运算由平面向空间推广的过程;②介绍空间向量的概念,介绍空间向量的基本定理及其意义,掌控空间向量的拓扑水解及其座标则表示;③掌握空间向量的线性运算及其坐标表示;④掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。
(2)空间向量的应用领域①理解直线的方向向量与平面的法向量;②能够用向量语言定义线线、线面、面面的横向、平行关系;③能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);④能够用向量方法化解线线、线面、面面的夹角的排序问题,体会向量方法在研究几何问题中的促进作用.二.【命题走向】本谈内容主要牵涉空间向量的座标及运算、空间向量的应用领域。
本谈就是立体几何的核心内容,中考对本谈的实地考察形式为:以客观题形式实地考察空间向量的概念和运算,融合主观题利用空间向量谋夹角和距离.预测2021年高考对本讲内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度.三.【要点通识科】1.空间向量的概念向量:在空间,我们把具备大小和方向的量叫作向量。
例如加速度、速度、力等.成正比向量:长度成正比且方向相同的向量叫作成正比向量。
表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。
表明:①由成正比向量的概念所述,一个向量在空间位移至任何边线,仍与原来的向量成正比,用同向且相切的存有向线段则表示;②平面向量仅限于研究同一平面内的位移,而空间向量研究的就是空间的位移。
2.向量运算和运算率ob?oa?ab?a?bba?oa?ob?a?bopa(r)加法交换率:a?b?b?a.加法结合率:(a?b)?c?a?(b?c).数乘分配率:?(a?b)??a??b.说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立.3.平行向量(共线向量):如果则表示空间向量的存有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
2025年新人教版高考数学一轮复习讲义含答案解析§7.3空间点、直线、平面之间的位置关系课标要求1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义.2.了解四个基本事实和一个定理,并能应用定理解决问题.知识梳理1.基本事实1:过不在一条直线上的三个点,有且只有一个平面.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.基本事实4:平行于同一条直线的两条直线平行.2.“三个”推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.3.空间中直线与直线的位置关系异面直线:不同在任何一个平面内,没有公共点.4.空间中直线与平面、平面与平面的位置关系图形语言符号语言公共点直线与平面相交a ∩α=A 1个平行a ∥α0个在平面内a ⊂α无数个平面与平面平行α∥β0个相交α∩β=l 无数个5.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.6.异面直线所成的角(1)定义:已知两条异面直线a ,b ,经过空间任一点O 分别作直线a ′∥a ,b ′∥b ,我们把直线a ′与b ′所成的角叫做异面直线a 与b 所成的角(或夹角).(2),π2.常用结论1.过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.2.分别在两个平行平面内的直线平行或异面.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)没有公共点的两条直线是异面直线.(×)(2)直线与平面的位置关系有平行、垂直两种.(×)(3)如果两个平面有三个公共点,则这两个平面重合.(×)(4)两两相交的三条直线共面.(×)2.(必修第二册P147例1改编)已知正方体ABCD -A 1B 1C 1D 1,直线BD 1与直线AA 1所成角的余弦值是()A.12B.13C.63D.33答案D解析连接BD (图略),由于AA 1∥DD 1,所以∠DD 1B 即为直线BD 1与直线AA 1所成的角,不妨设正方体的棱长为a ,则BD =2a ,BD 1=D 1D 2+BD 2=3a ,所以cos ∠DD 1B =DD 1D 1B =13=33.3.(多选)给出以下四个命题,其中错误的是()A .不共面的四点中,其中任意三点不共线B .若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则点A ,B ,C ,D ,E 共面C .若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面D .依次首尾相接的四条线段必共面答案BCD解析反证法:如果四个点中,有3个点共线,第4个点不在这条直线上,根据基本事实2的推论可知,这四个点共面,这与已知矛盾,故A 正确;如图1,A ,B ,C ,D 共面,A ,B ,C ,E 共面,但A ,B ,C ,D ,E 不共面,故B 错误;如图2,a ,b 共面,a ,c 共面,但b ,c 异面,故C 错误;如图3,a ,b ,c ,d 四条线段首尾相接,但a ,b ,c ,d 不共面,故D 错误.图1图2图34.如图,在三棱锥A -BCD 中,E ,F ,G ,H 分别是棱AB ,BC ,CD ,DA 的中点,则:(1)当AC ,BD 满足条件________时,四边形EFGH 为菱形;(2)当AC ,BD 满足条件________时,四边形EFGH 为正方形.答案(1)AC =BD(2)AC =BD 且AC ⊥BD解析(1)由题意知,EF ∥AC ,EH ∥BD ,且EF =12AC ,EH =12BD ,∵四边形EFGH 为菱形,∴EF =EH ,∴AC =BD .(2)∵四边形EFGH 为正方形,∴EF =EH 且EF ⊥EH ,∴AC =BD 且AC ⊥BD .题型一基本事实的应用例1已知在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为D 1C 1,C 1B 1的中点,AC ∩BD =P ,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于点R,则P,Q,R三点共线;(3)DE,BF,CC1三线交于一点.证明(1)如图所示,连接B1D1.因为EF是△C1D1B1的中位线,所以EF∥B1D1.在正方体ABCD-A1B1C1D1中,B1D1∥BD,所以EF∥BD,所以EF,BD确定一个平面,即D,B,F,E四点共面.(2)在正方体ABCD-A1B1C1D1中,连接A1C,设A1,C,C1确定的平面为α,又设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β,所以Q是α与β的公共点,同理,P是α与β的公共点.所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,R∈α,且R∈β.则R∈PQ,故P,Q,R三点共线.(3)因为EF∥BD且EF<BD,所以DE与BF相交,设交点为M,则由M∈DE,DE⊂平面D1DCC1,得M∈平面D1DCC1,同理,M∈平面B1BCC1.又平面D1DCC1∩平面B1BCC1=CC1,所以M∈CC1.所以DE,BF,CC1三线交于一点.思维升华共面、共线、共点问题的证明(1)共面:先确定一个平面,然后再证其余的线(或点)在这个平面内.(2)共线:先由两点确定一条直线,再证其他各点都在这条直线上.(3)共点:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1在如图所示的空间几何体中,四边形ABEF 与ABCD 都是梯形,BC ∥AD 且BC =12AD ,BE ∥AF 且BE =12AF ,G ,H 分别为AF ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?(1)证明由题设知,因为G ,H 分别为AF ,FD 的中点,所以GH ∥AD 且GH =12AD ,又BC ∥AD 且BC =12AD ,故GH ∥BC 且GH =BC ,所以四边形BCHG 是平行四边形.(2)解C ,D ,F ,E 四点共面.理由如下:由BE ∥AF 且BE =12AF ,G 是AF 的中点知BE ∥GF 且BE =GF ,所以四边形EFGB 是平行四边形,所以EF ∥BG .由(1)知BG ∥CH ,所以EF ∥CH .故EC ,FH 共面.又点D 在直线FH 上,所以C ,D ,F ,E 四点共面.题型二空间位置关系的判断例2(1)(多选)下列推断中,正确的是()A .M ∈α,M ∈β,α∩β=l ⇒M ∈lB .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=ABC .l ⊄α,A ∈l ⇒A ∉αD .A ,B ,C ∈α,A ,B ,C ∈β,且A ,B ,C 不共线⇒α,β重合答案ABD解析对于A ,因为M ∈α,M ∈β,α∩β=l ,由基本事实3可知M ∈l ,故A 正确;对于B,A∈α,A∈β,B∈α,B∈β,故直线AB⊂α,AB⊂β,即α∩β=AB,故B正确;对于C,若l∩α=A,则有l⊄α,A∈l,但A∈α,故C错误;对于D,有三个不共线的点在平面α,β中,α,β重合,故D正确.(2)(2023·龙岩模拟)若a和b是异面直线,b和c是异面直线,则a和c的位置关系是() A.异面或平行B.异面或相交C.异面D.相交、平行或异面答案D解析如图,在长方体ABCD-A1B1C1D1中,①若直线AA1记为直线a,直线BC记为直线b,直线B1A1记为直线c,此时a和c相交;②若直线AA1记为直线a,直线BC记为直线b,直线DD1记为直线c,此时a和c平行;③若直线AA1记为直线a,直线BC记为直线b,直线C1D1记为直线c,此时a和c异面.思维升华判断空间直线的位置关系一般有两种方法:一是构造几何体(如长方体、空间四边形等)模型来判断.二是排除法.特别地,对于异面直线的判定常用到结论:“平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.”跟踪训练2(1)空间中有三条线段AB,BC,CD,且∠ABC=∠BCD,那么直线AB与CD 的位置关系是()A.平行B.异面C.相交或平行D.平行或异面或相交均有可能答案D解析根据条件作出示意图,容易得到以下三种情况,由图可知AB与CD有相交、平行、异面三种情况.(2)(多选)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,以下四个选项正确的是()A .直线AM 与CC 1是相交直线B .直线AM 与BN 是平行直线C .直线BN 与MB 1是异面直线D .直线AM 与DD 1是异面直线答案CD解析因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以直线AM 与CC 1是异面直线,故A 错误;取DD 1的中点E ,连接AE (图略),则BN ∥AE ,但AE 与AM 相交,所以AM 与BN 不平行,故B 错误;因为点B 1与直线BN 都在平面BCC 1B 1内,点M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故C 正确;同理D 正确.题型三异面直线所成的角例3(1)如图,圆柱的轴截面ABCD 为正方形,E 为弧BC 的中点,则异面直线AE 与BC 所成角的余弦值为()A.33B.55C.306D.66答案D解析如图,过点E 作圆柱的母线交下底面于点F ,连接AF ,易知F 为 AD 的中点,设四边形ABCD 的边长为2,则EF =2,AF =2,所以AE =22+(2)2= 6.连接ED ,则ED = 6.因为BC ∥AD ,所以异面直线AE 与BC 所成的角即为∠EAD (或其补角).在△EAD 中,cos ∠EAD =6+4-62×2×6=66.所以异面直线AE 与BC 所成角的余弦值为66.(2)四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,PA ⊥底面ABCD ,异面直线AC 与PD 所成角的余弦值为105,则四棱锥外接球的表面积为()A .48πB .12πC .36πD .9π答案D解析如图,将其补成长方体.设PA =x ,x >0,连接AB 1,B 1C ,则异面直线AC 与PD 所成的角就是∠ACB 1或其补角.则cos ∠ACB 1=105=8+x 2+4-x 2-42×22×x 2+22,解得x =1(舍去负值),所以外接球的半径为12×12+22+22=32,所以该四棱锥外接球的表面积为4π=9π.思维升华异面直线所成角的求法方法解读平移法将异面直线中的某一条平移,使其与另一条相交,一般采用图中已有的平行线或者作平行线,形成三角形求解补形法在该几何体的某侧补接上一个几何体,在这两个几何体中找异面直线相应的位置,形成三角形求解跟踪训练3(1)(2023·莆田模拟)若正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的底面边长为1,高为6,则直线AE 1和EF 所成角的大小为()A.π6B.π4C.π3D.π2答案C解析如图所示,EF ∥E 1F 1,则∠AE 1F 1即为所求.∵AF =EF =1,EE 1=6,且∠AFE =2π3,∴AE =AF 2+EF 2-2AF ·EF ·cos2π3=3,∴AE 1=AE 2+EE 21=3,AF 1=AF 2+FF 21=7,∴cos ∠AE 1F 1=AE 21+E 1F 21-AF 212AE 1·E 1F 1=9+1-72×3×1=12,∴∠AE 1F 1=π3,即直线AE 1和EF 所成角的大小为π3.(2)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为()A.32B.22C.33D.13答案A解析如图所示,过点A 补作一个与正方体ABCD -A 1B 1C 1D 1相同棱长的正方体,易知平面α为平面AF 1E ,则m ,n 所成的角为∠EAF 1.∵△AF 1E 为正三角形,∴sin ∠EAF 1=sin 60°=32.课时精练一、单项选择题1.若直线上有两个点在平面外,则()A .直线上至少有一个点在平面内B .直线上有无穷多个点在平面内C .直线上所有点都在平面外D .直线上至多有一个点在平面内答案D解析根据题意,两点确定一条直线,那么由于直线上有两个点在平面外,则直线在平面外,只能是直线与平面相交,或者直线与平面平行,那么可知直线上至多有一个点在平面内.2.已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案B解析由m ,n ,l 在同一平面内,可能有m ,n ,l 两两平行,所以m ,n ,l 可能没有公共点,所以不能推出m ,n ,l 两两相交.由m ,n ,l 两两相交且m ,n ,l 不经过同一点,可设l ∩m =A ,l ∩n =B ,m ∩n =C ,且A ∉n ,所以点A 和直线n 确定平面α,而B ,C ∈n ,所以B ,C ∈α,所以l ,m ⊂α,所以m ,n ,l 在同一平面内.3.已知平面α∩平面β=l ,点A ,C ∈α,点B ∈β,且B ∉l ,又AC ∩l =M ,过A ,B ,C 三点确定的平面为γ,则β∩γ是()A .直线CMB .直线BMC .直线ABD .直线BC答案B解析已知过A ,B ,C 三点确定的平面为γ,则AC ⊂γ.又AC ∩l =M ,则M ∈γ,又平面α∩平面β=l ,则l ⊂α,l ⊂β,又因为AC ∩l =M ,所以M ∈β,因为B ∈β,B ∈γ,所以β∩γ=BM .4.如图,已知直三棱柱ABC -A 1B 1C 1的所有棱长都相等,M 为A 1C 1的中点,则AM 与BC 1所成角的余弦值为()A.153B.155C.64D.104答案D 解析如图,取AC 的中点D ,连接DC 1,BD ,易知AM ∥DC 1,所以异面直线AM 与BC 1所成角就是直线DC 1与直线BC 1所成的角,即∠BC 1D ,因为直三棱柱ABC -A 1B 1C 1的所有棱长都相等,可设三棱柱的棱长都为2,则DC 1=5,BD =3,BC 1=22,则在△BDC 1中,由余弦定理可得cos ∠BC 1D =(5)2+(22)2-(3)22×5×22=104,即异面直线AM 与BC 1所成角的余弦值为104.5.四边形ABCD 是矩形,AB =3AD ,点E ,F 分别是AB ,CD 的中点,将四边形AEFD 绕EF 旋转至与四边形BEFC 重合,则直线ED ,BF 所成角α在旋转过程中()A .逐步变大B .逐步变小C .先变小后变大D .先变大后变小答案D 解析由题可知初始时刻ED 与BF 所成的角为0,如图1,故B ,C 错误;图1在四边形AEFD 绕EF 旋转过程中,EF ⊥DF ,EF ⊥FC ,DF ∩FC =F ,DF ,FC ⊂平面DFC ,所以EF ⊥平面DFC ,EF ⊂平面EFCB ,所以平面DFC ⊥平面EFCB ,故D 在平面BCFE 内的投影P 一直落在直线CF 上,如图2,图2所以一定存在某一时刻EP ⊥BF ,而DP ⊥平面EFCB ,DP ⊥BF ,又DP ∩PE =P ,DP ,PE ⊂平面DPE ,所以BF ⊥平面DPE ,此时DE 与BF 所成的角为π2,然后α开始变小,故直线ED ,BF 所成角α在旋转过程中先变大后变小,故A 错误,D 正确.6.在正四棱锥P -ABCD 中,AB =2,E ,F ,G 分别为AB ,PC ,AD 的中点,直线BF 与EG 所成角的余弦值为63,则三棱锥P -EFG 的体积为()A.5212 B.24 C.23 D.26答案B解析连接BD ,DF ,AC ,CG ,CE ,如图,设BF =DF =x ,由BD ∥EG ,得∠FBD 即为BF 与EG 所成的角,在△FBD 中,易知BD =22,cos ∠FBD =x 2+8-x 242x=63,解得x = 3.设PB =PC =y ,在△PFB +3-23·y 2cos ∠PFB =y 2,①因为∠PFB +∠BFC =180°,故cos ∠BFC =cos(180°-∠PFB )=-cos ∠PFB ,则在△BCF +3-23·y 2cos ∠BFC =4,即+3+23·y 2cos ∠PFB =4,②①+②得y 22+6=y 2+4,因为y >0,解得y =2.因为F 为PC 的中点,故V 三棱锥P -EFG =V 三棱锥C -EFG =V 三棱锥F -ECG ,因为PA 2+PC 2=AC 2,PA =PC ,所以△PAC 为等腰直角三角形,则在等腰直角三角形PAC 中,易求得点P 到AC 的距离即点P 到底面的距离为2×222=2,故点F 到平面CEG 的距离为22,S △ECG =S ▱ABCD -S △AEG -S △CDG -S △CEB =2×2-12×1×1-12×2×1-12×1×2=4-12-1-1=3 2,故所求三棱锥的体积为13×32×22=24.二、多项选择题7.如图,在正方体ABCD-A1B1C1D1中,O是DB的中点,直线A1C交平面C1BD于点M,则下列结论正确的是()A.C1,M,O三点共线B.C1,M,O,C四点共面C.C1,O,B1,B四点共面D.D1,D,O,M四点共面答案AB解析∵O∈AC,AC⊂平面ACC1A1,∴O∈平面ACC1A1.∵O∈BD,BD⊂平面C1BD,∴O∈平面C1BD,∴O是平面ACC1A1和平面C1BD的公共点,同理可得,点M和点C1都是平面ACC1A1和平面C1BD的公共点,∴点C1,M,O在平面C1BD与平面ACC1A1的交线上,即C1,M,O 三点共线,故A,B正确;根据异面直线的判定定理可得BB1与C1O为异面直线,故C1,O,B1,B四点不共面,故C不正确;根据异面直线的判定定理可得DD1与MO为异面直线,故D1,D,O,M四点不共面,故D不正确.8.(2024·朝阳模拟)在三棱锥A-BCD中,AB=CD=2,AD=BC=AC=BD=5,则() A.AB⊥CDB.三棱锥A-BCD的体积为23C.三棱锥A-BCD外接球的半径为6D.异面直线AD与BC所成角的余弦值为35答案ABD解析将三棱锥补形为长方体,如图所示.其中BE =BN =1,BF =2,所以AB =CD =2,AD =BC =AC =BD =5,连接MF ,则AM ∥BF ,AM =BF ,所以四边形AMFB 为平行四边形,所以AB ∥MF ,又四边形MCFD 为正方形,所以MF ⊥CD ,所以AB ⊥CD ,故A 正确;长方体的体积V 1=1×1×2=2,三棱锥E -ABC 的体积V 2=V 三棱锥A -BEC =13×12×1×2×1=13,同理,三棱锥N -ABD ,三棱锥F -BCD ,三棱锥M -ACD 的体积也为13,所以三棱锥A -BCD 的体积V =2-4×13=23,故B 正确;长方体的外接球的直径为12+12+22=6,所以长方体的外接球的半径为62,长方体的外接球也是三棱锥A -BCD 的外接球,所以三棱锥A -BCD 外接球的半径为62,故C 错误;连接MN ,交AD 于点O ,因为MN ∥BC ,所以∠AOM (或其补角)为异面直线AD 与BC 所成的角,由已知OA =12AD =52,OM =12MN =52,AM =2,所以cos ∠AOM =54+54-42×52×52=-35,所以异面直线AD 与BC 所成角的余弦值为35,故D 正确.9.已知α,β是不同的平面,l ,m ,n 是不同的直线,P 为空间中一点.若α∩β=l ,m ⊂α,n ⊂β,m ∩n =P ,则点P 与直线l 的位置关系用符号表示为________.答案P ∈l 解析∵m ⊂α,n ⊂β,m ∩n =P ,∴P ∈α且P ∈β,又α∩β=l ,∴点P 在直线l 上,即P ∈l .10.如图为正方体表面的一种展开图,则图中的AB ,CD ,EF ,GH 在原正方体中互为异面直线的有________对.答案3解析画出该正方体的直观图如图所示,易知异面直线有(AB ,GH ),(AB ,CD ),(GH ,EF ).故共有3对.11.(2023·南阳模拟)如图,AB 和CD 是异面直线,AB =CD =3,E ,F 分别为线段AD ,BC上的点,且AE ED =BF FC =12,EF =7,则AB 与CD 所成角的大小为________.答案60°解析在平面ABD 中,过E 作EG ∥AB ,交DB 于点G ,连接GF ,如图,∵AE ED =12,∴BG GD =12,又BF FC =12,∴BG GD =BF FC,∴∠EGF (或其补角)即为AB 与CD 所成的角,在△EGF 中,EG =23AB =2,GF =13CD =1,EF =7,∴cos ∠EGF =22+12-(7)22×2×1=-12,∴∠EGF =120°,∴AB 与CD 所成角的大小为60°.12.(2023·长春模拟)如图,在底面为正方形的棱台ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为棱CC 1,BB 1,CF ,AF 的中点,对空间任意两点M ,N ,若线段MN 与线段AE ,BD 1都不相交,则称点M 与点N 可视,下列与点D 不可视的为________.(填序号)①B 1;②F ;③H ;④G .答案①②③解析如图所示,连接B 1D 1,BD ,DB 1,EF ,DE ,DH ,DF ,DG ,因为E ,F 分别为棱CC 1,BB 1的中点,所以EF ∥BC ,又底面ABCD 为正方形,所以BC ∥AD ,所以EF ∥AD ,所以四边形EFAD 为梯形,所以DH 与AE 相交,DF 与AE 相交,故②③不可视;因为B 1D 1∥DB ,所以四边形B 1D 1DB 是梯形,所以B 1D 与BD 1相交,故①不可视;因为EFAD 为梯形,G 为CF 的中点,即G ∉EF ,则D ,E ,G ,A 四点不共面,所以DG 与AE 不相交,若DG 与BD 1相交,则D ,B ,G ,D 1四点共面,显然D ,B ,B 1,D 1四点共面,G ∉平面DBB 1D 1,所以D ,B ,G ,D 1四点不共面,即假设不成立,所以DG 与BD 1不相交,即点G 与点D 可视,故④可视.四、解答题13.已知ABCD 是空间四边形,如图所示(M ,N ,E ,F 分别是AB ,AD ,BC ,CD 上的点).(1)若直线MN 与直线EF 相交于点O ,证明:B ,D ,O 三点共线;(2)若E ,N 为BC ,AD 的中点,AB =6,DC =4,NE =2,求异面直线AB 与DC 所成角的余弦值.(1)证明因为M ∈AB ,N ∈AD ,AB ⊂平面ABD ,AD ⊂平面ABD ,所以MN ⊂平面ABD ,因为E ∈CB ,F ∈CD ,CB ⊂平面CBD ,CD ⊂平面CBD ,所以EF ⊂平面CBD ,由于直线MN 与直线EF 相交于点O ,即O ∈MN ,O ∈平面ABD ,O ∈EF ,O ∈平面CBD ,又平面ABD ∩平面CBD =BD ,则O ∈BD ,所以B ,D ,O 三点共线.(2)解连接BD ,作BD 的中点G ,并连接GN ,GE ,如图所示,在△ABD 中,点N ,G 分别是AD 和BD 的中点,且AB =6,所以GN ∥AB ,且GN =12AB =3,在△CBD 中,点E ,G 分别是BC 和BD 的中点,且DC =4,所以GE ∥CD ,且GE =12DC =2,则异面直线AB 与DC 所成的角等于直线GE 与GN 所成的角,即∠EGN 或∠EGN 的补角,又NE =2,由余弦定理得cos ∠EGN =GE 2+GN 2-NE 22GE ·GN =22+32-222×2×3=34>0,故异面直线AB 与DC 所成角的余弦值为34.14.如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AD ⊥DC ,AB ∥DC ,AB =2AD =2CD =2,点E 是PB 的中点.(1)线段PA 上是否存在一点G ,使得点D ,C ,E ,G 共面?若存在,请证明,若不存在,请说明理由;(2)若PC =2,求三棱锥P -ACE 的体积.解(1)存在.当G 为PA 的中点时满足条件.如图,连接GE ,GD ,则GE 是△PAB 的中位线,所以GE ∥AB .又AB ∥DC ,所以GE ∥DC ,所以G ,E ,C ,D 四点共面.(2)因为E 是PB 的中点,所以V 三棱锥P -ACE =V 三棱锥B -ACE =12V 三棱锥P -ACB .又S △ABC =12AB ·AD =12×2×1=1,V 三棱锥P -ACB =13PC ·S △ABC =23,所以V 三棱锥P -ACE =13.15.(多选)如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,点P 在线段BC 1上运动,则下列判断中正确的是()A .DP ∥平面AB 1D 1B .三棱锥C -AD 1P 的体积为定值C .平面PB 1D ⊥平面ACD 1D .异面直线DP 与AD 1所成角的范围是π4,π2答案ABC 解析对于A ,连接DB ,C 1D ,AB 1,D 1B 1,因为BC 1∥AD 1,BC 1⊄平面AB 1D 1,AD 1⊂平面AB 1D 1,所以BC 1∥平面AB 1D 1,因为DB ∥D 1B 1,DB ⊄平面AB 1D 1,D 1B 1⊂平面AB 1D 1,所以DB ∥平面AB 1D 1,又DB ∩BC 1=B ,DB ,BC 1⊂平面BDC 1,所以平面AB 1D 1∥平面BDC 1,又DP ⊂平面BDC 1,所以DP ∥平面AB 1D 1,故A 正确;对于B ,由点P 在线段BC 1上运动知平面AD 1P 即平面AD 1C 1B ,故点C 到平面AD 1P 的距离不变,且△AD 1P 的面积不变,所以三棱锥C -AD 1P 的体积不变,故B 正确;对于C ,因为四边形DCC 1D 1为正方形,则CD 1⊥C 1D ,而AD ⊥平面DCC 1D 1,CD 1⊂平面DCC 1D 1,所以CD 1⊥AD ,又AD ∩C 1D =D ,AD ,C 1D ⊂平面AB 1C 1D ,则CD 1⊥平面AB 1C 1D ,而DB 1⊂平面AB 1C 1D ,因此DB 1⊥CD 1,同理DB 1⊥CA ,又CD 1∩CA =C ,CD 1,CA ⊂平面ACD 1,所以DB 1⊥平面ACD 1,又DB 1⊂平面PB 1D ,则平面PB 1D ⊥平面ACD 1,故C 正确;对于D ,由AD 1∥BC 1,异面直线DP 与AD 1所成角即为DP 与BC 1所成角,又△DBC 1为等边三角形,当P 与线段BC 1的两端点重合时,DP 与AD 1所成角取最小值π3,当P 与线段BC 1的中点重合时,DP 与AD 1所成角取最大值π2,故DP 与AD 1所成角的范围为π3,π2,故D 错误.16.(2023·孝感模拟)已知正方体ABCD -A 1B 1C 1D 1的所有顶点均在体积为43π的球O 上,则该正方体的棱长为________,若动点P 在四边形A 1B 1C 1D 1内运动,且满足直线CC 1与直线AP 所成角的正弦值为13,则OP 的最小值为________.答案262解析设正方体ABCD -A 1B 1C 1D 1的棱长为a ,球O 的半径为R ,则由正方体体对角线L =3a =2R 得R =3a 2,所以V 球O =43πR 3=43π3a 23=43π,故a =2,因为CC 1∥AA 1,所以AA 1与AP 所成角的正弦值也是13,即sin ∠A 1AP =13,又因为AA 1⊥平面A 1B 1C 1D 1,A 1P ⊂平面A 1B 1C 1D 1,所以AA 1⊥A 1P ,故sin ∠A 1AP =A 1P AP =A 1P A 1P 2+AA 21,即A 1P A 1P 2+4=13,解得A 1P =22,所以点P 的轨迹是以A 1为圆心,22为半径的圆与四边形A 1B 1C 1D 1内的一段弧,如图所示,设正方形A 1B 1C 1D 1的中心为O 1,连接O 1P ,OO 1,因为O 1A 1=12A 1C 1=12×22+22=2,所以(O 1P )min =O 1A 1-A 1P =22,所以(OP )min =OO 21+(O 1P )2min =1+12=62,即(OP )min =62.。
第4讲直线、平面平行的判定与性质一、知识梳理1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)因为l∥a,a⊂α,l⊄α,所以l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)因为l∥α,l⊂β,α∩β=b,所以l∥b文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)因为a∥β,b∥β,a∩b=P,a⊂α,b⊂α,所以α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行因为α∥β,α∩γ=a,β∩γ=b,所以a∥b 1.三种平行关系的转化:线线平行、线面平行、面面平行的相互转化是解决与平行有关的证明题的指导思想.2.平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.二、习题改编1.(必修2P58练习T3改编)平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:选D.若α∩β=l,a∥l,a⊄α,a⊄β,a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a ∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.2.(必修2P57例2改编)已知正方体ABCD-A1B1C1D1,下列结论中,正确的是(只填序号).①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.解析:连接AD1,BC1,AB1,B1D1,C1D,BD,因为AB═∥C1D1,所以四边形AD1C1B 为平行四边形,故AD1∥BC1,从而①正确;易证BD∥B1D1,AB1∥DC1,又AB1∩B1D1=B1,BD∩DC1=D,故平面AB1D1∥平面BDC1,从而②正确;由图易知AD1与DC1异面.③错误;因为AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,故AD1∥平面BDC1,故④正确.答案:①②④一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)直线l平行于平面α内的无数条直线,则l∥α.()(2)若直线l在平面α外,则l∥α.()(3)若直线l∥b,直线b⊂α,则l∥α.()(4)若直线l∥b,直线b⊂α,那么直线l就平行于平面α内的无数条直线.()答案:(1)×(2)×(3)×(4)√二、易错纠偏常见误区(1)对空间平行关系的相互转化条件理解不够;(2)忽略线面平行、面面平行的条件.1.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交解析:选D.因为a∥平面α,直线a与平面α无公共点,因此a和平面α内的任意一条直线都不相交,故选D.2.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为.解析:因为平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH是平行四边形.答案:平行四边形与线、面平行相关命题的判定(师生共研)设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是()A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β【解析】A错误,n有可能在平面α内;B错误,平面α可能与平面β相交;C错误,n也有可能在平面β内;D正确,易知m∥β或m⊂β,若m⊂β,又n∥m,n⊄β,所以n∥β,若m∥β,过m作平面γ交平面β于直线l,则m∥l,又n∥m,所以n∥l,又n⊄β,l⊂β,所以n∥β.【答案】 D解决线、面平行关系应注意的问题(1)注意判定定理与性质定理中易忽视的条件,如线面平行的条件中线在面外易被忽视.(2)结合题意构造或绘制图形,结合图形作出判断.(3)会举反例或用反证法推断命题是否正确.1.下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α解析:选D.A错误,a可能在经过b的平面内;B错误,a与α内的直线平行或异面;C错误,两个平面可能相交;D正确,由a∥α,可得a平行于经过直线a的平面与α的交线c,即a∥c,又a∥b,所以b∥c,b⊄α,c⊂α,所以b∥α.2.(2019·高考全国卷Ⅱ)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面解析:选B.对于A,C,D选项,α均有可能与β相交,故排除A,C,D选项,选B.线面平行的判定与性质(多维探究)角度一线面平行的证明在正方体ABCD-A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D.【证明】(1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC1D1是平行四边形,所以HD 1∥MC 1.又因为在平面BCC 1B 1中,BM ═∥FC 1, 所以四边形BMC 1F 为平行四边形, 所以MC 1∥BF , 所以BF ∥HD 1.(2)取BD 的中点O ,连接EO ,D 1O , 则OE ∥DC 且OE =12DC ,又D 1G ∥DC 且D 1G =12DC ,所以OE ═∥D 1G , 所以四边形OEGD 1是平行四边形, 所以GE ∥D 1O .又D 1O ⊂平面BB 1D 1D ,GE ⊄平面BB 1D 1D , 所以EG ∥平面BB 1D 1D .证明直线与平面平行的常用方法(1)利用线面平行的定义.(2)利用线面平行的判定定理:关键是找到平面内与已知直线平行的直线,可先直观判断题中是否存在这样的直线,若不存在,则需作出直线,常考虑利用三角形的中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明.角度二线面平行性质的应用如图,在五面体ABCDFE中,底面ABCD为矩形,EF∥AB,过BC的平面交棱FD于点P,交棱F A于点Q.证明:PQ ∥平面ABCD .【证明】 因为底面ABCD 为矩形,所以AD ∥BC ,⎭⎪⎬⎪⎫AD ∥BCAD ⊂平面ADF BC ⊄平面ADF ⇒BC ∥平面ADF , ⎭⎪⎬⎪⎫BC ∥平面ADFBC ⊂平面BCPQ 平面BCPQ ∩平面ADF =PQ ⇒BC ∥PQ ,⎭⎪⎬⎪⎫PQ ∥BCPQ ⊄平面ABCD BC ⊂平面ABCD PQ ∥平面ABCD .应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.该定理的作用是由线面平行转化为线线平行.1.(2020·辽宁丹东质量测试(一))如图,直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =2,D ,E 分别为AA 1,B 1C 的中点.证明:DE ∥平面ABC .证明:取BC 的中点F , 连接AF ,EF ,则EF ∥BB 1,EF =12BB 1,所以EF ∥DA ,EF =DA ,则四边形ADEF 为平行四边形,所以DE ∥AF .又因为DE ⊄平面ABC ,AF ⊂平面ABC ,所以DE ∥平面ABC .2.如图所示,已知四边形ABCD 是正方形,四边形ACEF 是矩形,AB =2,AF =1,M 是线段EF 的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.解:(1)证明:如图,记AC与BD的交点为O,连接OE.因为O,M分别是AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.面面平行的判定与性质(典例迁移)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.【证明】(1)因为G,H分别是A1B1,A1C1的中点,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)在△ABC中,E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.又因为G,E分别为A1B1,AB的中点,所以A1G═∥EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A1E∥平面BCHG.又因为A1E∩EF=E,所以平面EF A1∥平面BCHG.【迁移探究1】(变条件)在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA. 证明:如图所示,连接HD,A1B,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,所以HD∥平面A1B1BA.【迁移探究2】(变条件)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A1ACC1是平行四边形,所以M是A1C的中点,连接MD,因为D为BC的中点,所以A1B∥DM.因为A1B⊂平面A1BD1,DM⊄平面A1BD1,所以DM∥平面A1BD1.又由三棱柱的性质知,D1C1═∥BD,所以四边形BDC1D1为平行四边形,所以DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,所以DC1∥平面A1BD1,又因为DC1∩DM=D,DC1,DM⊂平面AC1D,所以平面A1BD1∥平面AC1D.1.如图,AB ∥平面α∥平面β,过点A ,B 的直线m ,n 分别交α,β于点C ,E 和点D ,F ,若AC =2,CE =3,BF =4,则BD 的长为( )A.65 B.75 C.85D .95解析:选C.由AB ∥α∥β,易证 AC CE =BD DF. 即AC AE =BD BF, 所以BD =AC ·BF AE =2×45=85.2.(一题多解)如图,四边形ABCD 是边长为3的正方形,ED ⊥平面ABCD ,AF ⊥平面ABCD ,DE =3AF =3.证明:平面ABF ∥平面DCE .证明:法一:因为DE⊥平面ABCD,AF⊥平面ABCD,所以DE∥AF.因为AF⊄平面DCE,DE⊂平面DCE,所以AF∥平面DCE.因为四边形ABCD是正方形,所以AB∥CD.因为AB⊄平面DCE,所以AB∥平面DCE.因为AB∩AF=A,AB⊂平面ABF,AF⊂平面ABF,所以平面ABF∥平面DCE.法二:因为DE⊥平面ABCD,AF⊥平面ABCD,所以DE∥AF.因为四边形ABCD为正方形,所以AB∥CD.又AF∩AB=A,DE∩DC=D,所以平面ABF∥平面DCE.法三:因为DE⊥平面ABCD,所以DE⊥AD,在正方形ABCD中,AD⊥DC.又DE∩DC=D,所以AD⊥平面DEC.同理AD⊥平面ABF.所以平面ABF∥平面DCE.[基础题组练]1.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α与直线l至少有两个公共点D.α内的直线与l都相交解析:选B.因为l⊄α,直线l不平行于平面α,所以直线l只能与平面α相交,于是直线l与平面α只有一个公共点,所以平面α内不存在与l平行的直线.2.(2020·大连双基测试)已知直线l,m,平面α,β,γ,则下列条件能推出l∥m的是() A.l⊂α,m⊂β,α∥βB.α∥β,α∩γ=l,β∩γ=mC.l∥α,m⊂αD.l⊂α,α∩β=m解析:选B.选项A中,直线l,m也可能异面;选项B中,根据面面平行的性质定理,可推出l∥m,B正确;选项C中,直线l,m也可能异面;选项D中,直线l,m也可能相交,故选B.3.(2020·长沙市统一模拟考试)设a,b,c表示不同直线,α,β表示不同平面,下列命题:①若a∥c,b∥c,则a∥b;②若a∥b,b∥α,则a∥α;③若a∥α,b∥α,则a∥b;④若a⊂α,b⊂β,α∥β,则a∥b.真命题的个数是()A.1 B.2C.3 D.4解析:选A.由题意,对于①,根据线线平行的传递性可知①是真命题;对于②,根据a∥b,b∥α,可以推出a∥α或a⊂α,故②是假命题;对于③,根据a∥α,b∥α,可以推出a与b平行、相交或异面,故③是假命题;对于④,根据a ⊂α,b ⊂β.α∥β,可以推出a ∥b 或a 与b 异面,故④是假命题,所以真命题的个数是1,故选A.4.如图所示,在空间四边形ABCD 中,E ,F 分别为边AB ,AD 上的点,且AE ∶EB =AF ∶FD =1∶4,又H ,G 分别为BC ,CD 的中点,则( )A .BD ∥平面EFGH ,且四边形EFGH 是矩形B .EF ∥平面BCD ,且四边形EFGH 是梯形C .HG ∥平面ABD ,且四边形EFGH 是菱形 D .EH ∥平面ADC ,且四边形EFGH 是平行四边形解析:选B.由AE ∶EB =AF ∶FD =1∶4知EF ═∥15BD ,又EF ⊄平面BCD ,所以EF ∥平面BCD .又H ,G 分别为BC ,CD 的中点,所以HG ═∥12BD ,所以EF ∥HG 且EF ≠HG .所以四边形EFGH 是梯形.5.在正方体ABCD -A 1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为 .解析:如图,连接AC ,BD 交于O 点,连接OE ,因为OE ∥BD 1,而OE ⊂平面ACE ,BD 1⊄平面ACE ,所以BD 1∥平面ACE .答案:平行6.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长等于 .解析:因为EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,所以EF ∥AC ,所以F 为DC 的中点.故EF =12AC = 2.答案: 27.在三棱柱ABC -A 1B 1C 1中,已知侧棱与底面垂直,∠CAB =90°,且AC =1,AB =2,E 为BB 1的中点,M 为AC 上一点,AM =23AC .(1)若三棱锥A 1C 1ME 的体积为26,求AA 1的长; (2)证明:CB 1∥平面A 1EM .解:(1)设AA 1=h ,因为VA 1C 1ME =VE A 1C 1M ,S △A 1C 1M =12A 1C 1×h =h2,三棱锥E -A 1C 1M 的高为2,所以VE A 1C 1M =13×h 2×2=26,解得h =22,即AA 1=22.(2)证明:如图,连接AB 1交A 1E 于点F ,连接MF .因为E 为BB 1的中点,所以AF =23AB 1,又AM =23AC ,所以MF ∥CB 1,又MF ⊂平面A 1EM ,CB 1⊄平面A 1EM ,所以CB1∥平面A1EM.8.(2020·南昌市摸底调研)如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC =∠CAD=60°,P A⊥平面ABCD,P A=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面P AB;(2)求三棱锥P-ABM的体积.解:(1)证明:因为M,N分别为PD,AD的中点,所以MN∥P A,又MN⊄平面P AB,P A⊂平面P AB,所以MN∥平面P AB.在Rt△ACD中,∠CAD=60°,CN=AN,所以∠ACN=60°.又∠BAC=60°,所以CN∥AB.因为CN⊄平面P AB,AB⊂平面P AB,所以CN∥平面P AB.又CN∩MN=N,所以平面CMN∥平面P AB.(2)由(1)知,平面CMN∥平面P AB,所以点M到平面P AB的距离等于点C到平面P AB的距离.因为AB=1,∠ABC=90°,∠BAC=60°,所以BC=3,所以三棱锥P-ABM的体积V=V MP AB=V CP AB=V PABC=13×12×1×3×2=33.[综合题组练]1.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列说法中,错误的为()A.AC⊥BDB.AC=BDC.AC∥截面PQMND.异面直线PM与BD所成的角为45°解析:选B.因为截面PQMN是正方形,所以PQ∥MN,QM∥PN,则PQ∥平面ACD,QM∥平面BDA,所以PQ∥AC,QM∥BD,由PQ⊥QM可得AC⊥BD,故A正确;由PQ∥AC可得AC∥截面PQMN,故C正确;由BD∥PN,所以∠MPN是异面直线PM与BD所成的角,且为45°,D正确;由上面可知:BD∥PN,MN∥AC.所以PNBD=ANAD,MNAC=DNAD,而AN≠DN,PN=MN,所以BD≠AC.B错误.故选B.2.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q 是CC1上的点,则点Q满足条件时,有平面D1BQ∥平面P AO.解析:如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥P A.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面P AO,QB⊄平面P AO,PO⊂平面P AO,P A⊂平面P AO,所以D1B∥平面P AO,QB∥平面P AO,又D1B∩QB=B,所以平面D1BQ∥平面P AO.故Q为CC1的中点时,有平面D1BQ∥平面P AO.答案:Q为CC1的中点3.如图,四边形ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点.(1)求证:BE∥平面DMF;(2)求证:平面BDE∥平面MNG.证明:(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE 的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.4.(2020·南昌二模)如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,AB ⊥AD,AB=2CD=2AD=4,侧面P AB是等腰直角三角形,P A=PB,平面P AB⊥平面ABCD,点E,F分别是棱AB,PB上的点,平面CEF∥平面P AD.(1)确定点E,F的位置,并说明理由;(2)求三棱锥F-DCE的体积.解:(1)因为平面CEF ∥平面P AD ,平面CEF ∩平面ABCD =CE , 平面P AD ∩平面ABCD =AD , 所以CE ∥AD ,又AB ∥DC , 所以四边形AECD 是平行四边形, 所以DC =AE =12AB ,即点E 是AB 的中点.因为平面CEF ∥平面P AD ,平面CEF ∩平面P AB =EF , 平面P AD ∩平面P AB =P A ,所以EF ∥P A ,又点E 是AB 的中点, 所以点F 是PB 的中点.综上,E ,F 分别是AB ,PB 的中点.(2)连接PE ,由题意及(1)知P A =PB ,AE =EB ,所以PE ⊥AB ,又平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB , 所以PE ⊥平面ABCD . 又AB ∥CD ,AB ⊥AD , 所以V F DEC =12V P DEC =16S △DEC ×PE =16×12×2×2×2=23.。
2021年高考数学 第七章 第3课时 空间点、直线、平面的位置关系知能演练轻松闯关 新人教A 版1.如果a ⊂α,b ⊂α,l ∩a =A ,l ∩b =B ,那么下列关系成立的是( )A .l ⊂αB .l ⊄αC .l ∩α=AD .l ∩α=B解析:选A .∵a ⊂α,l ∩a =A ,∴A ∈α,A ∈l ,同理B ∈α,B ∈l ,∴l ⊂α. 2.正方体ABCD A 1B 1C 1D 1中,E ,F 分别是线段C 1D ,BC 的中点,则直线A 1B 与直线EF 的位置关系是( )A .相交B .异面C .平行D .垂直解析:选A .直线A 1B 与直线外一点E 确定的平面为A 1BCD 1,EF ⊂平面A 1BCD 1,且两直线不平行,故两直线相交.3.对于直线m 、n 和平面α,下列命题中的真命题是( ) A .如果m ⊂α,n ⊄α,m 、n 是异面直线,那么n ∥αB .如果m ⊂α,n ⊄α,m 、n 是异面直线, 那么n 与α相交C .如果m ⊂α,n ∥α,m 、n 共面,那么m ∥nD .如果m ⊂α,n ∥α,m 、n 共面,那么m 与n 相交解析:选C .对于选项A ,n 可以与平面α 相交,对于选项B ,n 可以与平面α平行,故选项A 、B 均错;由于m ⊂α,n ∥α,则m 、n 无公共点.又m 、n 共面,所以m ∥n ,选项C 正确,选项D 错.4. 如图,α∩β=l ,A ,B ∈α,C ∈β,且C ∉l ,直线AB∩l =M ,过A ,B ,C 三点的平面记作γ,则γ与β的交线必通过( )A .点AB .点BC .点C 但不过点MD .点C 和点M解析:选D .∵AB ⊂γ,M ∈AB ,∴M ∈γ. 又α∩β=l ,M ∈l ,∴M ∈β.根据公理3可知,M 在γ与β的交线上. 同理可知,点C 也在γ与β的交线上.5.在四面体S ABC 中,各个侧面都是边长为a 的正三角形,E 、F 分别是S C 和AB 的中点,则异面直线EF 与S A 所成的角等于( )A .90°B .60°C .45°D .30°解析:选C .取S B 的中点G ,则GE =GF =a2,且GF ∥S A ,则∠GFE 即为异面直线S A 与EF 所成的角(或其补角).由于F C=32a=SF,故EF⊥S C,且EF=22a,则GF2+GE2=EF2,故∠EFG=45°.6.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定__________个平面.解析:如果这四点在同一平面内,那么确定一个平面;如果这四点不共面,则任意三点可确定一个平面,所以可确定四个.答案:1或47.设a,b,c是空间的三条直线,下面给出四个命题:①设a⊥b,b⊥c,则a∥c;②若a,b是异面直线,b,c是异面直线,则a,c也是异面直线;③若a和b相交,b和c相交,则a和c也相交;④若a和b共面,b和c共面,则a和c也共面.其中真命题的个数是__________个.解析:∵a⊥b,b⊥c,∴a与c可以相交,平行,异面,故①错.∵a,b异面,b,c异面,则a,c可能异面,相交,平行,故②错.由a,b相交,b,c相交,则a,c可以异面,相交,平行,故③错.同理④错,故真命题的个数为0.答案:08.在正方体ABCDA1B1C1D1中,与AD1异面且与AD1所成角为90°的面对角线(面对角线是指正方体各个面上的对角线)共有________条.解析:B1C与AD1异面,连接B1C,BC1(图略),则BC1∥AD1,且BC1⊥B1C,所以AD1与B1C 所成的角为90°.答案:19. 如图所示,在正方体ABCDA1B1C1D1中,E,F分别为CC1,AA1的中点,画出平面B E D1F 与平面ABCD的交线.解:如图所示.P B即为平面B E D1F与平面ABCD的交线.10.已知空间四边形ABCD中,E、H分别是边AB、AD的中点,F、G分别是边BC、CD 的中点.(1)求证:BC与AD是异面直线;(2)求证:EG与FH相交.证明:(1)假设BC与AD共面,不妨设它们所共平面为α,则B、C、A、D∈α.所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾.所以BC与AD 是异面直线.(2)如图,连接AC,BD,则EF∥AC,HG∥AC,因此EF∥HG;同理EH∥FG,则EFGH为平行四边形.又EG、FH是平行四边形EFGH的对角线,所以EG 与HF 相交.[能力提升])1. 如图所示,ABCDA 1B 1C 1D 1是正方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,则下列结论正确的是( )A .A ,M ,O 三点共线B .A ,M ,O ,A 1不共面C .A ,M ,C ,O 不共面D .B ,B 1,O ,M 共面解析:选A .连接A 1C 1,AC(图略),则A 1C 1∥AC , ∴A 1,C 1,A ,C 四点共面,∴A 1C ⊂平面ACC 1A 1. ∵M ∈A 1C ,∴M ∈平面ACC 1A 1.又M ∈平面AB 1D 1, ∴M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理A ,O 在平面ACC 1A 1与平面AB 1D 1的交线上. ∴A ,M ,O 三点共线.2.(xx·高考重庆卷)设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是( )A .(0,2)B .(0,3)C .(1,2)D .(1,3)解析:选A .如图所示的四面体ABCD 中,设AB =a ,则由题意可得CD =2,其他棱的长都为1,故三角形ACD 及三角形BCD 都是以CD 为斜边的等腰直角三角形,显然a >0.取CD中点E ,连接A E ,B E ,则A E ⊥CD ,B E ⊥CD 且A E =B E =1-⎝ ⎛⎭⎪⎫222=22,显然A ,B ,E三点能构成三角形,应满足任意两边之和大于第三边,可得2×22>a ,解得0<a < 2. 3.(xx·高考大纲全国卷)已知正方体ABCDA 1B 1C 1D 1中,E ,F 分别为BB 1,CC 1的中点,那么异面直线A E 与D 1F 所成角的余弦值为__________.解析:连接D F ,则A E ∥D F ,∴∠D 1F D 即为异面直线A E 与D 1F 所成的角. 设正方体棱长为a ,则D 1D =a ,D F =52a ,D 1F =52a ,∴cos ∠D 1F D =⎝ ⎛⎭⎪⎫52a 2+⎝ ⎛⎭⎪⎫52a 2-a22·52a ·52a=35.答案:354. 如图所示,在三棱锥ABCD 中,E ,F ,G ,H 分别是棱AB ,BC ,CD ,DA 的中点,则当AC ,BD 满足条件________时,四边形EFGH 为菱形,当AC ,BD 满足条件________时,四边形EFGH 是正方形.解析:易知EH ∥BD ∥FG ,且EH =12BD =FG ,同理EF ∥AC ∥HG ,且EF =12AC =HG ,显然四边形EFGH 为平行四边形.要使平行四边形EFGH 为菱形需满足EF =EH ,即AC =BD ;要使四边形EFGH 为正方形需满足EF =EH 且EF ⊥EH ,即AC =BD 且AC ⊥BD .答案:AC =BD AC =BD 且AC ⊥BD5. 如图所示,在正方体ABCDA 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:(1)E 、C 、D 1、F 四点共面; (2)C E 、D 1F 、DA 三线共点. 证明:(1)连接EF 、CD 1、A 1B . ∵E 、F 分别是AB 、AA 1的中点, ∴EF ∥BA 1.又∵A 1B ∥D 1C ,∴EF ∥CD 1, ∴E 、C 、D 1、F 四点共面. (2)∵EF ∥CD 1,EF <CD 1,∴C E 与D 1F 必相交,设交点为P , 则由P ∈C E ,C E ⊂平面ABCD , 得P ∈平面ABCD . 同理P ∈平面ADD 1A 1.又平面ABCD∩平面ADD 1A 1=DA , ∴P ∈直线DA ,∴C E 、D 1F 、DA 三线共点.6. (选做题)如图所示,三棱锥P ABC 中,P A ⊥平面ABC ,∠BAC =60°,P A =AB =AC =2,E 是P C 的中点.(1)求证A E 与P B 是异面直线;(2)求异面直线A E 和P B 所成角的余弦值; (3)求三棱锥AE BC 的体积.解:(1)证明:假设A E 与P B 共面,设平面为α. ∵A ∈α,B ∈α,E ∈α, ∴平面α即为平面AB E , ∴P ∈平面AB E ,这与P ∉平面AB E 矛盾, 所以A E 与P B 是异面直线. (2)取BC 的中点F ,连接EF ,A F , 则EF ∥P B ,所以∠A EF 或其补角就是异面直线A E 和P B 所成的角. ∵∠BAC =60°,P A =AB =AC =2,P A ⊥平面ABC , ∴A F =3,A E =2,EF =2,cos ∠A EF =2+2-32×2×2=14,∴异面直线A E 和P B 所成角的余弦值为14.(3)∵E 是P C 的中点,∴E 到平面ABC 的距离为12P A =1,V AE BC =V E ABC =13×(12×2×2×32)×1=33.#?20124 4E9C 亜-22272 5700 圀a25482 638A 掊24504 5FB8 徸40856 9F98 龘"30840 7878 硸36475 8E7B 蹻 x20848 5170 兰。
§7.2 空间点、直线、平面之间的位置关系1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.直线与直线的位置关系(1)位置关系的分类Error!(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).②范围:(0,π2].3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.概念方法微思考1.分别在两个不同平面内的两条直线为异面直线吗?提示 不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交.2.空间中如果两个角的两边分别对应平行,那么这两个角一定相等吗?提示 不一定.如果这两个角开口方向一致,则它们相等,若反向则互补.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( √ )(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( × )(3)没有公共点的两条直线是异面直线.( × )(4)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.( × )题组二 教材改编2.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C 与EF所成角的大小为( )A.30° B.45°C.60° D.90°答案 C解析 连接B1D1,D1C(图略),则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.3.如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.答案 (1)AC=BD (2)AC=BD且AC⊥BD解析 (1)∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.(2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∵EF∥AC,EH∥BD,且EF=12AC,EH=12BD,∴AC=BD且AC⊥BD.题组三 易错自纠4.(2019·上海市金山中学月考)设直线l与平面α平行,直线m在平面α上,那么( ) A.直线l不平行于直线mB.直线l与直线m异面C.直线l与直线m没有公共点D.直线l与直线m不垂直答案 C解析 ∵直线l与平面α平行,由线面平行的定义可知:直线l与平面α无公共点,又直线m 在平面α上,∴直线l与直线m没有公共点,故选C.5.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是( )A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面答案 D解析 依题意,直线b和c的位置关系可能是相交、平行或异面.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______.答案 3解析 平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面直线的有且只有3对.平面基本性质的应用例1 如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明 (1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.思维升华 共面、共线、共点问题的证明(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内.②证两平面重合.(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上.②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1 如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;(2)设EG与FH交于点P,求证:P,A,C三点共线.证明 (1)∵E,F分别为AB,AD的中点,∴EF∥BD.∵在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH .∴E ,F ,G ,H 四点共面.(2)∵EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC ,∴P ∈平面ABC .同理P ∈平面ADC .∴P 为平面ABC 与平面ADC 的公共点.又平面ABC ∩平面ADC =AC ,∴P ∈AC ,∴P ,A ,C 三点共线.判断空间两直线的位置关系例2 (1)(多选)α是一个平面,m ,n 是两条直线,A 是一个点,若m ⊄α,n ⊂α,且A ∈m ,A ∈α,则m ,n 的位置关系可能是( )A .垂直B .相交C .异面D .平行答案 ABC解析 依题意,m ∩α=A ,n ⊂α,∴m 与n 可能异面、相交(垂直是相交的特例),一定不平行.(2)如图,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在A 1D ,AC 上,且A 1E =2ED ,CF =2FA ,则EF 与BD 1的位置关系是( )A .相交但不垂直B .相交且垂直C .异面D .平行答案 D 解析 连接D 1E 并延长,与AD 交于点M ,由A 1E =2ED ,可得M 为AD 的中点,连接BF 并延长,交AD 于点N ,因为CF =2FA ,可得N 为AD 的中点,所以M ,N 重合,所以EF 和BD 1共面,且ME ED 1=12,MF BF =12,所以ME ED 1=MF BF ,所以EF ∥BD 1.思维升华 空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.异面直线的判定可采用直接法或反证法;平行直线的判定可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;垂直关系的判定往往利用线面垂直或面面垂直的性质来解决.跟踪训练2 (1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交答案 D解析 由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.故选D.(2)(多选)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,下列说法正确的有( )A.直线AM与CC1是相交直线B.直线AM与BN是平行直线C.直线BN与MB1是异面直线D.直线AM与DD1是异面直线答案 CD解析 因为点A在平面CDD1C1外,点M在平面CDD1C1内,直线CC1在平面CDD1C1内,CC1不过点M,所以AM与CC1是异面直线,故A错;取DD1的中点E,连接AE(图略),则BN∥AE,但AE与AM相交,故B错;因为B1与BN都在平面BCC1B1内,M在平面BCC1B1外,BN不过点B1,所以BN与MB1是异面直线,故C正确;同理D正确,故选CD.求两条异面直线所成的角例3 (2020·青岛模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD—A1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为( )A.15B.25C.35D.45答案 D解析 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=45,即异面直线A 1B 与AD 1所成角的余弦值为45.将本例条件“AA 1=2AB =2”改为“AB =1,若异面直线A 1B 与AD 1所成角的余弦值为910”,试求AA 1AB 的值.解 设AA 1AB=t (t >0),则AA 1=tAB .∵AB =1,∴AA 1=t .∵A 1C 1=2,A 1B =t 2+1=BC 1,∴cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=t 2+1+t 2+1-22×t 2+1×t 2+1=910.∴t =3,即AA 1AB=3.思维升华 用平移法求异面直线所成的角的三个步骤(1)一作:根据定义作平行线,作出异面直线所成的角.(2)二证:证明作出的角是异面直线所成的角.(3)三求:解三角形,求出所作的角.跟踪训练3 (2019·西安质检)将正方形ABCD 沿对角线AC 折起,并使得平面ABC 垂直于平面ACD ,直线AB 与CD 所成的角为( )A .90°B .60°C .45°D .30°答案 B解析 如图,取AC ,BD ,AD 的中点,分别为O ,M ,N ,则ON ∥CD ,MN ∥AB ,且ON =12CD ,MN =12AB ,所以∠ONM 或其补角即为所求的角.因为平面ABC 垂直于平面ACD ,平面ABC ∩平面ACD =AC ,BO ⊥AC ,AC ⊂平面ACD ,所以BO ⊥平面ACD ,所以BO ⊥OD .设正方形边长为2,OB =OD =2,所以BD =2,则OM =12BD =1.所以ON =MN =OM =1.所以△OMN 是等边三角形,∠ONM =60°.所以直线AB 与CD 所成的角为60°.故选B.1.四条线段顺次首尾相连,它们最多可确定的平面个数为( )A .4B .3C .2D .1答案 A解析 首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A.3.(2020·秦皇岛模拟)a ,b ,c 是两两不同的三条直线,下面四个命题中,真命题是( )A .若直线a ,b 异面,b ,c 异面,则a ,c 异面B .若直线a ,b 相交,b ,c 相交,则a ,c 相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c答案 C解析 若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C.4.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是( )A.直线AC B.直线ABC.直线CD D.直线BC答案 C解析 由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.5.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是( )A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面答案 A解析 连接A1C1,AC(图略),则A1C1∥AC,∴A1,C1,A,C四点共面,∴A1C⊂平面ACC1A1,∵M∈A1C,∴M∈平面ACC1A1,又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理A,O在平面ACC1A1与平面AB1D1的交线上.∴A,M,O三点共线.6.(2019·海南联考)在四棱锥P-ABCD中,所有侧棱长都为42,底面是边长为26的正方形,O是P在平面ABCD内的射影,M是PC的中点,则异面直线OP与BM所成角为( ) A.30° B.45° C.60° D.90°答案 C解析 如图,由题意可知O是正方形ABCD的中心,取N为OC的中点,连接MN,所以OP∥MN,则∠BMN是异面直线OP与BM所成的角.因为OP⊥平面ABCD,所以MN⊥平面ABCD,因为在四棱锥P-ABCD中,所有侧棱长都为42,底面是边长为26的正方形,所以OC=23,所以OP=32-12=25,因此MN=5,在Rt△BON中,BN=OB2+ON2=15,∴tan∠BMN=BNMN=3,∴∠BMN=60°,则异面直线OP与BM所成的角为60°.故选C.7.(多选)如图是正方体的平面展开图.在这个正方体中,下列四个命题中,正确的命题是( )A.BM与ED平行B.CN与BE是异面直线C.CN与BM成60°角D.DM与BN垂直答案 CD解析 由题意画出正方体的图形如图,显然AB 不正确;∠ANC =60°,即CN 与BM 成60°角,C 正确;因为BC ⊥DM ,CN ⊥DM ,BC ∩CN =C ,BC ,CN ⊂平面BCN ,所以DM ⊥平面BCN ,又BN ⊂平面BCN ,所以DM ⊥BN ,所以D 正确.故选CD.8.(多选)关于正方体ABCD -A 1B 1C 1D 1有如下四个说法,其中正确的说法是( )A .若点P 在直线BC 1上运动时,三棱锥A -D 1PC 的体积不变B .若点P 是平面A 1B 1C 1D 1上到点D 和C 1距离相等的点,则P 点的轨迹是直线A 1D 1C .若点P 在线段BC 1(含端点)上运动时,直线AP 与DC 所成角的范围为[0,π3]D .若点P 在线段BC 1(含端点)上运动时,直线AP 与D 1C 所成的角一定是锐角答案 AB解析 对于A ,由BC 1∥AD 1,可得BC 1∥平面AD 1C ,则P 到平面AD 1C 的距离不变,由△AD 1C 的面积为定值,可知点P 在直线BC 1上运动时,三棱锥A -D 1PC 的体积不变,故A 正确;对于B ,若点P 是平面A 1B 1C 1D 1上到点D 和C 1距离相等的点,则P 点的轨迹是平面A 1BCD 1与平面A 1B 1C 1D 1的交线A 1D 1,故B 正确;对于C ,直线AP 与DC 所成角即为∠PAB ,当P 与C 1重合时,∠PAB 最大,最大值为arctan 2<π3,故C 错误;对于D ,当P 与C 1重合时,AP 与D 1C 所成的角为π2,故D 错误.所以其中说法正确的是A,B.9.正方体AC1中,与面ABCD的对角线AC异面的棱有________条.答案 6解析 如图,在正方体AC1中,与面ABCD的对角线AC异面的棱有BB1,DD1,A1B1,A1D1,D1C1,B1C1,共6条.10.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.答案 2解析 取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2.11.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.(1)证明 假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解 取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt △EGF 中,由EG =FG=12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.12.如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,PA =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解 (1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·PA =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =AD 2+DE 2-AE 22×AD ×DE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.13.(2019·湖南省长沙市湖南师范大学附属中学模拟)已知平面α∩平面β=直线l ,点A ,C ∈α,点B ,D ∈β,且A ,B ,C ,D ∉l ,点M ,N 分别是线段AB ,CD 的中点,则下列说法正确的是( )A .当|CD |=2|AB |时,M ,N 不可能重合B .M ,N 可能重合,但此时直线AC 与l 不可能相交C .当直线AB ,CD 相交,且AC ∥l 时,BD 可与l 相交D .当直线AB ,CD 异面时,MN 可能与l 平行答案 B解析 A 选项:当|CD |=2|AB |时,若A ,B ,C ,D 四点共面且AC ∥BD 时,则M ,N 两点能重合,可知A 错误;B 选项:若M ,N 可能重合,则AC ∥BD ,故AC ∥l ,此时直线AC 与直线l 不可能相交,可知B 正确;C 选项:当AB 与CD 相交,直线AC ∥l 时,直线BD 与l 平行,可知C 错误;D 选项:当AB 与CD 是异面直线时,MN 不可能与l 平行,可知D 错误.故选B.14.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A.32 B.22 C.33 D.13答案 A解析 如图所示,设平面CB 1D 1∩平面ABCD =m 1,∵α∥平面CB 1D 1,则m 1∥m ,又∵平面ABCD ∥平面A 1B 1C 1D 1,平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥m 1,∴B 1D 1∥m ,同理可得CD 1∥n .故m ,n 所成角的大小与B 1D 1,CD 1所成角的大小相等,即∠CD 1B 1的大小.又∵B 1C =B 1D 1=CD 1(均为面对角线),∴∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A.15.如图,已知多面体PABCDE 的底面ABCD 是边长为1的正方形,PA ⊥平面ABCD ,ED ∥PA ,且PA =3ED =3AB ,现将△CDE 以直线DE 为轴旋转一周后,则直线BP 与动直线CE 所成角的范围是________.答案 [π12,5π12]解析 如图所示,将PB 平移到EB 1的位置,C 1点在以D 为圆心,半径为1的圆上运动.则∠B 1EC 1就是所求线线角,根据三角形中,大角对大边,EB 1,EC 1为定值,故最值由B 1C 1来确定,故当C 1在C 处线线角最小,在C 2处线线角最大.由于PA =3ED =3AB ,故∠PBA=∠EB 1D =π3.而DE =DC =1,故∠ECD =π4,所以∠CEB 1=π3-π4=π12.而∠EC 2D =∠ECD =π4,故∠B 1EC 2=π-π4-π3=5π12.所以所求线线角的取值范围是[π12,5π12].16.如图所示,三棱柱ABC -A 1B 1C 1的底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解 (1)方法一 如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为EC ⊥AC ,OM ,EC ⊂平面ACC 1A 1,所以OM ∥EC .又因为EC =2FB =2,EC ∥FB ,所以OM ∥FB 且OM =12EC =FB ,所以四边形OMBF 为矩形,BM ∥OF .因为OF ⊂平面AEF ,BM ⊄平面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.方法二 如图所示,取EC 的中点P ,AC 的中点Q ,连接PQ ,PB ,BQ .因为EC =2FB =2,所以PE ∥BF 且PE =BF ,所以四边形PEFB 为平行四边形,所以PB ∥EF ,PQ ∥AE ,又AE ,EF ⊂平面AEF ,PQ ,PB ⊄平面AEF ,所以PQ ∥平面AFE ,PB ∥平面AEF ,因为PB ∩PQ =P ,PB ,PQ ⊂平面PBQ ,所以平面PBQ ∥平面AEF .又因为BQ ⊂平面PBQ ,所以BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角.易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155,15 5.所以BM与EF所成的角的余弦值为。
温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
第三节空间点、直线、平面之间的位置关
系
知识体系
必备知识
1.平面的基本性质
(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
(2)公理2:过不在一条直线上的三点,有且只有一个平面.
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
2.确定平面的三个推论
(1)推论1:经过一条直线和这条直线外一点,有且只有一个平面.
(2)推论2:经过两条相交直线,有且只有一个平面.
(3)推论3:经过两条平行直线,有且只有一个平面.
3.空间两条直线的位置关系
(1)位置关系分类.
位置关系
(2)异面直线的判定定理.
经过平面内一点的直线与平面内不经过该点的直线互为异面直线.
(3)平行公理(公理4)和等角定理.
①平行公理:平行于同一条直线的两条直线互相平行;
②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
(4)异面直线所成的角.
①定义:已知两条异面直线a,b,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角);
②范围:.
4.空间直线与平面、平面与平面的位置关系
图形语言符号语言公共点
直线与平面相
交
a∩α=A1个平
行
a∥α0个
在平
面
内
a⊂α无数个
平面与平面
平
行
α∥β0个
相
交
α∩β=l无数个
1.易错点:对异面直线的概念理解有误
异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.
2.注意点:
(1)忽视“直线在平面内”
判断直线与平面的位置关系时最易忽视“线在面内”.
(2)忽视“异面直线所成的角的范围”
两条异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两条异面直线所成的角,也可能等于其补角.
基础小题
1.(教材改编)下列命题正确的个数为 ( )
①梯形可以确定一个平面;
②若两条直线和第三条直线所成的角相等,则这两条直线平行;
③两两相交的三条直线最多可以确定三个平面;
④如果两个平面有三个公共点,则这两个平面重合.
A. 0
B. 1
C. 2
D. 3
【解析】选C.②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.
2.(教材改编)如图所示,在正方体ABCD A1B1C1D1中,E,F分别是AB,AD 的中点,则异面直线B1C与EF所成的角的大小为( )
A.30°
B.45°
C.60°
D.90°
【解析】选C.连接B1D1,D1C,则B1D1∥EF,
故∠D1B1C为所求,又B1D1=B1C=D1C,
所以∠D1B1C=60°.
3.已知a,b是异面直线,直线c平行于直线a,那么c与b( )
A.一定是异面直线
B.一定是相交直线
C.不可能是平行直线
D.不可能是相交直线
【解析】选C.由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a,b为异面直线相矛盾. 4.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是________.
①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b.
【解析】对于①②不符合公理1,故①②错;对于③,假设b⊄α,则a与b 是异面直线,与a∥b矛盾,因此b⊂α,故③正确,对于④,符合公理3,故④正确.
答案:③④
关闭Word文档返回原板块。