石油工程本word版
- 格式:doc
- 大小:5.14 MB
- 文档页数:40
中华人民共和国国家标准汽车加油加气站设计与施工规范Code for design and construction ofautomobile gasoline and gas filling stationGB 50156--2002(2006 年版)主编部门:中国石油化工集团公司中国石油天然气集团公司中华人民共和国建设部城市建设司批准部门:中华人民共和国建设部施行日期:2002年7月1日中华人民共和国建设部公告第396号建设部关于发布国家标准《汽车加油加气站设计与施工规范》局部修订的公告现批准《汽车加油加气站设计与施工规范》GB 50156—2002 局部修订的条文,自2006年3月1日起实施。
经此次修改的原条文同时废止。
其中,第3.0.5、3.0.7、4.0.4、4.0.5、4.0.6、4.0.7、 5.0.8、6.1.2、6.1.2A、7.1.4(1、2、3、4)、7.4.1、7.4.3、7.4.4、 8.5.2、8.6.2、9.0.10、12.2.2(1、2、3)、12.2.11、12.5.2、12.5.4、 12.5.8、12.7.5条(款)为强制性条文,必须严格执行。
局部修订的条文及具体内容,将在近期出版的《工程建设标准化》刊物上登载。
中华人民共和国建设部二○○五年十二月三十日关于发布国家标准《汽车加油加气站设计与施工规范》的通知建标 [2002] 126号根据我部《关于印发一九九八年工程建设国家标准制订、修订计划(第二批)的通知》(建标 [1998] 244 号)、《关于同意修订完善〈小型石油库及汽车加油站设计规范〉的函》(建标 [1999] 273 号)和《关于〈汽车加油加气站设计规范〉修订工作的函》(建标标便 [2002] 03 号)的要求,建设部、中国石油化工集团公司、中国石油天然气集团公司会同有关部门共同对《小型石油库及汽车加油站设计规范》GB 50156-92 进行了修订。
【优质】中石油员工辞职报告-范文word版本文部分内容来自网络,本司不为其真实性负责,如有异议或侵权请及时联系,本司将予以删除!== 本文为word格式,下载后可随意编辑修改! ==中石油员工辞职报告在离职前需要递交辞职报告,那么大家知道中石油员工辞职报告怎么写吗?以下是小编为您整理的“中石油员工辞职报告”,供您参考,更多详细内容请点击查看。
中石油员工辞职报告【一】尊敬的领导:您好!首先,感谢您在百忙之中抽出时间阅读我的辞职信。
俗话说:天下无不散之筵席。
由于个人职业规划和一些现实因素(简单阐述离职石油储运工程技术人员岗位的原因,比如父母年迈、夫妻分居),经过深思熟虑,我决定辞去所担任的石油储运工程技术人员岗位的工作。
我很遗憾自己在这个时候向您正式提出辞职,给×××(改成自己石油储运工程技术人员岗位所在的单位名称)管理所带来不便,深表歉意!此时我选择离开石油储运工程技术人员岗位,离开朝夕相处同事和无微不至的领导,并不是一时的心血来潮,而是我经过长时间考虑之后才做出的艰难决定。
相信在我目前的石油储运工程技术人员岗位上,×××(改成自己石油储运工程技术人员岗位所在的单位名称)有很多同事可以做得更好,也相信您在看完我的辞职报告之后一定会批准我的申请。
转眼之间,在×××(改成自己石油储运工程技术人员岗位所在的单位名称)工作已经×年,回首石油储运工程技术人员岗位工作和生活的点点滴滴,感慨颇多,有过期待,也有过迷茫,有过欢笑,也有过悲伤。
此致敬礼!辞职人:xxx20xx年xx月xx日。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! == 西安石油大学化学工程与工艺专业就业前景西安石油大学是西北地区唯一一所以石油石化为特色的多科性普通高等学校,是陕西省人民政府和中国三大石油公司共建院校。
西安石油大学化学工程与工艺专业就业前景化学工程与工艺专业共有90人认为西安石油大学的化学工程与工艺专业不错,推荐就读指数为4.6[满分5.0]。
下面是化学工程与工艺专业的详细介绍:专业类别毕业五年平均薪资工作地点男女比例化工与制药类¥6161薪酬超过35%的专业上海市15%在上海市工作男生较多男64%-女36%培养目标:本专业培养具备化学工程与化学工艺方面的知识,能在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面工作的工程技术人才。
就业方向:化学工程与工艺专业学生毕业后可在食品、医药、能源、环保等领域从事生物产品的研制、生产,同时可到高等院校、设计和研究单位从事教学、科研、生产、管理等方面的工作。
化学工程与工艺专业就业前景:化学工程与工艺专业在专业学科中属于工学类中的化学与制造类,其中化学与制造类共5个专业,化学工程与工艺专业在化学与制造类专业中排名第3。
在工学类170个中,就业排名第56。
截止到 201X年12月24日,52267位化学工程与工艺专业毕业生的平均薪资为4323元,其中应届毕业生工资3604元,0-2年工资3758元,3-5年工资4859元,6-7年工资5778元,8-10年工资6727元。
(ps:未找到16年数据,只有13年的)就业前景比较好的城市有:上海、北京、广州、杭州、南京、武汉、深圳、天津、苏州、成都。
化学工程与工艺专业就业方向:化学工程与工艺专业学生毕业后可在食品、医药、能源、环保等领域从事生物产品的研制、生产,能在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面工作。
2019-201X年石油工程专业大学排名榜单-实用word文档
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
201X年石油工程专业大学排名榜单
石油作为我们的重要资源,现如今有哪一些学院是开展了这个专业的呢?下面是小编为大家搜集整理出来的有关于201X年石油工程专业大学排名榜单,欢迎阅读!
全国共有14所开设了石油工程专业的大学参与了排名,其中排名第一的是中国石油大学,排名第二的是西南石油大学,排名第三的是东北石油大学,以下是石油工程专业大学排名列表:
201X年石油工程专业大学排名榜单
以上石油工程大学专业大学排名:
石油工程专业培养具备工程基础理论和石油工程专业知识,能在石油工程领域从事油气钻井工程、采油工程、油藏工程、储层评价等方面的工程设计、工程施工与管理、应用研究与科技开发等方面工作,获得石油工程师基本训练的高级专门技术人才。
主要课程:技术经济学、油气田开发地质、工程力学、计算机程序设计、流体力学、渗流力学、钻井工程、采油工程、油藏工程、油田化学、钻采新技术等。
目录前言1 范围2 规范性引用文件13 试油(气)试采地质资料录取项目和质量要求3.1试油(气)地质资料录取项目和质量要求3.2试采地质资料录取项目和质量要求4 试油(气)试采工程资料录取项目和质量要求4.1试油(气)工程资料录取项目和质量要求4.2试采工程资料录取项目和质量要求5 有关资料数据的单位及取值规定前言试油(气)试采是油气田勘探开发中不可缺少的环节,随着各类油气田勘探开发的不断深入,为进一步规范试油(气)试采资料录取,保证试油(气)试采资料的的质量,根据中国石油天然气股份有限公司的要求,结合全国各油田的生产实际,特制定了本标准。
本标准由中国石油天然气股份有限公司勘探与生产分公司提出。
本标准由中国石油天然气股份有限公司勘探与生产专业标准化技术委员会归口并解释。
本标准起草单位:大庆油田有限责任公司、新疆油田分公司、西南油气田分公司。
本标准主要起草人:许显志、陈娟炜、邱必兰、王维君、胡广军、何也、于志光。
试油(气)试采资料录取规范1范围本标准规定了陆上试油(气)试采资料录取项目和质量要求。
本标准适用于陆上试油(气)试采资料的录取和质量验收。
2规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
SY5467一92套管柱试压规范SY/T5789一93油气井诱喷作业规程SY/T5981一2000常规试油试采技术规程SY/T6013一2000常规试油资料录取规范SY/T6293一1997勘探试油工作规范SY/T6337一1997油气井地层测试资料录取规范3试油(气)试采地质资料录取项目和质量要求3.1试油(气)地质资料录取项目和质量要求3.1.1试油(气)基础数据项目3.1.1.1井号、井别、井位(构造位置、地理位置、井位坐标)、地面海拔。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==油田采油工程师个人事迹汇报材料蒋××,1971年3月出生,采油工程师,大学文化,工程技术大队机采室三次采油管理岗。
参加工作15年来,她立足岗位,勤奋学习,刻苦钻研,勤奋求实强素质,靠创新奉献求发展,努力将自己打造成一名高素质的“知识型员工”。
201X年获厂“优秀员工”称号,201X年获“巾帼建功岗位能手”称号,先后取得科研成果6项、现代化管理成果7项、发表学术论文18篇。
多年来,她的科研成果创经济效益900多万元。
一、勤于学习,提高素质随着油田开发难度的逐步增大,采油工艺技术的快速发展,为了熟练掌握专业技术,掌握扎实的理论-功底和实践能力,她放弃了业余休息时间,把全部精力用在了学习上,先后自学了《油藏增产措施》、《聚合物驱采油工程》、《大港油田三元复合驱化学剂作用机理研究》等书籍,使自身专业知识结构的不断补充完善,快速提高自身素质。
向实践学习,掌握过硬的创新本领。
由于采油工程涉及现场和井下工具较多,为了增加感性认识和掌握各种工具的原理及适应性,她带着问题到作业施工现场和工具车间,向经验丰富的现场监督人员及高工学习,力求让所学知识应用到实际工作中。
主管压裂工作时,她认真钻研压裂增产原理,对如何延长压裂的有效期及提高压后增产效果进行研究,取得了较好的压裂效果,压裂平均单井日增油连续三年达到10t以上。
她编写的《对重复压裂的几点认识》获黑龙江省石油工程学会年会二等奖;科研《高北油田压裂系统工程管理增产试验区》获局科技进步二等奖;推广的复合压裂技术初期平均单井日增油10t,获纯经济效益190多万元。
随着信息技术的快速发展,为了提高工作效率,她先后自学了orcal数据库、dbase等相关软件,并参与了厂作业信息一体化的开发研究,绘制了作业信息一体化工作流程图,提高了作业信息的反馈速度和生产数据的共享,编写的《作业信息一体化的开发与应用》获省石油学会年会二等奖,参与的《数据挖掘技术在抽油机泵参调整中的应用研究》获厂技术创新三等奖。
附录A (规范性附录)文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.4文档来源为:从网络收集整理.word 版本可编辑.SH/T 3543-2007文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.5文档来源为:从网络收集整理.word版本可编辑.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.-200712文档来源为:从网络收集整理.word版本可编辑.13文档来源为:从网络收集整理.word版本可编辑.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.SH/T 3543-200730文档来源为:从网络收集整理.word版本可编辑.31文档来源为:从网络收集整理.word版本可编辑.-200718文档来源为:从网络收集整理.word版本可编辑.19文档来源为:从网络收集整理.word版本可编辑. SH/T 3543-20文档来源为:从网络收集整理.word 版本可编辑.SH/T 3543-20072321文档来源为:从网络收集整理.word版本可编辑. SH/T 3543-20072522文档来源为:从网络收集整理.word版本可编辑.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.。
第1章钻井液完井液化学1。
1粘土胶体化学基础 (3)1。
1.1粘土矿物的基本构造单元 (3)1.1.2高岭石 (4)1。
1。
3叶腊石、蒙脱石、伊利石 (4)1。
1。
4粘土—水界面双电层 (6)1。
1.5粘土的水化作用 (8)1.1.6粘土—水悬浮体的稳定性 (10)1。
1.7凝胶 (12)1.2钻井液的性能 (13)1。
2.1钻井液密度 (13)1.2.2钻井液的流变性 (14)1.2.3钻井液的滤失性 (17)1.2.4钻井液的润滑性能 (20)1。
2。
5钻井液的PH值与碱度 (23)1.2。
6钻井液的抑制性 (25)1.3泥浆处理剂及其作用原理 (26)1。
3。
1无机处理剂 (26)1.3.2有机降粘剂 (28)1。
3.3有机降失水剂 (31)1.3。
4增粘剂 (36)1.3.5油层保护剂 (36)1。
3.6表面活性剂 (37)1.4常用的钻井液体系 (42)1。
4。
1分散性钻井液 (42)1.4.2无机盐抑制性钻井液 (46)1。
4。
3聚合物钻井液体系 (51)1。
5完井洗井液及腐蚀 (57)1.5。
1钻井液对油气层的不良影响 (57)1.5。
2钻开油气层的洗井液 (58)1。
5.3封闭液 (59)1.6高温对钻井液性能的影响 (61)1。
6。
1高温水基泥浆的主要特点 (62)1。
6。
2高温对泥浆中粘土的作用 (65)1.6.3高温对处理剂及其作用效能的影响 (70)参考文献 (74)钻井液完井液化学是研究钻井液及完井液的配制、组成、性能、维护以及相关化学反应的学科,涉及到粘土矿物学、表面化学、高分子材料、石油工程等相关学科,它是一门涉及多个领域的边缘科学、实验科学、工程科学.钻井液是指油气钻井过程中以其多种功能满足钻井工作需要的各种循环流体的总称。
钻井液又称为钻井泥浆,或简称泥浆.钻井液的循环是通过泥浆泵来完成的.从泥浆泵排出的高压钻井液通过地面高压管汇、立管、水龙带、水龙头、方钻杆、钻杆、钻挺到钻头,从钻头喷嘴喷出,以清洗井底并携带岩屑,然后再沿着钻杆与井壁(或套管)形成的环形空间向上流动,在达到地面后经排出管线流入泥浆池,经各种固控设备进行处理后返回上水池,最后进入泥浆泵循环使用.钻井液的种类很多,分类也很复杂,通常把钻井液分为水基泥浆和油基泥浆两大类。
全国大学生油气储运工程设计大赛R油田输油管道及沿线站场设计日期2016年7 月20 日全国大学生油气储运工程设计大赛组委会制方案简介本作品根据《第一届全国大学生油气储运工程设计大赛赛题及基础数据》和相关标准,秉承经济、高效、节能、环保的设计理念,对R 油田输油管道工程进行了设计。
主要设计内容包括:A-B、B-C段管道工艺及运行管理,河流穿越方案,沿线站场及阀室工艺,火车装车方案,辅助生产及配套工程技术方案以及投资估算等内容。
输油管道设计方面:采用加热输送工艺,从技术经济角度优选管径,通过逆向推算得到设计压力及布站情况,通过考虑油水乳化状态提高了水力计算的准确性。
使用商业软件对其进行了模拟及优化,并编制相应程序辅助计算。
河流穿越方案方面:分析了穿越区岩土层可钻性,确定并设计了水平定向钻(HDD)管道穿越河流施工方案,并进行了管道强度校核和施工风险评价。
沿线站场及阀室方面:设计了原油脱水及污水深度处理工艺,确定了沿线各站场及阀室的分布,并对其进行了设计。
火车装车方案方面:对装车站进行了详细设计,从可靠性的角度采用了“双管、双泵、双用单鹤管”的装车工艺;针对来油量衰减较快特点,从经济的角度对装车操作的运行与管理进行了优化,制定了高效益、低成本的火车装车方案。
此外,本文还对整体输油管道工程的防腐、自控、消防、HSE管理、辅助生产及公用工程等进行了设计。
设计中使用了OLGA,PIPESIM等商业软件对各种工况下的管道进行了模拟,并且基于VB平台编制了相应软件辅助计算,校核了整体方案的可行性和可靠性,完成了管道及站场工艺的优化,提高了方案的经济性。
本设计充分借鉴了国内外原油输送及装车的成熟技术,优化了管道及站场的工艺流程及运行方案,选用了高效设备,降低了投资及运行维护费用,具有一定的工程应用价值。
目录第1章总论 (1)1.1 工程概况 (1)1.2 编制依据 (2)1.3 编制原则 (2)1.4 设计范围 (2)1.5 国家级地方有关法律、法规 (2)1.6 国家、地方、行业、企业的技术标准和规范 (3)第2章R油田输油管道设计基础 (6)2.1 工程概况 (6)2.2 设计基础资料 (6)2.2.1 基础数据 (6)2.2.2 原油物性 (7)2.2.3 设计环境 (8)2.2.3.1 土壤条件 (8)2.2.3.2 铁路依托条件 (8)2.2.3.3 气象条件 (8)第3章输油管道工艺设计 (9)3.1 输送工艺 (9)3.2 设计参数 (10)3.2.1 管道设计参数 (10)3.2.1.1 设计输量 (10)3.2.1.2 设计压力 (10)3.2.1.3 管径优选 (11)3.2.1.4 钢管类型选择 (11)3.2.1.5 管道纵断面图 (11)3.2.1.6 管道埋深参数 (12)3.2.1.7 管道防腐层 (12)3.2.2 原油物性 (13)3.2.2.1 油品密度 (13)3.2.2.2 油品粘度 (13)3.2.2.3 原油乳化 (15)3.2.1热力设计参数 (16)3.3.1.1 加热站出站油温 (16)3.3.1.2 加热站进站油温 (16)3.3.1.3 管道周围介质温度T0 (16)3.3.1.4 管道保温层设计 (16)3.3 A-B段工艺设计 (17)3.3.1 设计输量下的设计方案 (17)3.3.2 最低输量下的设计方案 (19)3.3.3 设计压力及管道壁厚 (21)3.3.4 经济性分析 (24)3.3.5 适应性分析 (26)3.4 B-C段工艺设计 (28)3.4.1 设计输量下的设计方案 (28)3.4.2 最低输量下的设计方案 (32)3.4.3 设计压力及管道壁厚 (34)3.4.4 经济性分析 (37)3.4.5 适应性分析 (44)3.4.5.1 冬季运行方案 (44)3.4.5.2 夏季运行方案 (44)3.5 设备选型 (46)3.5.1 泵机组选型 (46)3.5.2 原动机选型 (48)3.5.3 加热炉选型 (48)3.6 管道强度校核 (49)3.6.1 进出站压力校核 (49)3.6.3 静水压力校核 (49)3.6.4 动水压力校核 (49)3.8 设计成果 (49)第4章穿越河流设计方案 (51)4.1 遵循的主要标准、规范 (51)4.1.1 法律法规 (51)4.1.2 标准规范 (51)4.2 穿越河流方式比选 (51)4.3 水平定向钻穿越设计 (52)4.3.1 HDD可钻性评价 (52)4.3.1.1 穿越场地地层岩性结构 (52)4.3.1.2 穿越场地土的物理力学性质指标 (53)4.3.1.3 穿越区域岩土层可钻性评价 (55)4.3.1.4 施工条件评价 (55)4.3.1.5 地下障碍物评价 (55)4.3.2 HDD穿越曲线设计 (56)4.3.3 HDD设备选型 (58)4.3.3.1 钻机选型 (58)4.3.3.2 钻具选型 (59)4.3.4 场地布置 (61)4.3.5 穿越段管道设计 (62)4.3.5.1 穿越段管道壁厚设计 (62)4.3.5.2 穿越段管道防腐与防护 (63)4.3.5.3 穿越段管道热力校核 (63)4.3.6 穿越管道应力校核 (63)4.3.6.1 管道回拖工况应力校核 (63)4.3.6.2 管道试压工况应力校核 (66)4.3.6.3 管道运行工况应力校核 (66)4.3.6.4 管道径向屈曲失稳校核 (67)4.3.7 套管结构设计 (68)4.3.7.1 套管最大夯入长度计算 (68)4.3.7.2 套管壁厚选取 (69)4.3.7.3 套管强度验算 (69)4.3.7.4 套管稳定性验算 (71)4.4 穿越施工方案 (72)4.4.1 施工工艺流程 (72)4.4.2 施工技术措施 (72)4.4.2.1 施工准备 (72)4.4.2.2 泥浆配制 (74)4.4.2.3 钻导向孔 (75)4.4.2.4 预扩孔工艺 (76)4.4.2.5 管道回拖 (77)4.4.2.6 管道焊接检验和试压 (77)4.5 对水文地质和环境的影响 (78)4.5.1 对地貌的影响 (78)4.5.2 对河床结构的影响 (78)4.5.3 对生物的影响 (78)4.5.4 施工过程对环境的影响 (78)4.6 消防、安全 (79)4.6.1 设计采取的安全及消防措施 (79)4.6.2 施工中的主要安全措施 (79)4.7 施工风险及应对措施 (80)4.7.1 穿越风险分析 (80)4.7.2 施工应急处置预案 (81)4.7.2.1 导向施工应急预案 (81)4.7.2.2 扩孔过程中发生卡钻、抱钻、断钻的应急预案 (81)4.7.2.3 管线回拖中卡死的应急预案 (82)4.7.2.4 冒浆应急预案 (82)4.7.2.5 塌孔的处理预案 (82)4.8 主要工程量及投资估算 (83)第5章输油管道的流动保障 (84)5.1 管道运行管理 (84)5.1.1 热力冬季运行方案 (84)5.1.2 热力夏季运行方案 (85)5.1.3 水力运行方案 (85)5.2 清管 (86)5.2.1 清管的作用 (86)5.2.2 清管器选择 (86)5.3 停输再启动 (86)5.3.1 停输后的管内温降 (87)5.3.2 管内原油温度场 (87)5.3.3 停输再启动过程 (88)第6章沿线站场 (89)6.1 站场设置 (89)6.2 站场工艺 (89)6.3 A联合站 (89)6.3.1 联合站工艺 (90)6.3.2 联合站主要工程量 (90)6.4 B外输首站 (90)6.4.1 进站计量 (91)6.4.2 加热工艺 (91)6.4.3 脱水工艺 (91)6.4.4 污水处理 (93)6.4.4 储油工艺 (95)6.4.5 外输工艺 (95)6.4.6 B外输首站工艺流程 (96)6.4.7 主要工艺设计参数 (98)6.4.8 平面布置说明 (98)6.4.9 首站主要工程量 (100)6.5 中间输油站 (100)6.6 线路阀室 (101)6.7 C装车站 (102)6.8 沿线站场及阀室分布总结 (102)第7章装车站设计 (103)7.1 装车站总体设计 (103)7.1.1 装车站功能 (103)7.1.2 装车站工艺流程设计 (103)7.1.3 装车站分区 (103)7.1.4 装车站总平面布置 (104)7.1.4.1 总平面布置原则 (104)7.1.4.2 总平面布置 (104)7.1.4.3 站内道路 (105)7.1.4.4 围墙 (105)7.1.1.5 绿化 (106)7.2 储油区设计 (106)7.2.1 储油区容量确定 (106)7.2.1.1 周转系数法 (106)7.2.1.2 储存天数法 (107)7.2.1.3 库容确定方法对比优选 (108)7.2.2 储油罐数量确定 (108)7.2.3 储油容量等级 (108)7.2.4 油罐类型选择 (109)7.2.5 储罐强度设计 (110)7.2.5.1 罐壁厚度计算 (110)7.2.5.2 浮顶计算 (111)7.2.6 油罐加热与保温 (113)7.2.6.1 原油储存温度 (113)7.2.6.2 油罐加热方式 (114)7.2.6.3 油罐加热器选用 (114)7.2.6.4 油罐保温 (116)7.2.7 油罐防腐 (116)7.2.7.1 防腐部位 (116)7.2.7.2 防腐涂层结构及材料 (117)7.2.7.3 阴极保护 (117)7.3 铁路装车设计 (117)7.3.1 铁路装车工艺 (118)7.3.2 铁路油罐车设计 (118)7.3.3 铁路专用线设计 (120)7.3.3.1 铁路装卸线布置形式 (120)7.3.3.2 装卸线的有效长度 (120)7.3.4 铁路装油设施设计 (121)7.3.4.1 铁路装油鹤管选用 (121)7.3.4.2 鹤管数量确定 (122)7.3.4.3 鹤管与集油管的连接 (122)7.3.4.4 集油管与鹤管的连接 (123)7.3.4.5 栈桥设计 (124)7.4 装车方案设计 (124)7.4.1 方案设计出发点 (125)7.4.2 不同方案所需装油设施 (125)7.4.3 不同方案每年装车次数 (126)7.4.4 方案对比优选 (126)7.5 站内管道设计 (127)7.5.1 管道作用 (127)7.5.2 管道分类 (128)7.5.3 常用的管道工艺流程 (128)7.5.4 管道工艺流程对比优选 (129)7.5.5 管道保温层设计 (129)7.5.6 管道强度设计 (130)7.5.6.1 站内管道管径计算 (130)7.5.6.2 站内管道壁厚计算 (131)7.5.6.3 站内管道强度校核 (131)7.5.7 管路水力计算 (133)7.5.8 管道敷设与防腐 (135)7.6 发油泵站设计 (135)7.6.1 泵站形式 (135)7.6.2 泵站工艺流程 (136)7.6.3 泵的选用 (137)7.6.3.1 油泵选型 (137)7.6.3.2 油泵数量 (138)7.6.3.3 原动机选择 (138)7.6.3.4 电动机功率计算 (139)7.6.3.5 油泵基本参数 (139)7.6.3.6油泵规格参数 (141)7.6.4 油泵站布置 (141)7.7 站内污水处理 (142)7.7.1 污水来源 (142)7.7.2 含油污水处理 (142)7.7.3 生活污水处理 (142)7.8 油品计量 (143)7.8.1 液面高度的人工测量 (143)7.8.2 液面高度的自动测量 (143)7.8.2.1 常用测量液位计 (143)7.8.2.2 液位计的选用 (145)第8章辅助生产系统及配套工程 (146)8.1 通信 (146)8.2 供配电 (146)8.3 建筑结构 (147)8.4 供热与暖通 (148)8.5 自动化控制 (148)8.5.1 自动化控制系统 (148)8.5.2 储油区工业自动化系统 (149)8.6 防火防爆 (152)8.6.1 火灾和爆炸原因 (153)8.6.2 防火防爆措施 (153)8.7 站场消防 (154)8.7.1 灭火原理与方法 (154)8.7.2 灭火方法及设备 (155)8.7.3 消防给水 (157)8.8 防雷 (158)8.9 防静电 (158)8.10 防杂散电流 (162)8.11 穿越施工安全 (163)8.11.1 设计采取的安全及消防措施 (163)8.11.2 施工中的主要安全措施 (163)8.12 管道水工保护 (163)8.12.1 冲刷防护 (164)8.12.2 坡面防护 (164)8.12.3 支挡防护 (164)8.13 管道标志 (165)第9章HSE风险管理 (166)9.1 长输管道HSE管理 (166)9.1.1 长输管道危害性因素分析 (166)9.1.2 管道系统安全防护对策 (166)9.2 站场HSE管理 (168)9.2.1 站场危害性因素分析 (168)9.2.2 站场安全防护对策 (168)9.3 HSE管理体系建设与运行 (170)9.3.1 HSE体系建设 (170)9.3.2 HSE体系实施 (170)9.4 应急保障体系 (171)9.4.1 突发事件分类与分级 (171)9.4.2 应急工作原则 (172)第10章投资成本估算 (173)10.1 长输管道工程投资 (173)10.2 站场投资 (173)10.3 方案工程总投资 (174)参考文献 (175)附录 (177)附录A 管道水力摩阻计算 (177)附录B 不同管道钢级投资表 (178)附录C 河流穿越施工图 (179)附图1 (179)附图2 (180)附录D 自编程序Visual Basic 程序代码 (181)附录E 穿越轨迹设计程序代码 (189)第1章总论1.1 工程概况R油田开发是将井场原油通过集输管道汇集至位于区块南部的A联合站,通过外输管道170km外输管道将原油输送至装车站。
石油化工企业设计防火标准GB50160-2008(2018年版)目录第1章总则 (1)第2章术语 (2)第3章火灾危险性分类 (5)第4章区域规划与工厂总平面布置 (6)4.1区域规划 (6)4.2工厂总平面布置 (9)4.3厂道路 (12)4.4厂铁路 (13)4.5厂际管道规划 (14)第5章工艺装置和系统单元 (16)5.1一般规定 (16)5.2装置布置 (16)5.3泵和压缩机 (21)5.4污水处理场和循环水场 (22)5.5泄压排放和火炬系统 (22)5.6钢结构耐火保护 (25)5.7其他要求 (25)第6章储运设施 (27)6.1一般规定 (27)6.2可燃液体的地上储罐 (27)6.3液化烃、可燃气体、助燃气体的地上储罐 (29)6.4可燃液体、液化烃的装卸设施 (32)6.5灌装站 (33)6.6厂仓库 (33)第7章管道布置 (35)7.1厂管线综合 (35)7.2工艺及公用物料管道 (35)7.3含可燃液体的生产污水管道 (36)7.4厂际管道敷设 (37)8.1一般规定 (38)8.2消防站 (38)8.3消防水源及泵房 (38)8.4消防用水量 (39)8.5消防给水管道及消火栓 (41)8.6消防水炮、水喷淋和水喷雾 (42)8.7低倍数泡沫灭火系统 (43)8.8蒸汽灭火系统 (43)8.9灭火器设置 (44)8.10液化烃罐区消防 (45)8.11建筑物消防 (46)8.12火灾报警系统 (48)第9章电气 (49)9.1消防电源、配电及一般要求 (49)9.2防雷 (49)9.3静电接地 (49)附录A防火间距起止点 (51)本规用词说明 (52)第1章总则1.0.1为了防止和减少石油化工企业火灾危害,保护人身和财产的安全,制定本规。
1.0.2本规适用于石油化工企业新建、扩建或改建工程的防火设计。
1.0.3石油化工企业的防火设计除应执行本规外,尚应符合现行的有关标准的规定。
1 / 40 摘要 有杆泵采油是世界石油工业传统的采油方式之一,也是迄今在采油工程中一直占主导地位的人工举升方式。及时、准确地掌握有杆抽油系统的工作状况,诊断油井所存在的问题,制定合理的技术措施,使油井及时恢复正常生产,提高举升效率和油井产量,对提高油田开发的综合经济效益具有十分重要意义。 本文根据抽油机的几何结构,建立了抽油机悬点位移、速度、加速度等运动参数规律。在有杆泵抽油装置、泵的工作原理的基础上针对不同材质的组合抽油杆柱,对抽油杆微元体进行受力分析,并建立了描述抽油杆柱动力学特性的波动方程。从而建立诊断数学模型,以抽油机的悬点运动规律并结合悬点实测示功图作为诊断模型的边界条件,通过有限差分法对模型进行数值求解,利用VB语言编写程序计算出抽油杆柱的位移和载荷,绘出示功图。 根据XX油田两口生产井资料,通过所编程序对油井进行实例计算,从实测悬点载荷、位移求解出抽油杆不同位置在任意时间段的位移和载荷,并绘出泵示功图。实现对抽油系统工况诊断,验证所编程序。
关键词:有杆抽油;示功图;诊断;波动方程;有限差分
目录 摘要Ⅰ ABSTRACTⅡ 1 绪论1 1.1 研究目的和意义1 1.2 国内外研究现状与发展趋势1 1.2.1 国外发展概况1 1.2.2 国内发展概况2 1.3 本文的主要工作3 2 游梁式抽油机动力学特性分析4 2.1 常规游梁式抽油机简介4 2.2 抽油机悬点运动分析5 2.2.1 简化分析5 2.2.2 精确分析6 2.3 悬点运动计算实例9 3 抽油机诊断模型的建立及求解11 3.1 杆柱动力学分析11 3.1.1 抽油杆微元体受力分析11 3.2 诊断数学模型波动方程的建立与求解13 3.2.1 诊断数学模型的建立14 3.2.2 诊断模型的有限差分法15 3.2.3 诊断模型的求解17 3.3 节点载荷及位移计算19 3.4 阻尼系数的确定20 3.4.1 多级杆阻尼系数的计算21 4 计算机诊断技术的应用23 4.1 井下抽油泵工况分析23 4.2 示功图故障分类23 5 有杆抽油井诊断实例26 5.1 诊断程序界面26 5.2 油井工况诊断分析26 6 结论与建议31 6.1 结论31 6.2 建议31 致谢32 参考文献33 附录1 诊断模型求解程序代码34 附录2 例子1实测悬点载荷数据37 附录3 例子2实测悬点载荷数据38 1 / 40
1 绪论 1.1 研究目的和意义 有杆泵采油是世界石油工业传统的采油方式之一,也是迄今在采油工程中一直占主导地位的人工举升方式。在我国,采油生产井中大约有90%采用有杆抽油技术,全国各油田产液量的60%,产液量的75%是靠有杆抽油技术采出的[1]。然而由于抽油泵是在近千米到数千米的井下,工况十分复杂,工作环境极其恶劣,不但受“机、杆、泵”抽油设备的影响,而且直接受到“砂、蜡、气、水”的影响,故障发生率很高,1998年的统计结果表明:我国平均每口有杆抽油井年作业1.25次,严重影响油田的正常生产。因此,及时、准确地掌握有杆抽油系统井下设备的工作状况,诊断油井所存在的故障问题,制定合理的技术措施,使油井及时恢复正常生产,最大限度的提高原油产量、降低生产成本和提高抽油效率,对石油工业的发展和提高经济效益都具有非常重大的理论意义和现实意义[1]。 石油工业的发展对抽油丼故障诊断技术的研究提出强烈要求。几十年来,抽油丼故障诊断技术一直是国内外采油工程技术人员的一个重要研究课题,经过长期的研究与实践,抽油丼故障诊断技术取得了相当大的发展。 1.2 国内外研究现状与发展趋势 自从有杆泵在油田服役以来,有杆抽油井的故障诊断先后经历了从靠感觉分析到靠仪器测量分析,从仪器测量分析到计算机处理分析,并向智能化诊断不断迈进的发展过程。近几十年来诊断技术得到了飞速的发展,特别是计算机诊断技术的出现,使有杆抽油系统故障诊断技术进入了一个崭新的阶段,即从定性分析到部分定量分析、从人工到初级智能。具体发展历程如下: 1.2.1 国外发展概况 早期的油井故障诊断仅靠手感,工作人员用手握住光杆,上下运动几个冲程,凭感觉来判断抽油泵的某些故障,这种方法只适用于浅井,并且误差比较大[3]。 到了二十年代,1927年发明地面光杆动力仪,利用光杆动力仪绘制光杆载荷与位移的关系曲线,即光杆示功图,然后对光杆示功图进行解释,以判断油井与设备故障,几十年来,许多国家进行了大量的研究工作:一方面,不断改进动力仪,提高检测精度;另一方面,不断改进示功图的解释方法,扩大解释X围[4]。 1936年美国的Gilbert和Surgent发明井下动力仪。这种方法是将井下动力仪随同抽油泵一起下入丼内,用其直接测量泵示功图,因这种方法耗资甚巨,工艺也较复杂,没有得到推广应用[5]。 1966年美国壳牌石油公司的Gibbs建立了带阻尼的波动方程作为描述应力波在抽油杆柱中过程的基本微分方程,通过求解方程,可以得到抽油杆柱任意截面及泵处的示功图,随后很多人在模型完善及求解方面做了大量的工作[1]。 20世纪70年代末期,Schafer和Jennings在使用有限差分求解波动方程时,使用等步长差分形式,在抽油杆截面积和性质发生变化时,采用了等效值的概念,解决了多级杆及混合杆的波动方程求解问题。随后Nikea采用有限元计算求解波动方程,取得了较好的效果[17]。 1969年8月,美国有杆泵研究股份公司与中西部研究所经美国石油学会采油设备标准委员会批准,发表API标准示功图。 1981年美国塔尔萨大学的Doty和Schmidt建立了考虑液柱振动的二维预测数学模型。 1988年Daek等在走访许多著名专家后研制处有杆抽油井故障诊断专家系统,它是将地面实测的示功图转换成井下示功图,然后与标准示功图进行比较以判断故障类型。 同年,Svinos等,推出了一种由Basic语言编译的有杆泵诊断专家系统,该系统有5个模块,用产生式法则建立规则库,运用反向推理机建立了一个可以识别典型示功图并计算出有关数据的专家系统,然后利用这些数据诊断有杆抽油系统的故障。 随后出现了各种诊断系统。美国Arc油气公司(DES)委内瑞拉Corpoven公司和Central de Venezuela(有杆泵抽油专家系统)。 1.2.2 国内发展概况 1989年XX石油学院的余国安和乌亦炯建立了综合考虑抽油杆柱、液柱和油管振动的三维数学模型,并进行了求解。这种三维振动的数学模型比起前两种数学模型来,在理论上显然更加符合实际一些[3]。 3 / 40
1990年,石油大学用专家系统建造工具M.1开发有杆泵抽油丼故障诊断专家系统ESROFD。 1991年,X润伟运用故障树分析技术也建立了一个有杆泵抽油诊断专家系统[5]。
1993年,XX大学与大港油田共同开发了抽油机井集成化智能诊断,它集成多种诊断方法进行综合诊断(但不是多种方法的有机融合,而是几种方法的简单堆砌)。该系统中的元系统由C语言写成,子系统均用建造工具M.1专家系统外壳建立[5]。 上述研究成果有力地推进了有杆抽油系统故障诊断技术的进一步发展,但是,由于抽油泵工况诊断极其复杂,我国油田的抽油丼故障诊断还没有实现智能化,还处在人工诊断阶段,有待于进一步深入研究[5]。 近年来我国学者的研究与各石油单位联合,都具有一定的针对性,主要集中在:(1)有杆抽油系统预测和数值模拟的动力学模型建立;(2)预测和数值模拟数学模型的计算求解方法;(3)井下工况诊断;(4)地面设备的仿真;(5)有杆抽油系统的优化设计[4]。 1.3 本文的主要工作 本设计以有杆抽油丼抽油杆柱力学行为分析为基础,以有杆抽油机的诊断为研究对象,建立了基于波动方程的诊断数学模型,并仔细推导了波动方程的数值解法。 本文主要完成了以下几方面的工作: (1) 分析抽油机的运动特性,建立常规型抽油机的运动规律模型,得出了抽油机悬点位移、速度、加速度的运动规律曲线图; (2) 分析抽油杆柱的动力学特性,根据描述抽油杆动态特性的波动方程,有限差分求解波动方程; (3) 利用Visual Basic语言根据上述理论建立的模型编写程序,实现有杆抽油系统工况的计算机诊断; (4) 根据所编程序对实际生产井进行实例计算,绘出井下泵功图,诊断油井工况。 2 游梁式抽油机动力学特性分析 游梁式抽油机可以分为常规型、前置型、异相型等几种类型。抽油机作为主要动力传输单元是最重要的地面设备之一,其悬点运动规律是有杆抽油系统诊断数学模型的边界条件,其运行状况直接影响有杆抽油系统效率的高低,本文针对常规游梁抽油机运动特性的研究,建立了悬点运动规律数学模型,并通过模型使用VB程序来绘出悬点的位移、速度、加速度曲线图[2]。 2.1 常规游梁式抽油机简介 抽油机是有杆抽油的地面驱动设备。按其基本结构,抽油机可分为游梁式和无游梁式,目前我国应用最为广泛的是游梁式抽油机。游梁式抽油机主要由游梁—连杆—曲柄机构、减速机构、动力设备和辅助装置等四部分组成,游梁式抽油机工作时,电动机通过传动皮带将高速旋转运动传递给减速器的输出轴,经减速后由低速旋转的曲柄通过四连杆机构带动游梁作上下往复摆动。游梁前端圆弧状的驴头经悬绳器带动抽油杆作上下往复直线运动[2]。
图2-1常规型游梁式抽油机结构 1—刹车装置;2—电动车;3—减速器皮带轮;4—减速器;5—输入轴;6—中间轴;7—输