几种常见的曲线参数方程
- 格式:docx
- 大小:36.11 KB
- 文档页数:1
参数方程化为普通方程参数方程是一种用参数表示的方程形式,常用于描述曲线、曲面或者空间中的轨迹。
参数方程的一个重要特点是可以更加简洁地描述复杂的几何形状。
然而,在某些情况下,我们可能需要将参数方程转换为普通方程,以便更好地理解和分析问题。
本文将介绍如何将参数方程化为普通方程的方法。
一、一些常见的参数方程在进一步讨论参数方程化为普通方程之前,我们先来回顾一些常见的参数方程。
1. 二维平面曲线的参数方程对于二维平面曲线,其参数方程形式通常可以表示为:x = f(t)y = g(t)其中,t 为参数,表示曲线上的每一个点的位置。
函数 f(t) 和 g(t)分别表示曲线上每一个点的 x 坐标和 y 坐标。
通过给定不同的参数值 t,我们可以得到曲线上的所有点。
2. 三维曲面的参数方程对于三维曲面,其参数方程形式通常可以表示为:x = f(u, v)y = g(u, v)z = h(u, v)其中,u 和 v 分别表示参数,用于描述曲面上的每一个点的位置。
函数 f(u, v)、g(u, v) 和 h(u, v) 分别表示曲面上每一个点的 x、y 和z 坐标。
通过给定不同的参数值 u 和 v,我们可以得到曲面上的所有点。
二、将二维平面曲线的参数方程化为普通方程的方法接下来,我们将介绍如何将二维平面曲线的参数方程化为普通方程。
1. 消去参数法消去参数法是将参数方程化为普通方程常用的方法之一。
其基本思路是通过消除参数 t,得到关于 x 和 y 的方程。
例如,我们有参数方程:x = 2ty = 3t^2为了将其化为普通方程,我们将 t 从第一个方程中解出:t = x/2。
然后将 t 的值代入第二个方程中,得到:y = 3(x/2)^2化简后即可得到普通方程:4y = 3x^22. 直接等式法直接等式法是另一种常用的将参数方程化为普通方程的方法。
其思路是通过让两个方程直接等于,消去参数 t。
例如,我们有参数方程:x = 3ty = 4 - 2t我们可以直接令这两个方程等于:3t = x4 - 2t = y化简后即可得到普通方程:3x + 2y = 4三、将三维曲面的参数方程化为普通方程的方法接下来,我们将介绍如何将三维曲面的参数方程化为普通方程。
数学的参数方程公式有哪些一般在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数:x=f(t),y=g(t),并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数。
圆的参数方程x=a+r cos y=b+r sin (a,b)为圆心坐标 r为圆半径为参数椭圆的参数方程x=a cos y=b sin a为长半轴长 b为短半轴长为参数双曲线的参数方程x=a sec (正割) y=b tan a为实半轴长 b为虚半轴长为参数抛物线的参数方程x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数直线的参数方程x=x+tcosa y=y+tsina , x, y和a表示直线经过(x,y),且倾斜角为a,t为参数.数学学习技巧一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的学习方法。
上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。
特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。
认真独立完成作业,勤于思考,对于有些题目,由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。
在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。
刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程。
2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程一椭圆的参数方程1、中心在坐标原点,焦点在x 轴上,标准方程是22221(0)x y a b a b+=>>的椭圆的参数方程为cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)同样,中心在坐标原点,焦点在y 轴上,标准方程是22221(0)y x a b a b+=>>的椭圆的参数方程为cos (sin x b y a ϕϕϕ=⎧⎨=⎩为参数)2、椭圆参数方程的推导如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,与小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。
设以Ox 为始边,OA 为终边的角为ϕ,点M 的坐标是(,)x y 。
那么点A 的横坐标为x ,点B 的纵坐标为y 。
由于点,A B 都在角ϕ的终边上,由三角函数的定义有cos cos ,sin sin x OA a y OB b ϕϕϕϕ==== 3当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。
3、椭圆的参数方程中参数ϕ的意义 圆的参数方程cos (sin x r y r θθθ=⎧⎨=⎩为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)中的参数ϕ不是动点(,)M x y 的旋转角,它是动点(,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋转角,通常规定[)0,2ϕπ∈ 4、椭圆参数方程与普通方程的互化可以借助同角三角函数的平方关系将普通方程和参数方程互化。
①由椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>,易得cos ,sin x ya b ϕϕ==,可以利用平方关系将参数方程中的参数ϕ化去得到普通方程22221(0)x y a b a b+=>>②在椭圆的普通方程22221(0)x y a b a b +=>>中,令cos ,sin x ya bϕϕ==,从而将普通方程化为参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>注:①椭圆中参数的取值范围:由普通方程可知椭圆的范围是:,a x a b y b -≤≤-≤≤,结合三角函数的有界性可知参数[)0,2ϕπ∈②对于不同的参数,椭圆的参数方程也有不同的呈现形式。
1.碟形弹簧圓柱坐标方程:r = 5theta = t*3600z =(sin(3.5*theta-90))+24*t2.葉形线.笛卡儿坐標标方程:a=10x=3*a*t/(1+(t^3))y=3*a*(t^2)/(1+(t^3))3.螺旋线(Helical curve) 圆柱坐标(cylindrical)方程:r=ttheta=10+t*(20*360)z=t*34.蝴蝶曲线球坐标方程:rho = 8 * ttheta = 360 * t * 4phi = -360 * t * 85.渐开线采用笛卡尔坐标系方程:r=1ang=360*ts=2*pi*r*tx0=s*cos(ang)y0=s*sin(ang)x=x0+s*sin(ang)y=y0-s*cos(ang)z=06.螺旋线.笛卡儿坐标方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360))z = 10*t7.对数曲线笛卡尔坐标系方程:z=0x = 10*ty = log(10*t+0.0001)8.球面螺旋线采用球坐标系方程:rho=4theta=t*180phi=t*360*209.双弧外摆线卡迪尔坐标方程:l=2.5b=2.5x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360)10.星行线卡迪尔坐标方程:a=5x=a*(cos(t*360))^3y=a*(sin(t*360))^311.心脏线圓柱坐标方程:a=10r=a*(1+cos(theta))theta=t*36012.圆内螺旋线采用柱座标系方程:theta=t*360r=10+10*sin(6*theta)z=2*sin(6*theta)13.正弦曲线笛卡尔坐标系方程:x=50*ty=10*sin(t*360)z=014.太阳线(这本来是做别的曲线的,结果做错了,就变成这样了)15.费马曲线(有点像螺纹线)数学方程:r*r = a*a*theta圓柱坐标方程1: theta=360*t*5a=4r=a*sqrt(theta*180/pi)方程2: theta=360*t*5a=4r=-a*sqrt(theta*180/pi)由于Pro/e只能做连续的曲线,所以只能分两次做16.Talbot 曲线卡笛尔坐标方程:theta=t*360a=1.1b=0.666c=sin(theta)f=1x = (a*a+f*f*c*c)*cos(theta)/ay = (a*a-2*f+f*f*c*c)*sin(theta)/b17.4叶线(一个方程做的,没有复制)18.Rhodonea 曲线采用笛卡尔坐标系方程:theta=t*360*4x=25+(10-6)*cos(theta)+10*cos((10/6-1)*theta) y=25+(10-6)*sin(theta)-6*sin((10/6-1)*theta)19. 抛物线笛卡儿坐标方程:x =(4 * t)y =(3 * t) + (5 * t ^2)z =020.螺旋线圓柱坐标方程:r = 5theta = t*1800z =(cos(theta-90))+24*t21.三叶线圆柱坐标方程:a=1theta=t*380b=sin(theta)r=a*cos(theta)*(4*b*b-1)22.外摆线迪卡尔坐标方程:theta=t*720*5b=8a=5x=(a+b)*cos(theta)-b*cos((a/b+1)*theta) y=(a+b)*sin(theta)-b*sin((a/b+1)*theta) z=023. Lissajous 曲线theta=t*360a=1b=1c=100n=3x=a*sin(n*theta+c)y=b*sin(theta)24.长短幅圆内旋轮线卡笛尔坐标方程:a=5b=7c=2.2theta=360*t*10x=(a-b)*cos(theta)+c*cos((a/b-1)*theta) y=(a-b)*sin(theta)-c*sin((a/b-1)*theta)25.长短幅圆外旋轮线卡笛尔坐标方程:theta=t*360*10a=5b=3c=5x=(a+b)*cos(theta)-c*cos((a/b+1)*theta)y=(a+b)*sin(theta)-c*sin((a/b+1)*theta)26. 三尖瓣线a=10x = a*(2*cos(t*360)+cos(2*t*360))y = a*(2*sin(t*360)-sin(2*t*360))27.概率曲线!方程:笛卡儿坐标x = t*10-5y = exp(0-x^2)28.箕舌线笛卡儿坐标系a = 1x = -5 + t*10y = 8*a^3/(x^2+4*a^2)29.阿基米德螺线柱坐标a=100theta = t*400r = a*theta30.对数螺线柱坐标theta = t*360*2.2a = 0.005r = exp(a*theta)31.蔓叶线笛卡儿坐标系a=10y=t*100-50solvex^3 = y^2*(2*a-x)for x32.tan曲线笛卡儿坐标系x = t*8.5 -4.25y = tan(x*20)33.双曲余弦x = 6*t-3y = (exp(x)+exp(0-x))/234.双曲正弦x = 6*t-3y = (exp(x)-exp(0-x))/235.双曲正切x = 6*t-3y = (exp(x)-exp(0-x))/(exp(x)+exp(0-x))。
数学中的参数方程与曲线绘制技巧数学中的参数方程是描述曲线的一种常用方法,通过给定参数的取值范围来确定曲线上的点。
在数学与工程学科中,参数方程被广泛应用于曲线绘制、物理模型建立等领域。
本文将介绍数学中的参数方程以及相关的曲线绘制技巧。
一、参数方程的基本概念参数方程是一种用参数来表示自变量与因变量之间关系的方程。
一般形式为:x = f(t)y = g(t)其中,x和y分别表示平面直角坐标系中的横纵坐标,t为参数,f(t)和g(t)为参数的函数。
二、参数方程的绘制方法1. 确定参数范围在进行曲线绘制之前,首先要确定参数t的取值范围。
根据具体情况,选择使得曲线完整呈现的参数范围。
2. 计算曲线上的点坐标根据给定的参数方程,计算参数t对应的x和y的值,得到曲线上的点坐标。
3. 绘制曲线将计算得到的点依次连接起来,并绘制出曲线。
可以使用数学绘图工具、图形软件或者编程语言来完成曲线绘制。
三、常见的参数方程和曲线类型1. 抛物线参数方程:x = t, y = t^22. 圆参数方程:x = r*cos(t), y = r*sin(t)3. 椭圆参数方程:x = a*cos(t), y = b*sin(t)4. 螺旋线参数方程:x = cos(t)*t, y = sin(t)*t5. 心形线参数方程:x = 16*sin^3(t), y = 13*cos(t) - 5*cos(2*t) - 2*cos(3*t) - cos(4*t)四、曲线绘制技巧1. 参数范围选择根据需要绘制的曲线形状,选择适当的参数取值范围,保证曲线的完整性。
2. 曲线平滑处理如果参数方程得到的曲线有锯齿状或较为粗糙,可以通过增加参数的步长或者增加计算点的数量来获得更加平滑的曲线。
3. 参数方程与直角坐标系之间的转换有些情况下,给定的曲线是由直角坐标系方程得到的,需要将其转换为参数方程进行绘制。
这时可以通过直角坐标与参数方程之间的关系进行转换。