反射式光纤传感器接收光功率理论分析
- 格式:pdf
- 大小:214.44 KB
- 文档页数:3
实验1 LED 光源I —P 特性曲线测试发光二极管简称LED (Lifght Emitting Diode ),是目前比较常用的半导体光源。
它的输出光功率(P )随驱动电流(I )的变化而变化。
因此测量LED 光源的I —P 特性曲线具有非常重要的理论意义和工程应用意义。
一、实验原理1、LED 光源的结构及发光机理LED 光源是一种固态P —N 结器件,属冷光源,其发光机理是电致发光。
在电场作用下,半导体材料发光是基于电子能级跃迁的原理。
当发光二极管的P —N 结上加有正向电压时,外加电场削弱内建电场,使空间电荷区变窄,裁流子扩散运动加强。
由能带理论可知,当导带中的电子与价带中的空穴复合时,电子由高能级向低能级跃迁,同时电子将多余的能量以光子的形式释放出来,产生电致发光现象。
光子能量大小取决于半导体材料的禁带宽度E g (E g =E 1-E 0),能量越大,发出光波的波长就越短,即gE hc =λ (1-1)其中c 为光速,h 为普朗克常数。
另外,LED 光源发出的光谱有一定的宽度。
这是因为:第一、两个能带都有一定宽度,所以跃迁的起点、终点都有一定范围,导致了光谱具有一定宽度;第二、实际上半导体内的复合是复杂的,除了本征复合(电子直接从导带跃迁到价带,与电子复合,同时发射出光子)之外,还存在导带与杂质能级、价带与杂质能级及杂质能级之间的跃迁。
本实验仪采用的LED 光源中心波长为0.89μm 。
2、PIN 型光电二极管的结构和工作原理光电二极管通常是在反向偏压下工作的光效应探测器。
光电二极管的基本结构是PN 结。
外加反偏电压方向与PN 结内电场方向一致,当PN 结及其附近被光照射时就产生光生载流子,光生载流子在热垒区电场作用下漂移过结,参与导电。
当入射光强变化时,光生载流子浓度及通过外电路的光电流也随之变化,这种变化特性在入射光强很大的范围内保持线性关系,从而保证了光功率在很大范围内与电压有如下线性关系p =kU (1-2)其中P 为光功率,U 为PN 结端电压,k 为比例系数。
光纤传感器工作原理
光纤传感器是一种利用光的传输特性进行测量和检测的装置。
它通过光纤将光信号从发射端传输到接收端,并通过对光信号的变化进行分析,来实现对待测物理量的检测。
光纤传感器的工作原理主要基于光的折射和干涉原理。
当光线从一种介质传输到另一种介质时,光线的传播方向会发生偏折,这个现象称为光的折射。
光纤传感器利用折射现象来实现对环境或待测物理量的测量。
一种常见的光纤传感器工作原理是基于光纤的弯曲或拉伸效应。
当光纤受到外力作用,被弯曲或拉伸时,光线在光纤中的传输路径会发生变化,从而导致光信号的强度、相位或频率发生变化。
通过测量这些变化,可以得到外力的大小或物体的形变情况。
另一种常见的光纤传感器工作原理是基于光的干涉效应。
当光线从光纤的一端传输到另一端时,如果光线在传输过程中遇到了待测物理量引起的干扰,例如温度变化、压力变化等,干涉现象就会发生。
通过检测干涉光信号的强度或相位差的变化,可以得到待测物理量的信息。
除了上述的基本工作原理,光纤传感器还可以利用光纤的吸收、散射、散射等特性进行测量和检测。
总之,光纤传感器通过光的传输特性和与环境或待测物理量的相互作用,实现对目标物理量的测量和检测。
11光控定位光纤开关——光纤式传感器的测试项目描述•光纤开关与定尺寸检测装置是利用光纤中光强度的跳变来测出各种移动物体的极端位置,如定尺寸、定位、记数等。
特别是用于小尺寸工件的某些尺寸的检测有其独特的优势。
如图11-1所示,当光纤发出的光穿过标志孔时,若无反射,说明电路板方向放置正确。
•通过本项目的学习。
•主要给大家介绍光纤•式传感器(简称光纤•传感器)工作原理及•相关传感器。
知识准备•光纤传感器的结构和原理•(一)光纤• 1. 光纤结构•光纤透明、纤细,虽比头发丝还细,却具有能把光封闭在其中,并沿轴向进行传播的特征。
中心的圆柱体叫作纤芯,围绕着纤芯的圆形外层叫作包层。
纤芯和包层主要由不同掺杂的石英玻璃制成。
光纤的结构光缆的外形及光纤的拉制各种装饰性光导纤维发光二极管产生多上海东方明珠种颜色的光线,通过光导纤维传导到东方明珠球体的表面。
在计算机控制下,可产生动态图案。
光纤的类型阶跃型:光纤纤芯的折射率分布各点均匀一致,称为多模光纤。
梯度型:梯度型光纤的的折射率呈聚焦型,即在轴线上折射率最大,离开轴线则逐步降低,至纤芯区的边沿时,降低到与包层区一样。
常用光纤类型及参数如表所示。
纤芯直径包层直径 /m m /mm 类型 单模 折射率分布 数孔径 值 2~880~1250.10~0.15 多模阶跃光纤(玻璃)80~200100~2500.1~0.3 多模阶跃光纤(玻璃/塑料)200~1000230~12500.18~0.50 50~100125~1500.1~0.2 多模梯度光纤2.光纤的传输原理•(1)光的折射定律•当光由光密物质(折射率n)入射至光疏物质(折射率n)时12发生折射光的反射、折射当一束光线以一定的入射角θ1从介质1射到介质2的分界面上时,一部分能量反射回原介质;另一部分能量则透过分界面,在另一介质内继续传播。
光的全反射当减小入射角时,进入介质2的折射光与分界面的夹角将相应减小,将导致折射波只能在介质分界面上传播。
大学物理光纤传感器实验报告一、实验目的1、了解光纤传感器的工作原理和基本结构。
2、掌握光纤传感器测量位移、温度等物理量的方法。
3、学会使用相关仪器对光纤传感器的性能进行测试和分析。
二、实验原理光纤传感器是一种将被测对象的状态转变为可测的光信号的传感器。
它基于光在光纤中传输时的特性,如光的强度、波长、相位等会受到外界因素的影响而发生变化。
在位移测量中,通常利用光纤的微弯损耗原理。
当光纤发生弯曲时,光在纤芯和包层界面的全反射条件被破坏,从而导致光的传输损耗增加。
通过测量光强的变化,可以得到光纤的弯曲程度,进而推算出位移量。
在温度测量中,常采用光纤的热光效应或热膨胀效应。
热光效应指的是光纤材料的折射率随温度变化而改变,从而影响光的传输特性;热膨胀效应则是光纤的长度随温度变化而伸长或缩短,导致光程发生改变。
三、实验仪器1、光纤传感器实验仪:包括光源、光纤探头、光电探测器、信号处理电路等。
2、位移台:用于精确控制位移量。
3、温控箱:提供稳定的温度环境。
4、数字示波器:用于观测和记录电信号。
5、计算机:用于数据采集和处理。
四、实验步骤1、位移测量实验连接好实验仪器,打开光源和信号处理电路。
将光纤探头固定在位移台上,调整探头与被测物体的初始距离。
缓慢移动位移台,改变探头与被测物体的距离,同时观察数字示波器上输出信号的变化。
记录不同位移量对应的输出电压值,并绘制位移电压曲线。
2、温度测量实验将光纤探头放入温控箱中,设置不同的温度值。
等待温度稳定后,记录数字示波器上的输出电压值。
绘制温度电压曲线。
五、实验数据及处理1、位移测量实验数据|位移(mm)|输出电压(V)|||||00|05||05|12||10|18||15|23||20|28|以位移为横坐标,输出电压为纵坐标,绘制位移电压曲线。
通过对曲线进行拟合,可以得到位移与输出电压之间的线性关系。
2、温度测量实验数据|温度(℃)|输出电压(V)|||||200|08||300|15||400|21||500|28||600|35|同样以温度为横坐标,输出电压为纵坐标,绘制温度电压曲线。
光纤电流传感器故障诊断实验分析综述在光纤电流传感器故障诊断中,为了防止出现误判,需要进行标定实验先测量出在正常运行时由于温度的影响,光路中传输光的光功率波动范围。
根据本文第二章搭建的实验平台,首先进行标定实验测定光纤电流传感器在不同温度下正常运行时光功率的范围,以此为正常参考范围值。
若输出光功率在正常参考范围内,则判断为正常;否则,则判定为故障。
然后进行验证实验测试本文所设计的方法是否能正确检测出光纤电流传感器所出现的各类故障。
1.1.1标定实验为了避免正常情况下由于温度对光功率的影响而引起故障误判,我们首先对FOCS进行了温度循环实验[36],确定了FOCS在温度变化为-40℃~70℃下正常工作时的光功率变化范围,由此确定了光功率的正常波动范围。
温升实验按照国家标准《电子式电流互感器GB/T 20840.8--2007》,实验场地的环境温度为20℃,符合标准中的10℃和30℃之间,当地海拔为397米,符合标准中正常使用条件下海拔不超过1000米的要求。
供电电源的电压、电流、频率、纹波等满足相关技术要求。
温升测量使用18B20温度传感器,光纤电流传感器采集单元和光纤圈均置于温箱内。
待测电流等效值为320A,光纤电流传感器采集单元输出两路信号给计算机LabVIEW,分别为测量电流值和光功率值。
在第二章所搭建的实验平台上,用于需要进行温度循环试验,增加了温箱。
为了满足所需要的温度变化范围和速率,所采用的温箱的最大温度变化范围为-40℃至100℃,温度最快变化速率为5℃/min。
首先在室温下(20℃)将光纤电流传感器采集单元和传感光纤圈均放入温箱,为了使温度传感器测得的温度为传感器采集单元的温度,18B20传感头贴着传感器采集单元外壳放置,温度传感器采集单元不耐高温,需要摆放在温箱外,传输线穿过温箱穿线孔与传感头相连。
计算机两个串口分别与温度传感器采集单元、光纤电流传感器采集单元相连,以便完成对实时测量温度数据和传感器输出的光功率值和测量电流值的传输。
课程设计报告学院(系):物理与材料工程专业:光电子技术科学课程:光功率计制作姓名:学号:指导教师:完成日期:__2014年 5 月 6 日___摘要本文以QE65000型光纤光谱仪为核心,设计了一套可以实现反射式吸收光谱测量的实验系统,该系统由表面反射式测量探头,Y型光纤,QE65000光纤光谱仪以及控制计算机组成,光源采用卤钨灯,实现400nm-1000nm光谱区域表面吸收光谱测量。
本实验利用QE65000光纤光谱仪软件,实现了光谱数据的实时获取。
对于获取的光谱数据进行背景扣除可得到表面的反射光谱。
在完成标准板光谱测量后,通过计算吸收率并使用ORIGIN 软件进行处理,从而得到表面的吸收光谱曲线。
利用该系统对人的皮肤进行了测量,结果表明400nm-700nm波段可以对人的肤色进行判定,700nm-1000nm波段可以对人体的血液进行测定,正常人的谱线没有特殊波动。
关键词:皮肤光谱,反射光谱,血液光谱,QE65000光纤光谱仪目录摘要 (1)1 绪论 (3)1.1 概述 (3)1.2 光功率计定义 (3)1.3 光功率计工作原理 (3)1.4光功率计的选择31.5光功率计的方式41.6本论文的主要工作42 各部分工作原理 (4)3.1 光电转换工作原理 (4)3.2 运算放大电路工作原理 (5)3.3 A/D转换工作原理 (5)3 设计工序 (6)4 皮肤吸收特性实验 (6)结论 (10)参考文献 (11)1 绪论1.1 概述光功率计主要用于测量光信号的强弱,目前测量光功率的方法有两种,一种是热转换方式,一种是半导体光电检测方式。
前一种的光谱响应曲线平坦、准确度高,但是成本高,响应时间长,用半导体光电检测可以得到比较高的探测灵敏度和响应速度。
光功率计在光通信和光纤传感等新技术领域中测试中测试光功率光衰减量是必不可少的仪器之一。
同时国内所需的光功率计大多依靠进口,国外光功率计价格普遍偏高,所需配件品种多,使用操作也比较复杂。