当前位置:文档之家› 牵引供电系统课程设计

牵引供电系统课程设计

牵引供电系统课程设计
牵引供电系统课程设计

牵引供电系统课程设计

电力牵引供电系统课程设计

专业:电气工程及其自动化

班级:电气

姓名:

学号:

指导教师:

兰州交通大学自动化与电气工程学院

2013 年7月12日

电力牵引供电系统课程设计报告

目录

1 设计原始题目 (1)

1.1 具体题目 (1)

1.2 要完成的内容 (1)

2 设计课题的计算与分析 (1)

2.1 计算的意义 (1)

2.2 详细计算 (2)

(1)年运量和供电距离的分析 (3)

(2)供电方式的优缺点 (3)

(3)电源侧主接线 (3)

(4)牵引变压器主接线 (4)

(5)牵引侧主接线 (4)

3 小结 (5)

参考文献 (5)

附录一复线AT牵引供电方式 (7)

1 设计原始题目

1.1 具体题目

某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的两个方向供电区段供电,已知列车正常情况的计算容量为27000 kVA(三相变压器),并以10kV 电压给车站电力照明机务段等地区负荷供电,容量计算为2700 kVA ,各电压侧馈出数目及负荷情况如下:25kV 回路(1路备):两方向年货运量与供电距离分别为 503011?=L Q Mt·km ,304022?=L Q Mt·km ,=?q 120kWh/10kt·km 。10kV 共4回路(2路备)。

供电电源由系统区域变电所以双回路110kV 输送线供电。本变电所位于电气化铁路的首端,送电线距离30km ,主变压器为SCOTT 接线。

1.2 要完成的内容

在保证电气化铁道供电安全可靠和供电设备得到最经济的利用的情况下,通过对已有的计算公式进行了分析,选择合适的110kV 侧和馈线侧主接线形式,并选择变压器的备用方式,绘制牵引变电所的电气主接线。

2 设计课题的计算与分析

2.1 计算的意义

在保证电气化铁道供电安全可靠的同时,也要求供电设备最经济的利用,因此选择合适容量的变压器是很有现实意义的。本文在这方面对已有的计算公式进行了分析,并提出了一个较为准确的变电所有效电流公式,说明在某些情况下机组的选择必须进一步考虑实际的运行情况。牵引变电所是电气化铁路牵引供电系统的核心部分,它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及连接方式。通过电气主接线可以了解牵引变电所设施的规模大小、设备情况。

由上述资料可知,本牵引变电所担负着重要的牵引负荷供电任务(一级负荷),馈线数目多、影响范围广,应保证安全可靠的供电。10KV 地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其它自动装置等,应有足够的可靠性。

牵引变压器是牵引供电系统的重要设备,其容量大小关系到能否完成国家交给的运输任务的问题。从安全运行和经济方面来看,容量过小会使牵引变压器长期过载,将造成其寿命缩短,甚至烧毁;反之,容量过大将使牵引变压器长期不能满载运行,从而造成其容量浪费,损耗增加,使运营成本增大。因此,在进行

牵引变压器容量计算时,正确地确定计算条件,以合理地选定牵引变压器的额定容量是十分重要的。

2.2 详细计算

三相牵引变压器的计算容量是由牵引供电计算求出的。本变电所考虑为固定备用方式,按故障检修时的需要,应设两台牵引用主变压器,地区电力负荷因有一级负荷,为保证变压器检修时不致断电,也应设两台。

由已知牵引负荷量,可知25kV 侧的额定电流e I 为:

=e I U S 3/=623)253(27000=?(A) 即各侧的最大电流。 SCOTT 变压器计算容量公式为:

当Mx Tx I I >时,Tx UI S 2=(kVA) (2.1)

当Tx Mx I I >时223Tx

Mx I I U S += (kVA) (2.2) 校核容量公式为:

当max max M T I I >时,max max 2T b UI S =(kVA) (2.3)

当Tx Mx I I >时,2

max 2max max 3T M b I I U S +=(kVA) (2.4)

k S S b max =校核(kVA)(k=1.5) (2.5) 方案A :当Mx Tx I I >时,假设M I =0、T I =Tx I

max max 2T b UI S =(kVA )31150623252=??=(kVA) (2.6)

当Tx Mx I I >时,假设T I =0,M I =Mx I

2

max 2max max 3T M b I I U S +==9.2697525623306233252=??=+??

(k VA) (2.7)

校核容量为取两者较大的,所以:31150max =b S (kVA)

k S S b max =校核(kVA) =31550/1.5=20767 (kVA) (2.8) 安装容量为:S =31500(kVA) 10KV 侧的额定电流'e I 为:

同理:'e I =U S 3/=5.148)5.103(2700=? (kVA) (2.9)

校核容量为:S =3118.5(kVA) 安装容量为:S =6300 (kVA) (最小容量)

方案B :由已知牵引负荷量,可知55kVA 侧的额定电流e I 为:

=e I 4.283)553(27000=?(A) 既是各侧的最大电流。

当Mx Tx I I >时,假设M I =0、T I =Tx I

max max 2T b UI S =(kVA)311744.283552=??=(kVA) (2.10)

当Tx Mx I I >时,假设T I =0,M I =Mx I

2max

2max max 3T M b I I U S +==22710554.238304.2383552

=??=+??(kVA) 校核容量取两者较大的,所以:31174max =b S (kVA)

k S S b max =校核(kVA) =207835.131174=(kVA)

安装容量为:应该为25000=S (kVA) ;但考虑到变压器长期过负荷减小使用寿命,所以这里安装容量取31500=S (kVA)

根据原始资料和各种负荷对供电可靠性要求,采用以下方案:

2×31500kVA 牵引变压器+2×6300kVA 地区变压器,一次侧同时接于110 kV 母线,采用AT 供电方式。(110千伏变压器最小容量为6300kVA) (1)年运量和供电距离的分析

由题意知:25kV 回路(1路备):两方向年货运量与供电距离分别为11L Q = 30?50Mt ·km ,22L Q = 40?30Mt·km ,q ? = 120kWh/10kt ·km 。10kV 共4回路(2路备)。

故两方向上的年电量消耗为: 1W =q ?11L Q T=1576800MW

2W =q ?22L Q T=1261440MW

所以,每公里上的年消耗电量为:1W ?=52560MW ,1W ?=31536MW 因为AT 供电方式适应于两供电臂不平衡的情况,所以方案符合要求。 (2)供电方式的优缺点

AT 供电方式无需进步牵引网的绝缘程度即可将供电电压进步一倍。在相同的牵引负荷条件下,接触悬挂和正馈线中的电流大致可减少一半。AT 供电方法牵引网单位阻抗约为BT 供电方法牵引网单位阻抗的1/4左右。从而提高了牵引网的供电能力,大大减小了牵引网的电压损失和电能损失。由于AT 供电方法无需在AT 处将接触悬挂履行电分段,故当牵引重载运行的高速度、大电流电力机车通过AT 处时,受电弓上不存在发生强烈电弧,能满足高速、重载列车运输的须要。同时,AT 供电方法对附近通讯线的综合防护后果要优于直接供电方法。

但AT 供电方式构造比较复杂。在开闭所、分区所、AT 所以及主变压器副边中点不接地的牵引变电所都设置自耦变压器等。牵引网中除了接触悬挂和正馈线之外,还有维护线PW 、横向联接线、帮助联接、横向联接、放电器等,所以,AT 供电方法的工程投资要大于直接供电方式,相应的施工、维修和运行也比直供方式的工程投资大。 (3)电源侧主接线

当牵引变电所只有两电源进线和两台主变压器时,常在电源线路间用横向母线将它们连接起来,即构成桥形接线。根据中间横向母线的位置不同而分为内桥接线和外桥接线两种,前者的桥接母线连接在靠变压器侧,而后者则连接在靠线路侧。高压侧采用线路——变压器组的单元接线形式,正常是一台工作,一台备用。

两台自用变压器分别接于两台变压器的二次侧,采用二相——三相的SCOTT反变换获得三相电源。

(4)牵引变压器主接线

在该变电所中采用SCOTT牵引变压器,在电气主线图中它们的公共端接至接地网和钢轨;SCOTT变压器主接线如图1。

图1 直接供电方式下SCOTT变压器主

结线

(5)牵引侧主接线

27.5 kV侧馈线的接线方式按馈线断路器备用方式不同可分为三种接线方式,馈线断路器100%备用的接线,馈线断路器50%备用方式,带旁路母线和旁路断路器的接线。AT供电方案采用的接线方式如图2。

图2 复线区段SCOTT变压器AT供电方式

馈电线主接线

3 小结

本次课程设计中有变压器容量、技术指标、短路电流等的计算及设备的选型和校验。通过查阅有关资料,了解到斯科特接线牵引变电所是一种特殊的变电所。这种变电所的主接线复杂,设备较多,工程投资很大,同时这种变电所的维护和检修的工作量也是比较大的。但是这种牵引变电所有一个很好的优点,那就是这种接线方式可以使变压器的容量得到充分的利用。为了充分证明斯科特接线牵引变电所的这种优点,我在设计过程中尽量做到多查阅资料,认真计算每一个公式,尽量做到所得的结果符合设计规范的要求。

参考文献

[1] 铁道部电气化局电气化勘测设计院.电气化铁

路设计手册-牵引供电系统.北京:中国铁道出版社,1987.

[2] 贺威俊简克良.电气化铁道供变电工程.北京:铁道出版社,1983.

[3] 李彦哲,胡彦奎,王果等.电气化铁道供电系统与设计[M].兰州:兰州大学出版社,2006.

[4] 贺威俊,简克良.电气化铁道共变电工程[M].北京:铁道出版社,1983.

[5] 刘国亭. 电力工程CAD[M].北京:中国水利水电出版社,2006.

[6] 汤蕴缪,史乃.电机学[M].北京:机械工业出版社,2005.

[7] 张保会,尹项根.电力系统继电保护[M].北京:中国电力出版社,2005.

附录一 复线AT 牵引供电方式

110kV 110kV

TV AT

AT 2B

F T

FNT

T F

左供电臂上行

左供电臂下行

右供电臂上行

右供电臂下行

电容补偿器

双T 接线的Scott 变压器复线电气化铁路供电牵引变电所主接线

TV

10kV

10kV

QS QS

QS QS

斯科特变压器

逆斯科特55kV T M F M T T T T

27.5kV

27.5kV

27.5kV

27.5kV

AT

AT

电容补偿器

1B

逆斯科特

供用电系统课程设计报告

供用电系统课程设计报告

供用电系统课程设计 (报告书范例) 姓名: 班级: 学号: 时间:

工厂供电课程设计任务书 一、设计题目:XX机械厂降压变电所的电气设计。 二、设计要求: 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂生产的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置与形式,确定变电所主变压器的台数与容量、类型,选择变电所主结线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护装置,确定防雷和接地装置,最后按要求写出设计说明书,绘出设计图样。 三、设计依据: 1.工厂总平面图: 2.工厂负荷情况:本厂多数车间为两班制,年最大负荷利用小时为2500h,日最大负荷持续时间为5h。该厂除铸造车间、电镀车间和锅炉房属二级负荷外,其余均属三级负荷。低压动力设备均为三相,额定电压为380V。电气照明及家用电器均为单相,额定电压为220V。本厂的负荷统计资料如表1所示。

表1 工厂负荷统计资料 3.供电电源情况:按照工厂与当地供电部门签订的供电协议规定,本厂可由附近一条10KV的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线牌号为LGJ-150,导线为等边三角形排列,线距为1.5m;干线首端(即电力系统的馈电变电站)距离本厂约7km。干线首端所装设的高压断路器断流容量为500MVA。此断路器配备有定时限过流保护和电流速断保护,定时限过电流保护整定的动作时间为1.7s。为满足工厂二级负荷的要求,可采用高压联

络线由邻近的单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为50km,电缆线路总长度为20km。 4.气象资料:本场所在地区的年最高气温为35o C,年平均气温为23o C,年最低气温为-8o C,年最热月平均最高气温为33o C,年最热月平均气温为26 o C,年最热月地下0.8m处平均温度为250C。当地主导风向为东北风,年雷暴日数为20。 5.地质水文资料:本厂所在地区平均海拔500m,地层以沙粘土为主;地下水位为1m。 6.电费制度:本厂与当地供电部门达成协议,在工厂变电所高压侧计量电能,设专用计量柜,按两部电费制交纳电费。每月基本电费按主变压器容量计为15元/kVA,动力电费为0.2元/kW.h,照明(含家电)电费为0.5元/kW.h。工厂最大负荷时的功率因数不得低于0.9。此外,电力用户需按新装变压器容量计算,一次性地向供电部门交纳供电贴费:6~10kV为800元/kVA。 四、设计任务: 要求在规定时间内独立完成下列工作量: 1、设计说明书,需包括: 1)前言。2)目录。3)负荷计算和无功功率补偿。4)变电所位置和型式的选择。5)变电所主变压器台数和容量、类型的选择。6)变电所主结线方案的设计。7)短路电流的计算。8)变电所一次设备的选择与校验。9)变电所进出线的选择和校验。10)变电所继电保护的方案选择。11)附录——参考文献。

供配电工程课程设计-10KV变电所电气设计

供配电工程课程设计任务书 1.题目 能动学院10kV变电所电气设计 2.原始资料 2.1 课题原始资料 工程概况地下室为自行车库,地上五层,集实验室、办公室、研究室等综合性建筑。框架结构,现浇楼板,共有南北两栋楼。根据工程的总体规划,学院楼拟用两台变压器,一用一备,两路10kV电源进线引自校内10kV总配电所,变压器设在北楼一层的室内。现已建一台10/0.38kV变压器,另一台为二期工程,二级负荷的备用电源引自校内10kV总配电所。在南楼设置总配电间,电源引自北楼变电所。本工程消防负荷(如排烟风机、消防电源、应急照明、防火卷帘等)、弱电电源、客梯电力等为二级负荷,其余照明、空调、实验用电等均为三级负荷。二级负荷采用双回路(分别引自两段低压母线)供电,消防负荷采用双回路供电,两路电源末端配电箱自动切换;三级负荷采用单回路供电。 电力负荷:

2.2 供电条件 (1)供电部门110/10kV变电所位于工程附近1.5km处,10kV母线短路电流为20kA,根据需要可提供给用户1路或2路10kV专线供电。 (2)采用高供高计,要求月平均功率因数不少于0.95。不同电价负荷,计量分开。如学校用电统一执行居民电价,公共建筑执行商业照明电价、非工业动力电价,工业企业生产用电统一执行大工业电价、职工生活用电执行居民电价。 (3)供电部门要求用户变电所高压计量柜在进线主开关柜之前,且第一柜为隔离柜。 2.3 其他资料 当地最热月的日最高气温平均值为38℃,年最热月地下0.8m处最高温度平均值为25℃。当地年雷暴日数为35天。当地地质平坦,海拔高度为100m,土壤为普通粘土。 3.具体任务及技术要求 本次课程设计共1.5周时间,具体任务与日程安排如下: 第1周周一:熟悉资料及设计任务,负荷计算与无功补偿、变压器选择。 周二:供配电系统一次接线设计,设计绘制变电所高压侧主接线图。 周三:设计绘制变电所低压侧主接线图。 周四:设计绘制变电所低压侧主接线图。

电力系统分析毕业设计

目录 引言 (1) 1 电力系统有功功率平衡及发电厂装机容量的确定 (2) 2 确定电力网的最佳接线方案 (4) 2.1 方案初选 (4) 2.2 方案比较 (5) 2.3 最终方案的确定 (18) 3 发电厂及变电所电气主接线的确定 (18) 3.1 电气主接线的设计原则 (18) 3.2 发电厂电气主接线的设计原则及选择 (19) 3.3 变电所电气主接线的设计原则 (19) 3.4 主接线方案确定 (20) 4 选择发电厂及变电所的主变和高压断路器 (20) 4.1 发电厂及变电所主变压器的确定 (20) 4.2 短路电流计算 (23) 4.3 高压断路器的选择与校验 (37) 5 各种运行方式下的潮流计算 (42) 5.1 潮流计算的目的和意义 (42) 5.2 丰水期最大负荷的潮流计算 (43) 5.3 丰水期最小负荷的潮流计算 (49) 6 电力系统无功功率平衡及调压计算 (55) 6.1 电力系统无功功率平衡 (55) 6.2 调压计算 (56) 7 浅谈电力网损耗及降损节能措施 (60) 7.1 损耗计算 (61) 7.2 电网电能损耗形成的主要原因 (62) 7.3 降损节能的措施 (64) 参考文献 (68) 谢辞 (69) 附录一计算机潮流计算程序: (71)

引言 本次设计的课题内容为电力网规划设计及降损措施的分析,是电气工程及其自动化专业学生学习完该专业的相关课程后,在毕业前夕所做的一次综合性的设计。 该次毕业设计的目的在于:将所过的主要课程进行一次较系统而全面的总结。将所学过的专业理论知识,第一次较全面地用于实践,用它解决实际的问题,而从提高分析能力,并力争有所创新。初步掌握电力系统(电力网)的设计思路,步骤和方法,同时学会正确运用设计手册,设计规程,规范及有关技术资料,掌握编写设计文件的方法。 其意义是对所学知识的进行总的应用,通过这次设计使自己能更好的掌握专业知识,并锻炼自己独立思考的能力和培养团结协作的精神。此外,在计算机CAD绘图及外文资料的阅读与翻译方面也得到较好的锻炼.。 本设计是电力系统的常规设计,主要设计发电厂和变电所之间如何进行科学、合理、灵活的调度,把安全、经济、优质的电能送到负荷集中地区。发电厂把别种形式的能量转换成电能,电能经过变电所和不同电压等级的输电线路输送被分配给用户,再通过各种用电设备转换成适合用户需要的各种能量。这些生产、输送、分和消费电能的各种电气设备连接在一起而组成的整体称为电力系统。本设计是一门涉及科学、技术、经济和方针政策等各方面的综合性的应用技术科学。 设计的基本任务是工程建设中贯彻国家的基本方针和技术经济政策,做出切合实际、安全使用、技术先进、综合经济效益好的设计,有效地为国家建设服务。从电力系统的特点出发,根据电力工业在国民经济的地位和作用,决定了对电力系统运行要达到以下的技术要求:保证安全可靠的供电;保证良好的电能质量;保证电力系统运行的经济性。

工厂供电课程设计报告

工厂供电课程设计报告 题目XX机械厂降压变电所的电气设计 姓名 学号 班级 指导老师 完成日期2014.5.24

一、设计任务书 (一)设计题目 xx机械厂降压变电所的电气设计 (二)设计要求 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂生产的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置与型式,确定变电所主变压器的台数与容量、类型,选择变电所主结线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护装置,确定防雷和接地装置,最后按要求写出设计说明书,绘出设计图样。 (三)设计依据 1.工厂总平面图 图11—2××机械厂总平面图 2.工厂负荷情况本厂多数车间为两班制,年最大负荷利用小时为4200h,日最大负荷持续时间为6 h。该厂除铸造车间、电镀车间和锅炉房属二级负荷外,其余均属三级负荷。低压动力设备均为三相,额定电压为380V。电气照明及家用电器均为单相,额定电压为220V。本厂的负荷统计资料如表1—74所示。? 表1-74 工厂负荷统计资料

3.供电电源情况按照工厂与当地供电部门签订的供用电协议规定,本厂可由附近一条10 kV 的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线牌号为LGJ -150,导线为等边三角形排列,线距为1.5m;干线首端(即电力系统的馈电变电站)距离本厂约6 km。干线首端所装设的高压断路器断流容量为500 MV A。此断路器配备有定时限过电流保护种电流速断保护,定时限过电流保护整定的动作时间为1.6s。为满足工厂二级负荷的要求,可采用高压联络线由邻近的单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为70 km,电缆线路总长度为15 km。 4.气象资料本厂所在地区的年最高气温为35℃,年平均气温为26℃,年最低气温为-100C,年最热月平均最高气温为35℃,年最热月平均气温为27℃,年最热月地下o.8m处平均温度为24℃。当地主导风向为东南风,年雷暴日数为15。 5.地质水文资料本厂所在地区平均海拔600m。地层以粘土(土质)为主;地下水位为3m。 6.电费制度本厂与当地供电部门达成协议,在工厂变电所高压侧计量电能,设专用计量柜,按两部电费制交纳电费。每月基本电费按主变压器容量计为18元/kV A,动力电费为0.20元/kw·h,照明(含家电)电费为0.56元/kw·h。工厂最大负荷时的功率因数不得低于0.9。此外,电力用户需按新装变压器容量计算,一次性地向供电部门交纳供电贴费:6~lOkV为800元/kV A 二、设计说明书 (一)负荷计算和无功功率补偿

电力系统课程设计

《 电力系统课程设计《三相短路故障分析计算机算法设计》 一. 基础资料 1. 电力系统简单结构图如图 25MW cos 0.8N ?=cos 0.85 N ?=''0.13 d X =火电厂 110MW 负载 图1 电力系统简单结构图 '' 0.264 d X = 2.电力系统参数 如图1所示的系统中K (3) 点发生三相短路故障,分析与计算产生最大可能的故障电流 和功率。 (1)发电机参数如下: 发电机G1:额定的有功功率110MW ,额定电压N U =;次暂态电抗标幺值'' d X =,功率因数N ?cos = 。 … 发电机G2:火电厂共两台机组,每台机组参数为额定的有功功率25MW ;额定电压U N =; 次暂态电抗标幺值'' d X =;额定功率因数N ?cos =。 (2)变压器铭牌参数由参考文献《新编工厂电气设备手册》中查得。 变压器T1:型号SF7-10/,变压器额定容量10MV ·A ,一次电压110kV ,短路损耗59kW ,

空载损耗,阻抗电压百分值U K %=,空载电流百分值I 0%=。 变压器T2:型号,变压器额定容量·A ,一次电压110kV ,短路损耗148kW ,空载损耗,阻抗电压百分值U K %=,空载电流百分值I 0%=。 变压器T3:型号SFL7-16/,变压器额定容量16MV ·A ,一次电压110kV ,短路损耗86kW ,空载损耗,阻抗电压百分值U K %=,空载电流百分值I 0%=。 (3)线路参数由参考文献《新编工厂电气设备手册》中查得。 线路1:钢芯铝绞线LGJ-120,截面积120㎜2 ,长度为100㎞,每条线路单位长度的正 序电抗X 0(1)=Ω/㎞;每条线路单位长度的对地电容b 0(1)=×10﹣6 S /㎞。 对下标的说明 X 0(1)=X 单位长度(正序);X 0(2)=X 单位长度(负序)。 / 线路2:钢芯铝绞线LGJ-150,截面积150㎜2 ,长度为100㎞,每条线路单位长度的正 序电抗X 0(1)=Ω/㎞;每条线路单位长度的对地电容b 0(1)=×10﹣6 S /㎞。 线路3:钢芯铝绞线LGJ-185,截面积185㎜2 ,长度为100㎞,每条线路单位长度的正 序电抗X 0(1)=Ω/㎞;每条线路单位长度的对地电容b 0(1)=×10﹣6 S /㎞。 (4)负载L :容量为8+j6(MV ·A ),负载的电抗标幺值为=* L X ** 22 *L L Q S U ;电动机为2MW ,起动系数为,额定功率因数为。 3.参数数据 设基准容量S B =100MV ·A ;基准电压U B =U av kV 。 (1)S B 的选取是为了计算元件参数标幺值计算方便,取S B -100MV ·A ,可任意设值但必须唯一值进行分析与计算。 (2)U B 的选取是根据所设计的题目可知系统电压有110kV 、6kV 、10kV ,而平均额定电压分别为115、、。平均电压U av 与线路额定电压相差5%的原则,故取U B =U av 。 / (3)'' I 为次暂态短路电流有效值,短路电流周期分量的时间t 等于初值(零)时的有效值。满足产生最大短路电流的三个条件下的最大次暂态短路电流作为计算依据。 (4)M i 为冲击电流,即为短路电流的最大瞬时值(满足产生最大短路电流的三个条件 及时间K t =)。一般取冲击电流M i =2×M K ×''I ='' I 。 (5)M K 为短路电流冲击系数,主要取决于电路衰减时间常数和短路故障的时刻。其范围为1≤M K ≤2,高压网络一般冲击系数M K =。 二.设计任务及设计大纲 1.各元件参数标幺值的计算,并画电力系统短路时的等值电路。 (1)发电机电抗标幺值 N B G G P S 100%X X ?= N ?cos 公式①

供配电课程设计报告

目录 第一章供配电与电气照明系统概述 (2) 第二章照明系统的设计 (3) 2.1照明设计的负荷的选取与原则 (3) 2.2 照明设计的目的和原则 (4) 2.3 照明的分类方式 (4) 2.4照明灯具的要求 (6) 2.5照度计算 (7) 第三章电气设备的选型 (10) 3.1 开关的选型 (10) 3.2 插座的选型 (11) 3.3 断路器的选型 (12) 第四章供配电系统设计 (13) 4.1 负荷分级 (13) 4.2 负荷计算 (13) 参考文献 (16) 附录 (17)

摘要 西安建筑科技大学草堂校区13,14,15,16号楼总建筑面积33160平方米。由四栋楼组成一个教学楼系统,运用供配电照明的相关知识与实际的规范进行设计。根据本次供配电课程设计的要求,本设计方案考虑了教学楼作为公共建筑的设计要求,遵照建筑电气照明规范,民用住宅电气设计规范,建筑电气消防规范以及建筑防雷设计规范的要求,并根据学校建筑功能的实际要求,来完成相关的设计,根据照度计算和负荷计算选取相应的配电箱,灯具,导线,以及断路器等相关的电气设备,并根据实际计算值选取相应的大小。教学楼由四个部分,在一层相互独立二层以上相互连接,本楼电源从室外埋地电缆引入楼总箱,再由总箱引出连入每个单元的层箱,由层箱引出至每一层的用户配电箱,一般照明为三级负荷,电压等级为380V/220V,三相五线制引至各配电总箱。 照明系统设计,其中包括照度计算、灯具的选择、照明干线、插座导线截面积的选择以及导线的敷设方式。插座系统按高档住宅标准设计。插座回路与照明回路由同支路供电,一般插座安装高度为0.3米,潮湿场所应装设防潮、防溅型的插座接地系统采用TN—C—S系统。 关键词:照明设计;插座设计;照度计算;天正电气CAD。

电力工程课程设计报告001解析

1.某重型机械制造厂35KV总降变电所及高压配电系统设计 设计依据原始资料如下: (1)工厂总平面布置图 (2)生产任务、规模及产品规格:本厂承担某大型钢铁联合企业各附属厂的大型电机、变压器、锅炉配件制造任务。年生产规模为制造大型电机配件7500台,总容量为45万kw ,制造电机总容量6万kw ,制造单机最大容量为5520kV?A ;生产电气配件60万件。本厂为某大型钢铁联合企业重要组成部分。 (3)工厂各车间负荷情况及转供负荷情况如表1所示。 (4)供电协议: 1)当地供电部门提供两个供电电源,共设计者选用。从某220/35kV区域变电所提供电源,该变的所距厂南10km 。从某220/35kV区域变电所提供 电源,该变的所距厂南5km 。 2)电力系统短路数据如表2所示。 3)供电部门提出的技术要求: a)区域变电所35kV馈出线定时限过电流保护整定时间为1.8s ,某变电所 35kV馈出线过电流保护整定时间为1.1s 。 b)工厂最大负荷时功率因数不得低于0.9 。 c)在总降压变电所35kV侧进行计量。 d)供电贴费为700元/ (kV?A),每月电费按两部分电价制:基本电费为18 元/(kV?A),动力电费为0.4元/(kV?A),照明电费为0.5元/(kV?A)。 e)工厂负荷性质。本厂大部分车间为一班制,少数车间为两班制或三班制, 年最大有功负荷利用小时数为2300h。锅炉房供生产用高压蒸汽,停电会 使锅炉发生危险,又由于该厂距离市区较远,消防用水需要厂方自备。 锅炉房供电要求有较高的可靠性,其中60%为一、二级负荷。 f)工厂自然条件: ?气象资料。年最高气温31O C,年平均气温20O C,年最低气温-27O C, 年最热月平均最高气温31O C,年最热月地下0.7~1m处平均温度20O C,

电力系统继电保护与自动化毕业设计题目

电力系统继电保护与自动化毕业设计题目 变电站电气主系统毕业设计题目1 一、题目 XZ市郊110kV变电站设计 二、原始资料 (一) 变电站性质及规模 本变电站位于XZ市郊区,向市区工业、生活及近郊区乡镇工业与农业用户供电,为新建变电站。 电压等级:110/10kV 线路回数:110kV近期2回,远景发展1回; 10kV近期12回,远景发展2回。 (二) 电力系统接线简图 电力系统接线简图如图1-1所示。 图1-1 电力系统接线简图 注:①图中系统容量、系统阻抗均为最大运行方式的数据。 ②系统最小运行方式时,S1=1300MVA,XS1=0.65;SⅡ=150MVA,XSⅡ=0.8。 (三) 负荷资料负荷资料如表1-1所示。 (四) 所址地理位置及环境条件 1.所址地理位置图(如图1-2所示)。 2.地形、地质、水文、气象等条件 站址地区海拔高度500m,地势平坦,地震烈度6度。年最高气温+40℃,年最低气温-20℃,最热月平均最高温度+32℃,最大复冰厚度10mm,最大风速为25m/s,土壤热阻率ρt=100℃·cm/W,土壤温度20℃,地下水位较低,水质良好,无腐蚀性。

电压等级负荷名称 最大负荷MW穿越功率MW负荷组成%自然 力率 Tmax (h) 线长 (km)近期远期近期远期一级二级三级 110kV 市系1线152060市系2线152025备用20 10kV 棉纺厂12 2.50.7555002棉纺厂22 2.50.7555002印染厂1 1.520.785000 2.5印染厂2 1.520.785000 2.5毛纺厂220.755000 1.5针织厂1 1.50.7545001柴油机厂1 1.520.840002柴油机厂2 1.520.840002橡胶厂1 1.50.7245002市区1 1.520.825001市区2 1.520.825001食品厂 1.2 1.50.840000.5备用1 1.50.78 备用2 1.5 .所址地理位置图(如图1-2所示)。 图1-2 所址地理位置图 - 1 - / 7

数字电路课程设计

数字电路课程设计 一、概述 任务:通过解决一两个实际问题,巩固和加深在课程教学中所学到的知识和实验技能,基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力,为今后从事生产和科研工作打下一定的基础。为毕业设计和今后从事电子技术方面的工作打下基础。 设计环节:根据题目拟定性能指标,电路的预设计,实验,修改设计。 衡量设计的标准:工作稳定可靠,能达到所要求的性能指标,并留有适当的裕量;电路简单、成本低;功耗低;所采用的元器件的品种少、体积小并且货源充足;便于生产、测试和维修。 二、常用的电子电路的一般设计方法 常用的电子电路的一般设计方法是:选择总体方案,设计单元电路,选择元器件,计算参数,审图,实验(包括修改测试性能),画出总体电路图。 1.总体方案的选择 设计电路的第一步就是选择总体方案。所谓总体方案是根据所提出的任务、要求和性能指标,用具有一定功能的若干单元电路组成一个整体,来实现各项功能,满足设计题目提出的要求和技术指标。 由于符合要求的总体方案往往不止一个,应当针对任务、要求和条件,查阅有关资料,以广开思路,提出若干不同的方案,然后仔细分析每个方案的可行性和优缺点,加以比较,从中取优。在选择过程中,常用框图表示各种方案的基本原理。框图一般不必画得太详细,只要说明基本原理就可以了,但有些关键部分一定要画清楚,必要时尚需画出具体电路来加以分析。 2.单元电路的设计 在确定了总体方案、画出详细框图之后,便可进行单元电路设计。 (1)根据设计要求和已选定的总体方案的原理框图,确定对各单元电路的设计要求,必要时应详细拟定主要单元电路的性能指标,应注意各单元电路的相互配合,要尽量少用或不用电平转换之类的接口电路,以简化电路结构、降低成本。

电力系统建模及仿真课程设计

某某大学 《电力系统建模及仿真课程设计》总结报告 题目:基于MATLAB的电力系统短路故障仿真于分析 姓名 学号 院系 班级 指导教师

摘要:本次课程设计是结合《电力系统分析》的理论教学进行的一个实践课程。 电力系统短路故障,故障电流中必定有零序分量存在,零序分量可以用来判断故障的类型,故障的地点等,零序分量作为电力系统继电保护的一个重要分析量。运用Matlab电力系统仿真程序SimPowerSystems工具箱构建设计要求所给的电力系统模型,并在此基础上对电力系统多中故障进行仿真,仿真波形与理论分析结果相符,说明用Matlab对电力系统故障分析的有效性。实际中无法对故障进行实验,所以进行仿真实验可达到效果。 关键词:电力系统;仿真;短路故障;Matlab;SimPowerSystems Abstract: The course design is a combination of power system analysis of the theoretical teaching, practical courses. Power system short-circuit fault, the fault current must be zero sequence component exists, and zero-sequence component can be used to determine the fault type, fault location, the zero-sequence component as a critical analysis of power system protection. SimPowerSystems Toolbox building design requirements to the power system model using Matlab power system simulation program, and on this basis, the power system fault simulation, the simulation waveforms with the theoretical analysis results match, indicating that the power system fault analysis using Matlab effectiveness. Practice can not fault the experiment, the simulation can achieve the desired effect. Keywords: power system; simulation; failure; Matlab; SimPowerSystems - 1 - 目录 一、引言 ............................................ - 3 -

电力系统综合课程设计

电力系统分析 综合课程设计报告 电力系统的潮流计算和故障分析 学院:电子信息与电气工程学院 专业班级: 学生姓名: 学生学号: 指导教师: 2014年 10月 29 日

目录 一、设计目的 (1) 二、设计要求和设计指标 (1) 2.1设计要求 (1) 2.2设计指标 (2) 2.2.1网络参数及运行参数计算 (2) 2.2.2各元件参数归算后的标么值: (2) 2.2.3 运算参数的计算结果: (2) 三、设计内容 (2) 3.1电力系统潮流计算和故障分析的原理 (2) 3.1.1电力系统潮流计算的原理 (2) 3.1.2 电力系统故障分析的原理 (3) 3.2潮流计算与分析 (4) 3.2.1潮流计算 (4) 3.2.2计算结果分析 (8) 3.2.3暂态稳定定性分析 (8) 3.2.4暂态稳定定量分析 (11) 3.3运行结果与分析 (16) 3.3.1构建系统仿真模型 (16) 3.3.2设置各模块参数 (17) 3.3.3仿真结果与分析 (21) 四、本设计改进建议 (22) 五、心得总结 (22) 六、主要参考文献 (23)

一、设计目的 学会使用电力系统分析软件。通过电力系统分析软件对电力系统的运行进行实例分析,加深和巩固课堂教学内容。 根据所给的电力系统,绘制短路电流计算程序,通过计算机进行调试,最后成一个切实可行的电力系统计算应用程序,通过自己设计电力系统计算程序不仅可以加深学生对短路计算的理解,还可以锻炼学生的计算机实际应用能力。 熟悉电力系统分析综合这门课程,复习电力系统潮流计算和故障分析的方法。了解Simulink 在进行潮流、故障分析时电力系统各元件所用的不同的数学模型并在进行不同的计算时加以正确选用。学会用Simulink ,通过图形编辑建模,并对特定网络进行计算分析。 二、设计要求和设计指标 2.1设计要求 系统的暂态稳定性是系统受到大干扰后如短路等,系统能否恢复到同步运行状态。图1为一单机无穷大系统,分析在f 点发生短路故障,通过线路两侧开关同时断开切除线路后,分析系统的暂态稳定性。若切除及时,则发电机的功角保持稳定,转速也将趋于稳定。若故障切除晚,则转速曲线发散。 图1 单机无穷大系统 发电机的参数: SGN=352.5MWA,PGN=300MW,UGN=10.5Kv,1=d x ,25.0'=d x ,252.0''=x x ,6.0=q x , 18.0=l x ,01.1'=d T ,053.0"=d T ,1.0"0=q T ,Rs=0.0028,H(s)=4s;TJN=8s,负序电抗:2.02=x 。 变压器T-1的参数:STN1=360MVA,UST1%=14%,KT1=10.5/242; 变压器T-2的参数:STN2=360MVA,UST2%=14%,KT2=220/121;

电力工程课程设计总结大全

单母线分段带旁路的接线出现误操作的几率很大,所以本设计不予采纳。 10KV 10KV采用带有母联断路器的双母线接线的分析:详见110KV变电所一次负荷设计 1.个人课程设计总结 桑瑾电气0804 0801120407 经过两个星期的努力,我们终于完成了本次变电所所电气主接线课程设计。回想这十多天的努力,虽然辛苦,却有很大的收获和一种成就感。 在这次课程设计中,在我们小组,我主要负责变压器选型以及短路电流计算,在电气主接线形式的确定中也发表了主要意见。 通过本次课程设计,我加深了对变电所电气主接线知识的理解,基本掌握了变电所电气主接线设计的步骤,所学的理论知识很好的运用到了实际工程中。在具体的设计过程中,涉及了很多知识,知识的掌握深度和系统程度都关系到整个设计的完整性和完善性,正是这样有趣而且具有挑战性的任务,激发了我的兴趣,我会尽可能的搜罗信息,设计尽量合理的电气主接线,而这个过程,也是我学习进步的过程。因此本次设计不但是我对所学的知识系统化,也锻炼了我查找资料、分析信息、选择判断的能力。 在之前的理论学习中,对变电所电气主接线设计的各种信息了解不够全面,对于《电力系统暂态分析》、《电力系统稳态分析》以及《发电厂电气部分》等专业可乘的知识不能联系起来,所学到的知识感觉都是分散的,不能融会贯通。而且以前所掌握的知识还不足以在整个课程设计中达到轻车熟路的程度。 通过此次课程设计,我熟悉和学习了变电所电气主接线设计和各种计算。其中包括:短路电流计算、电气设备选型、导体选择计算、防雷保护等。掌握了各种电气主接线使用条件、优缺点、接线形式。了解了各种电气设备的性能指标,校验方法,以及导线的选择。 在整个的程设计中,把遇到的疑问做了笔记,并通过各种资料去了解相关的知识。也希望带着这些疑问在学习中与其他同学讨论或请教来解决。除此之进行外变电所电气主接线设计通过边做边学习及向同学、老师请教,在规定时间内顺利完成了任务范围内的工作。 回顾整个课程设计的过程,自己还有以下一些方面需要进一步加强,同时也可以在以后的学习工作中不断勉励自己:虽说对整个设计过程中涉及的计算机基本的规范已有较为深刻的了解,但因为初次做变电所电气主接线设计,对部分设备性能、使用方面了解不足,在今后的学习中应通过多查阅各种相关资料来掌握;对于所学专业知识应多熟悉,将所学的知识联系起来。 本次课程设计大大增强了我们的团队合作精神,培养了我们自学的能力,

电力系统分析课程设计

课程设计报告 题目某冶金机械修造厂总降压 变电所一次系统设计 课程名称电力系统分析课程分析 一、概述 (2) 课程设计目的要求 (2) 设计原则 (2) 设计具体内容 (2) 二、设计课题基础资料 (3) 生产任务及车间组成 (3) 设计依据 (3) 本厂负荷性质 (4) 三、负荷计算及无功功率补偿 (4) 负荷计算 (4) 无功功率补偿 (5) 四、变压器台数和容量的选择 (6) 变电所主变压器台数和容量的选择 (6) 车间变压器台数和容量的选择 (7) 五、一次系统主接线方案设计 (7) 六、架空线路的设计 (8) 35kV架空线路的选择 (8) 35kV母线的选择 (8)

总降压变电所10kV侧电缆的选择 (8) 总降压变电所10kV侧母线的选择 (9) 七、短路电流计算 (9) 短路计算的目的 (9) 短路电流计算过程 (9) 八、总降压站的电气主接线图及其设备选择与校验 (11) 电气主接线图 (11) 一次设备的选择与校验 (12) 九、心得体会 (13) 参考文献 (14)

一、概述 课程设计目的要求 目的:通过课程设计进一步提高收集资料、专业制图、综述撰写的能力,培养理论与实际应用结合的能力,开发独立思考的能力,寻找并解决工程实际问题的能力,为以后的毕业设计与实际工作打下坚实的基础。 要求:(1)自学供配电系统设计规范,复习电力系统的基本概念和分析方法。 (2)要求初步掌握工程设计的程序和方法,特别是工程中用到的电气制图标准,常用符号,计算公式和编程技巧。 (3)通过独立设计一个工程技术课题,掌握供配电系统的设计方法,学会查询资料,了解电力系统中常用的设备及相关参数。 (4)在设计过程中,要多思考,多分析,对设计计算内容和结果进行整理和总结。 (5)完成《课程设计说明书》及相关的图,可以手写,可以计算机打印。 设计原则 (1)必须遵守国家有关电气的标准规范。 (2)必须严格遵守国家的有关法律、法规、标准。 (3)满足电力系统的基本要求(电能质量、可靠性、经济性、负荷等级) (4)必须从整个地区的电能分配、规划出发,确定整体设计方案。 设计具体内容 该冶金机械厂总降压变电所及高压配电一次系统设计,是根据各个车间的负荷数量和性质,生产工艺对负荷的要求,以及负荷布局,结合国家供电情况,解决对电能分配的安全可靠,经济合理的问题。其基本内容有以下几方面: (1)一次系统主结线方案设计 (2)确定全厂负荷 (3)主变压器容量和台数的选择 (4)选择35kV架空(8km长)输电导线截面积(根据额定电流)计算并说明选择的理由。 (5)画出等值电路简图 (6)画出总降压站的电气主结线图

电力工程课程设计报告(终极版)

电力工程课程设计 专业:电气工程及其自动化班级:电气1404 姓名:张勇 学号:201209927 指导教师:王思华 兰州交通大学自动化与电气工程学院 2015年7月17日

1.某轧钢厂降压变电所的电气设计 1.1设计依据 1.工厂负荷情况本厂多数车间为两班制,年最大负荷利用小时为5200h,日最大负荷持续时间为6.5h。该厂除冶炼车间、制坯车间和热轧车间属二级负荷外,其余均属三级负荷。低压动力设备均为三相,额定电压为380V。电气照明及家用电器均为单相,额定电压为220V。本厂的负荷统计资料如表l所示。 2.供电电源情况按照工厂与当地供电部门签订的供用电协议规定,本厂可由附近一条6kV的公用电源干线取得工作电源。该电源干线的走向参看工厂总平面图。该干线的导线牌号为LGJ-240,导线为等边三角形排列,线距为1.5m;干线首端(即电力系统的馈电变电站)距离本厂约5km。干线首端所装设的高压断路器断流容量为600MV A。此断路器配备有定时限过电流保护和电流速断保护,定时限过电流保护整定的动作时间为1.5s。为满足工厂二级负荷的要求,可采用高压联络线由邻近的单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为40km,联络线电缆线路总长度为15km。 3.气象资料本厂所在地区的年最高气温为40℃,年平均气温为25℃,年最低气温为-3℃,年最热月平均最高气温为36℃,年最热月平均气温为29℃,年最热月地下0.8m处平均温度为25℃。当地主导风向为东风,年雷暴日数为25。 4.地质水文资料本厂所在地区平均海拔300m,地层以砂粘土为主;地下水位为2m 。 5.电费制度本厂与当地供电部门达成协议,在工厂变电所高压侧计量电能,设专用计量柜,按两部电费制交纳电费:每月基本电费按主变压器容量计为20元/kV A,动力电费为0.3元/kW·h,照明(含家电)电费为0.4元/kW·h。工厂最大负荷时的功率因数不得低于0.9。 表1 轧钢厂负荷统计资料

matlab电力系统分析报告课程设计--110kV终端变电站设计

设计说明书 课程设计说明书 设计题目:110kV终端变电站设计

目录 摘要 (3) 前言 (4) 一、毕业设计的目的、意义............................. 错误!未定义书签。 二、电气设计的地位和作用............................. 错误!未定义书签。 三、对本次初步设计的要求............................. 错误!未定义书签。 四、对本次初步计算的基本认识......................... 错误!未定义书签。 五、设计题目原始参数及其它 (5) 第一章变电站电气主接线设计 (6) 第一节电气主接线设计知识概述 (6) 一、电气主接线设计依据 (6) 二、电气主接线设计的基本要求 (6) 三、10~110 kV高压配电装置的常用电气主接线条文说明 (8) 第二节电气主接线的方案设计 (10) 第三节确定电气主接线图 (10) 第四节主变及站用变选择 (11) 第二章短路电流计算 (13) 第一节短路计算慨述 (13) 一、短路电流计算的目的意义 (13) 二、短路电流计算的基本假定和计算方法 (13) 第二节计算方法 (14) 第三节电抗器的选择 (21) 第三章导体的选择 (22) 第一节主变高压侧导体选择 (22) 第二节主变低压侧导体的选择 (23) 第三节选择支柱绝缘子及穿墙套管 (29) 第四章选择断路器和隔离开关 (31)

第一节 110kV断路器和隔离开关选择和效验 (31) 第二节 10kV母联及主变10kV侧断路器和隔离开关选择 (31) 第三节 10kV出线断路器和隔离开关选择 (32) 第五章选择其它电气设备 (34) 第一节 10kV并联电容器组的选择 (34) 第二节避雷器的选用 (34) 第三节电压互感器的选用: (35) 第四节选择电流互感器 (37) 第五节选择阻波器 (39) 第六章继电保护 (40) 第一节主变压器保护的种类 (40) 第二节 110kV线路及备用电源自投装置 (40) 第三节 10kV线路保护配置 (40) 第四节 10kV电容器保护配置 (40) 第五节站用变自投装置 (40) 第七章操作闭锁 (41) 第八章设备安全距离 (42) 第一节 110kV安全净距离 (42) 第二节 110kV安装尺寸 (42) 结论 (44) 设计总结与体会 (45) 毕业(论文)设计参考书籍 (46) 附图 1、变电站电气主接线图(A1) 2、高压配电装置平面图(A1) 3、高压配电装置断面图(A1)

电力系统课程设计

信息工程系 2011-2012学年度下学期电力系统分析课程设计 电力系统短路故障的计算机 算法程序设计 姓名 学号 班级K0309414 指导教师钟建伟

信息工程学院课程设计任务书

电力系统短路故障的计算机算法程序设计 目录 1前言 (4) 1.1短路的原因 (4) 1.2短路的类型 (4) 1.3 短路计算的目的 (4) 1.4 短路的后果 (5) 2电力系统三相短路电流计算 (6) 2.1电力系统网络的原始参数 (6) 2.2制定等值网络及参数计算 (6) 2.2.1标幺制的概念 (6) 2.2.2有三级电压的的网络中各元件参数标幺值的计算 (7) 2.2.3计算各元件的电抗标幺值 (7) 2.2.4系统的等值网络图 (10) 3程序设计 (11) 3.1主流程图 (11) 3.2详细流程图 (12) 3.2.1创建系统流程图 (12) 3.2.2加载系统函数流程图 (13) 3.2.3计算子函数流程图 (14) 3.2.4改变短路点流程图 (15) 3.3数据及变量说明 (15) 3.4程序代码及注释 (16) 3.5测试例子 (17) 4结论 (23) 5参考文献 (24)

1前言 因为它们会破坏对用户的供电和电气设备的正常工作,而且还可能对人生命财产产生威胁。从在电力系统的设计和运行中,都必须考虑到可能发生的故障和不正常运行的情况,电力系统的实际运行情况看,这些故障绝大多数多数是由短路引起的,因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。 短路是电力系统的严重故障。所谓短路,是指一切不正常的相与相之间或相与地(对于中性点接地的系统)发生通路的情况。 1.1 短路的原因 产生短路的原因很多,主要有如下几个方面:(1)元件损坏,例如绝缘材料的自然老化、设计、安装及维护不良所带来的设备缺陷发展成短路等;(2)气象条件恶劣,例如雷击造成的网络放电或避雷器动作,架空线路由于大风或导线覆冰引起电杆倒塌等;(3)违规操作,例如运行人员带负荷拉闸,线路或设备检修后未拆除接地线就加上电压等;(4)其他,如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等。 1.2 短路的类型 在三相系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相接地短路。三相短路也称为对称短路,系统各项与正常运行时一样仍处于对称状态。其他类型的短路都是不对称短路。 电力系统的运行经验表明,在各种类型的短路中,单相短路占大多数,两相短路较少,三相短路的机会最少。三相短路虽然很少发生,但情况较严重,应给予足够的重视。况且,从短路计算方法来看,一切不对称短路的计算,在采用对称分量法后,都归结为对称短路的计算。因此,对三相短路的的研究是具有重要意义的。 1.3 短路计算的目的 在电力系统的设计和电气设备的运行中,短路计算是解决一系列问题的不可缺少的基本计算,这些问题主要是: (1)选择有足够机械稳定度和热稳定度的电气设备,例如断路器、互感器、瓷瓶、母线、电缆等,必须以短路计算作为依据。这里包括计算冲击电流以校验设备的电动力稳定度;计算若干时刻的短路电流周期分量以校验设备的热稳定度;计算指定时刻的短路电流有效值以校验断路器的断流能力等。 (2)为了合理地配置各种继电保护和自动装置并确定其参数,必须对电力网中发生的各种短路进行计算和分析。在这些计算中不但要知道故障支路中的电流值,还必须知道电流在网络中的分布情况。有时还要知道系统中某些节点的电压值。 (3)在设计和选择发电厂和电力系统主接线时,为了比较各种不同方案的接线图,确定是否需要采取限制短路电流的措施等,都要进行必要的短路电流计算。 (4)进行电力系统暂态稳定计算,研究短路对用户工作的影响等,也含有一部分短路计算的内容

城轨供电系统课程设计报告

城市轨道交通供电系统课程设计报告 专业:电气工程及其自动化 班级:电气 1001 姓名: XXXXXX 学号: 201009028 指导教师: XXXXXX 兰州交通大学自动化与电气工程学院 2013 年7月12日

1 设计原始资料 1.1 具体题目 杭州地铁1号线一期工程大体成南北走向,全线共设31座车站,如图1所示。正线线路全长约47.97km ,其中41.36km 为地下线路,6.14km 为高架线路,0.47km 为路基或路堑线路。车站及区间隧道采用了明挖法、明暗结合、矿山法、沉管法、盾构法等多种施工方法。试结合所学知识,设计地铁杂散电流腐蚀防护。 临平 南苑 余杭高铁 翁梅 乔司 乔司南九堡九和路七堡 彭埠火车东站闸弄口打铁关 西湖文化广场 武林广场龙翔桥 定安路 城站 婺江路 近江 江陵路 滨和路 西兴 滨康路 湘湖 图1 杭州地铁1号线线路图 1.2 要完成的内容 杭州地铁1号线杂散电流防护方案包括设置杂散电流排流网、杂散电流防护方法和集中式监测系统。 2 分析要设计的课题内容 地铁具有运量大、安全舒适、运输成本低等优点,且与地面的交通工具互不干涉,因此成为解决城市交通拥挤紧张状态的有效途径。 目前 地铁列车牵引动力一般用直流电,由设置在沿线的牵引变电所通过架空线或第三轨向列车馈送电量,并利用走形轨作为回流线路。直流供电的地铁系统的走形轨本身具有电阻且走形轨对地做不到完全绝缘,所以有一部分电流从走形轨泄漏到大地。这部分从走形轨漏

出的电流被称为杂散电流又叫迷流,如图1所示。 图1 城市轨道交通杂散电流腐蚀原理图 杂散电流防护设计应按照“以堵为主,以排为辅,堵排结合,加强监测”的原则设计。当杂散电流防护与安全接地发生矛盾时,优先考虑安全接地。杂散电流防护系统应符合《地铁杂散电流腐蚀防护技术规程》。 杭州地铁1号线牵引供电采用直流1500V供电,地下区段及高架线路全部用三轨接触网,车辆段采用柔性架空接触网。由于运营环境、经济和其它方面因素的限制,走行轨不可能完全绝缘于道床结构,因此不可避免地由走形轨向道床、车站和隧道结构泄漏电流,即杂散电流。杂散电流会对土建结构钢筋、钢轨、设备金属外壳和其他地下金属管线产生电腐蚀。杂散电流防护示意图如附录A所示。 3 杂散电流腐蚀防护方案 3.1 一般防护方案 (1) 堵——从源头上控制杂散电流产生 ①增加走形轨的长度,减小钢轨的电阻;各钢轨之间应有畅通的电气连接以保证低阻值的回流路径;缩短变电所之间的距离,采用双边供电。 ②增加轨道对地的过渡电阻;在车辆段的检修与停车库中,每一条线路的走形轨均应使用绝缘接头与车场线路的走形轨相隔离;增加埋地金属管线的阻值。 (2) 排——对杂散电流的收集 ①将整体道床和浮制板道床按一定要求焊接,作为主要杂散电流收集网。

相关主题
文本预览
相关文档 最新文档