当前位置:文档之家› 初中几何相似三角形的基本模型K字型,k型相似三角形经典好题及答案解析

初中几何相似三角形的基本模型K字型,k型相似三角形经典好题及答案解析

初中几何相似三角形的基本模型K字型,k型相似三角形经典好题及答案解析
初中几何相似三角形的基本模型K字型,k型相似三角形经典好题及答案解析

初中数学常用几何模型及构造方法大全

初中数学常用几何模型及构造方法大全几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间… 全等变换 平移:平行等线段(平行四边形) 对称:角平分线或垂直或半角 旋转:相邻等线段绕公共顶点旋转 对称全等模型 角分线模型 往角两边作垂线 往角两边截取等线段 过角分线某点作垂线 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。

对称半角模型 说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。 旋转全等模型 半角:有一个角含1/2角及相邻线段 自旋转:有一对相邻等线段,需要构造旋转全等 共旋转:有两对相邻等线段,直接寻找旋转全等 中点旋转:倍长中点相关线段转换成旋转全等问题 旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型 构造方法: 遇60度旋60度,造等边三角形 遇90度旋90度,造等腰直角 遇等腰旋顶点,造旋转全等 遇中点旋180度,造中心对称 共旋转模型 说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“8”字模型可以证明。

模型变换 说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。 当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

相似三角形基本模型及证明

相似三角形基本模型与证明一、基本图形回顾 经典模型

构造相似辅助线——双垂直模型 1.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式. 2.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长. 3.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB. 4.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为 () A. B. C. D.

5.已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一 象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。 求C、D两点的坐标。 构造相似辅助线——A、X字型 6.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。 求证: 7.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。 求证: 8.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。求BN:NQ:QM.

9.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证: (2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);

专题:相似三角形的几种基本模型及练习

专题:相似三角形的几种基本模型 (1)如图:DE ∥BC ,则△ADE ∽△ABC 称为“平截型”的相似三角形. “A ”字型 “X ”(或8)字型 “A ” 字型 (2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜截型”的相似三角形. A B C D E 1 2A A B B C C D D E E 124 1 2 (3) “母子” (双垂直)型 射影定理: 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _。 “母子” (双垂直)型 “旋转型” (4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形. (5)一线“三等角”型 “K ” 字(三垂直)型 (6)“半角”型 图1 :△ABC 是等腰直角三角形,∠MAN= 1 2∠BAC ,结论:△ABN ∽△MAN ∽△MCA ; 1 A E B C B E A C D 1 2B D 图2 图1 旋转 N M 60° 120° B A 45° D C B A

应用 1.如图3,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为 ( ) A .3 B .4 C .5 D .6 2.如图4,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△ABC 相似的三角形是 ( ) A .△DBE B .△AED 和△BDC C .△ABD D .不存在 图3 图4 图5 3.如图5, □ABCD 中, G 是AB 延长线上一点, DG 交AC 于E, 交BC 于F, 则图中所有相似三角形有( )对。 A.4 对 B. 5对 C.6对 D. 7对 4.如图6,在△ABC 中,D ,E 分别是AB ,AC 上的点,在下列条件下:①∠AED =∠B ;②AD ∶AC =AE ∶AB ;③DE ∶BC =AD ∶AC .能判定△ADE 与△ACB 相似的是 ( )A .①② B .①③ C .①②③ D .① 5.如图7,在△ABC 中,点D ,E 分别是AB ,AC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ; ③ AD AE =AB AC .其中正确的有 ( ) A .3个 B .2个 C .1个 D .0个 6.如图8,添加一个条件:_____________________________,使得△ADE ∽△ACB .(写出一个即可) 7.如图9,在四边形ABCD 中,AB ∥CD ,∠B =∠C =90°,点E 在BC 边上,AB =3,CD =2,BC =7.若△ABE 与△ECD 相似,则CE =___________. 图6 图7 图8 图9 8.如图10,已知∠C =∠E ,则不一定能使△ABC ∽△ADE 的条件是 ( ) A .∠BAD =∠CAE B .∠B =∠D C.B C DE =AC AE D.AB A D =AC AE 9.如图11,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =1 4CD ,下列结论:①∠BAE =30°, ②△ABE ∽△AEF ,③AE ⊥EF , ④△ADF ∽△ECF .其中正确的个数为 个。 图10 图11 A B C D E

初中数学几何经典模型

初中数学几何模型 中点模型 【模型1】倍长 1、倍长中线;2、倍长类中线;3、中点遇平行延长相交 E D A B C F D A B C E 【模型2】遇多个中点,构造中位线 1、直接连接中点;2、连对角线取中点再相连 【例1】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF的中点,连接GC、GE. (1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长; (2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的关系,写出你的猜想;并给予证明; (3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗写出你的猜想,并给予证明. 图3 图2 图1 G F D C G F D C G F D C A B E E B A E B A 【例2】如图,在菱形ABCD中,点E、F分别是BC、CD上一点,连接DE、EF,且AE=AF,BAF DAE∠ = ∠. (1)求证:CE=CF; (2)若? = ∠120 ABC,点G是线段AF的中点,连接DG,EG.求证:DG上GE. 【例3】如图,在四边形ABCD中,AB=CD,E、F分别为BC、AD中点,BA交EF延长线于G,CD交EF 于H.求证:∠BGE=∠CHE. H G E F A B D C

E A B C O D E A B C O D B O A C 角平分线模型 【模型1】构造轴对称【模型2】角平分线遇平行构造等腰三角形 【例4】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF的长为. H G F E A D B C 手拉手模型 【条件】OA OB OC OD AOB COD ==∠=∠ ,, 【结论】OAC OBD ?;AEB OAB COD ∠=∠=∠(即都是旋转角);OE AED ∠ 平分; - 【例5】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为. 【例6】如图,ABC中,90 BAC? ∠=,AB=AC,AD⊥BC于点D,点E在AC边上,连结BE,AG⊥BE 于F,交BC于点G,求DFG ∠ G F D C B A E

相似三角形基本模型——A字型、旋转型相似

课题:相似三角形基本模型——A字型、旋转型相似 教学目标: 1、通过习题引入,了解“A字型、旋转型”的特征与其中两个三角形相似的条件,并掌握其中两个相似三角形的性质; 2、利用“A字型、旋转型”中两个三角的相似性解决一些计算、证明等简单问题; 3、在“A字型、旋转型”变化的过程中经历图形动态思考,积累做“A字型、旋转型”相似解题的特点与经验。 教学重点难点: 1、在已知图形中观察关键特征——“A字型、旋转型”; 2、在“A字型、旋转型”图的两个三角形中,探索其相似条件。 教学过程: 一、复习与回顾: 相似三角形的性质和判定定理; 二、引入 相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。而识别(或构造)A字型、8字型、母子相似型、旋转型等基本图形是解证题的关键。 三、新课讲解: (一)、模型分析有一个公共角(图①、图②)或角有公共部分(图③,∠BAC与∠DAE有公共部分∠DAF),此时需要找另一对角相等,另外若题中未明确相似三角形对应顶点,则需要分类讨论,如图③中可找条件∠D=∠C或∠D=∠B. (二)、基础巩固 1、若△ABC∽△ADE,你可以得出什么结论(图1) 2、D、E分别是△ABC边AB、AC上的点,请你添加一个条件,使△ADE与△ABC相似。(图2) (三)、例题探究:

(四)课堂练习: 三、课堂小结: 我们今天这堂课收获了什么呢 (1)学习了A型相似; (2)学会从复杂图形中分解出基本图形。 (3)数学思想:方程思想,转化思想,分类讨论思想四、作业布置: 中考新航线251页

初中:数学几何模型大全

全等变换 平移:平行等线段(平行四边形) 对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转 对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。 对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。 旋转全等模型 半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题

旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 自旋转模型构造方法: 遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称

共旋转模型 说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“8”字模型可以证明。

模型变形 说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。 当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转: 说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

相似三角形常见模型与型例题讲解

第一部分 相似三角形模型分析 一、相似三角形判定的基本模型认识 (一)A 字型、反A 字型(斜A 字型) B C D E (平行) C B D E (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景 (五)一线三直角型: (六)双垂型: 二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。 8字型拓展 C B E D A 共享性 G B E F

一线三等角的变形一线三直角的变形

第二部分 相似三角形典型例题讲解 母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2) DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 相关练习: 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。 求证:(1)△AME ∽△NMD; (2)ND 2 =NC ·NB 3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。 求证:EB ·DF=AE ·DB 4.在?ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G , 使DG=EF ,M 是AH 的中点。 求证:∠=?GBM 90 5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各 5分) 已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为 y . (1)求证:AE =2PE ; (2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积. 双垂型 1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED 2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3, A C D E B D E A B C A B P D E (第25题图) G M F E H D C B A

初中数学几何经典模型范文

初中数学几何经典模型 范文 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

如图,正方形ABCD DE=2CE,过点C作CF 如图,ABC中,∠如图,在边长为6 ,连接EG,

中,AB=AD,

H G F C B D A E H G F B C A D E 点E 旋转,旋转过程中,线段DE 与线段A B 相交于点P ,射线EF 与线段AB 相交于点G ,与射线CA 相交于点Q .若AQ =12,BP =3,则PG =. 【例12】如图,在菱形ABCD 中,AB =BD ,点E 、F 分别在AB 、AD 上,且AE =DF .连接 BF 与DE 交于点G ,连接CG 与BD 交于点H ,若CG =1,则BCDG S =四边形. 一线三等角模型【条件】EDF B C DE DF ∠=∠=∠=,且【结论】BDE CFD ? 【例13】如图,正方形ABCD 中,点E 、F 、G 分别为AB 、BC 、CD 边上的点,EB =3,GC =4,连接EF 、FG 、GE 恰好构成一个等边三角形,则正方形的边长为 . 最短路径模型【两点之间线段最短】 1、将军饮马 2、费马点【垂线段最短】 【两边之差小于第三边】 【例16】如图,矩形ABCD 是一个长为1000米,宽为600米的货场,A 、D 是入 口.现拟在货场内建一个收费站P ,在铁路线BC 段上建一个发货站台H ,设铺设公路l .求l 的最小值. AP 、DP 以及PH 之长度和为【例17】如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于G ,连接 BE 交AG 于点H ,若正方形的边 长为2,则线段DH 长度的最小值是. 中,4,42AB AD ==,E 是线【例18】如图所示,在矩形ABCD 段AB 的中点,F 是线段BC 上的动点,BEF ?沿直线EF 翻折到'B EF ?,连接'DB ,'DB 最短为 . 《三垂直模型》 课后练习题 【练习1】 问题1:如图1,在等腰梯形ABCD 中,AD ∥BC ,AB =BC =CD ,点M ,N 分别在AD ,CD 上,∠MBN =12 ∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系请直接写出你的猜想; 问题2:如图2,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M ,N 分别在 DA ,CD 的延长线上,若∠MBN =12 ∠ABC 仍然成立,请你进一步探究线段MN ,AM ,CN 又有怎样的数量关系写出你的猜想,并给予证明. 【练习2】已知:如图1,正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .

相似三角形模型分析大全(精)

第一部分相似三角形知识要点大全 知识点1..相似图形的含义 把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形) 解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到. (2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同. (3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关. 例1.放大镜中的正方形与原正方形具有怎样的关系呢? 分析:要注意镜中的正方形与原正方形的形状没有改变. 解:是相似图形。因为它们的形状相同,大小不一定相同. 例2.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角80°的两个等腰三角形;⑤两个正五边形;⑥有一个内角是100°的两个等腰三角形,其中一定是相似图形的是_________(填序号). 解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形,而圆、正多边形、顶角为100°的等腰三角形的形状不唯一,它们都相似.答案:②⑤⑥. 知识点2.比例线段 对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a c b d =(或 a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段. 解读:(1)四条线段a,b,c,d成比例,记作a c b d =(或a:b=c:d),不能写成其他形式,即比例线段 有顺序性. (2)在比例式a c b d =(或a:b=c:d)中,比例的项为a,b,c,d,其中a,d为比例外项,b,c为比例内项,d 是第四比例项. (3)如果比例内项是相同的线段,即a b b c =或a:b=b:c,那么线段b叫做线段和的比例中项。 (4)通常四条线段a,b,c,d的单位应一致,但有时为了计算方便,a和b统一为一个单位,c和d统一为另一个单位也可以,因为整体表示两个比相等. 例3.已知线段a=2cm, b=6mm, 求a b . 分析:求a b 即求与长度的比,与的单位不同,先统一单位,再求比. 例4.已知a,b,c,d成比例,且a=6cm,b=3dm,d=3 2 dm,求c的长度. 分析:由a,b,c,d成比例,写出比例式a:b=c:d,再把所给各线段a,b,,d统一单位后代入求c. 知识点3.相似多边形的性质 相似多边形的性质:相似多边形的对应角相等,对应边的比相等. 解读:(1)正确理解相似多边形的定义,明确“对应”关系. (2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性. 例5.若四边形ABCD的四边长分别是4,6,8,10,与四边形ABCD相似的四边形A1B1C1D1的最大边长为30,则四边形A1B1C1D1的最小边长是多少? 分析:四边形ABCD与四边形A1B1C1D1相似,且它们的相似比为对应的最大边长的比,即为1 3 ,再根据相似多 边形对应边成比例的性质,利用方程思想求出最小边的长.知识点4.相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形; (3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”; (5)相似三角形的对应边之比叫做相似比.

初中数学九大几何模型

初中数学九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED O A B C D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A C D E 图 2 O A B C D E O A B C D E 图 1 图 2

二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 21 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- O B C O A C D E O B C D E O A C D A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4

相似三角形模型分析大全(非常全面经典)

相似三角形模型分析大全 一、相似三角形判定的基本模型认识 (一)A字型、反A字型(斜A字型) B (平行) B (不平行) (二)8字型、反8字型 B C B C (蝴蝶型) (平行)(不平行) (三)母子型 B

(四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景 (五)一线三直角型: (六)双垂型:

二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。 8字型拓展 C B E D A 共享性 G A B C E F 一线三等角的变形 一线三直角的变形 第二部分 相似三角形典型例题讲解

母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . A C D E B

相关练习: 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。 求证:(1)△AME ∽△NMD; (2)ND 2 =NC ·NB 3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。 求证:EB ·DF=AE ·DB

(完整版)初中数学常用几何模型及构造方法大全

g a t a t i m e a n d A l l t h i n g s i n t h e i r b e i n g a r e g o o d f o r s o 初中数学常用几何模型及构造方法大全, 掌握它轻松搞定压轴题! 几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握哦~全等变换 平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。对称半角模型 说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。旋转全等模型 半角:有一个角含1/2角及相邻线段 自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题

g a t a t i m e a n d A l l t h i n g s i n t h e i r b e i n g a r e g o o d f o r s o 旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。自旋转模型构造方法: 遇60度旋60度,造等边三角形; 遇90度旋90度,造等腰直角;遇等腰旋顶点,造旋转全等; 遇中点旋180度,造中心对称. 共旋转模型

初中数学经典几何模型

初中数学几何模型 【模型1】倍长 1、 倍长中线; 2、倍长类中线; 3、中点遇平行延长相交 E D A B C F D A B C E ---------------------------------------------------------------------------------------------------------------------- 【模型2】遇多个中点,构造中位线 1、 直接连接中点; 2、连对角线取中点再相连 【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长; (2)如图2,当点F 在AB 的延长线上时,线段GC 、GE 有怎样的数量和位置关系,写出你的猜想;并给予证明; (3)如图3,当点F 在CB 的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明. 图3 图2图1G F D C G F D C G F D C A B E E B A E B A 中点模型

【例2】如图,在菱形ABCD中,点E、F分别是BC、CD上一点,连接DE、EF,且AE=AF,BAF DAE∠ = ∠. (1)求证:CE=CF; (2)若? = ∠120 ABC,点G是线段AF的中点,连接DG,EG.求证:DG上GE. 【例3】如图,在四边形ABCD中,AB=CD,E、F分别为BC、AD中点,BA交EF延长线于G,CD交EF于H.求证:∠BGE=∠CHE. H G E F A B D C 【模型1】构造轴对称 【模型2】角平分线遇平行构造等腰三角形 ---------------------------------------------------------------------------------------------------------------------- 角平分线模型

相似三角形的几种模型

相似三角形的几种模型 相似三角形的基础模型 A型模型反A型模型 在△ABC中,DE∥BC 在△ABC中,∠AED=∠B 反A型模型双垂直型 在△ABC中,∠ACD=∠B 如图,CD是Rt△ABC斜边上的高, ∠ACB=90

一直线三等角模型 在Rt△ABC与Rt△CDE中,A,C,D三点共线,△A=△BCE=△D=90 在△ABC与△CDE中,B,C,D三点共线,△B=△ACE=△D 半角模型 正方形ABCD中,点E,F分别在边AB,AD上,且△ECF=45°,连接AC,EF,GH,CH,CF 相交弦定理

△O中,弦AB与弦CD相交与点P AP·BP=CP·DP 切割线定理 PA为△O切线,PCB为△O割线 PA2=PB·PC 割线定理 PAB,PCD分别为△O割线 PA·PB=PC·PD 模型应用

1. (2017·深圳改编)如图,线段AB是△O的直径,弦CD△AB于点H,点M是上任意一点,直线BM交直线CD于点E,直线MH交△O 于点N,连接BN交CE于点F,AH=2,HB=8,求HE·HF的值. 2. (2018·深圳改编)如图,△ABC内接于△O,BC=2,AB=AC=,点D为上的动点,在点D的运动过程中,弦AD的延长线交BC 延长线于点E,问AD·AE的值是否变化?若不变,请求出AD·AE的值;若变化,请说明理由.

GE·GF是否为定值?如果是,求出该定值;如果不是,请说明理由.

4. 如图,以△ABC的BC边上一点O为圆心的圆,经过A,C两点,与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于 点F.AB=BF,CF=4,DF=,AB是△O的切线. (1)求△O的半径r; (2)设点P是BA延长线上的一个动点,连接DP交CF于点M,交弧AC于点N(N与A, C不重合).试问DM·DN是否为定值? 如果是,求出该定值;如果不是, 请说明理由.

相似三角形典型模型及例题

1:相似三角形模型一:相似三角形判定的基本模型 (一)A字型、反A字型(斜A字型) B ?(平行)(不平行) (二)8字型、反8字型 B C B C(蝴蝶型) (平行) (不平行) (三)母子型 B (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似, 这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 ( 六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证:OE OA OC? = 2. 例2:已知:如图,△ABC中,点E在中线AD上, ABC DEB∠ = ∠. 求证:(1)DA DE DB? = 2; (2)DAC DCE∠ = ∠. 例3:已知:如图,等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F. 求证:EG EF BE? = 2. 1、如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FC FB FD? = 2. A C D E B

相似三角形的九大模型

相似三角形的九大模型 模型一:A 字型 1.如图,在ABC △中,:2:3AF FB =,延长BC 至点D ,使得2BC CD =,求 AE EC 的值. 2.如图,在ABC △中,已知CD 为边AB 上的高,正方形EFGH 的四个顶点分别在ABC △上,求证: 111AB CD EF +=. 3.如图,在矩形ABCD 中,2AB =,3BC =,点E 、F 、G 、H 分别在矩形ABCD 的各边上,EF HG AC ∥∥,EH FG BD ∥∥,则四边形EFGH 的周长是_________.

4.如图,ABC △中,M 是AC 的中点,E 是AB 上一点,且3BE AE =,求 BC CD 的值. 模型二:反A 字型 5.如图,D 、E 分别为ABC △的边AB 、AC 上的点,且ADE ACB ∠=∠. (1)求证:AD AB AE AC ?=?; (2)如果ABC △的面积为m ,3DE =,5BC =,求ADE △的面积.

6.如图,在ABC △中,点D 、E 分别在边AB 、AC 上,DE 、BC 的延长线相交于点F ,且EF DF BF CF ?=?. (1)求证:AD AB AE AC ?=?; (2)当12AB =,9AC =,8AE =时,求BD 的长与 ADE ECF S S △△的值. 7.将三角形纸片()ABC △按如图所示的方式折叠,使点C 落在AB 边上的点D ,折痕为 EF .已知3AB AC ==,4BC =,若以点B 、D 、F 为顶点的三角形与ABC △相似,那么 CF 的长度是( ) A .2 B . 12 7 或2 C . 127 D . 12 5 或2 8.将ABC △纸片按如图所示的方式折叠,使点B 落在边AC 上,记为点B ',折痕为EF .已知6AB AC ==,8BC =. (1)求ABC △的周长; (2)若以点B ',F ,C 为顶点的三角形与ABC △相似,求BF 的长.

相似三角形之基本模型

相似三角形之基本模型(导学案) 知识过关 1. 请证明以下结论: ①如图1,在△ABC 中,DE ∥BC ,求证:△ADE ∽△ABC . ②如图2,在△ABC 中,∠B =∠AED ,求证:△AED ∽△ABC . ③如图3,在△ABC 中,∠B =∠ACD ,求证:△ACD ∽△ABC . ④如图4,直线AB ,CD 相交于点O ,连接AC ,BD ,且AC ∥BD ,求证:△AOC ∽△BOD . ⑤如图5,直线AB ,CD 相交于点O ,连接AC ,BD ,∠B =∠C ,求证:△AOC ∽△DOB . ⑥如图6,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,求证:△ADB ∽△CDA ,△ADB ∽△CAB . 图1 图2 图3 图4 图5 图6 2. 比较下题两种不同的证明方法,并填空. 如图,在△ABC 中,D 是BC 边的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F . 求证:∠AEF =∠EAF . 方法1:(倍长中线) 如图,延长AD 到G 使DG =AD ,连接BG . ∵D 是BC 边的中点 ∴BD =CD ∵AD =GD ,∠1=∠2 ∴△ADC ≌△GDB (SAS ) ∴AC =BG ,∠3=∠G ∵AC =BE ∴BE =BG ∴∠G =∠4 又∵∠3=∠G ,∠4=∠5 ∴∠3=∠5 即∠AEF =∠EAF 方法2:(作平行线) 如图,过点B 做BG ∥AC ,交AD 延长线于点G . C B B C D E A D A E D A A B D D E C B A A B O D B A C C A O D B O C D A B A D B C F E D C A 21F E D C B A G 35 4

初中数学几何模型大全+经典题型

初中数学几何模型大全+ 经典题型(含答案) 全等变换 平移:平行等线段(平行四边形) 对称:角平分线或垂直或半角 旋转:相邻等线段绕公共顶点旋转 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。 垂直也可以做为轴进行对称全等。 说明:上图依次是45°、30°、°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

半角:有一个角含1/2 角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等 共旋转:有两对相邻等线段,直接寻找旋转全等 中点旋转:倍长中点相关线段转换成旋转全等问题 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全 构造方法:遇60 度旋60 度,造等边三角形 遇90 度旋90 度,造等腰直角 遇等腰旋顶点,造旋转全等遇中点旋180 度,造中心对称

说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“ 8”字模型可以证明。 说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。 当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。 说明:两个正方形、两个等腰直角三角形或者一个正方形一个等 腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和

相似三角形常见模型(总结材料)

第一部分 相似三角形模型分析 一、相似三角形判定的基本模型认识 (一)A 字型、反A 字型(斜A 字型) A B C D E (平行) C B A D E (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景

(五)一线三直角型: (六)双垂型: C A D 二、相似三角形判定的变化模型 旋转型:由 A 字型旋转得到。 8字型拓展 C B E D A 共享性 G A B C E F

一线三等角的变形 一线三直角的变形

第二部分 相似三角形典型例题讲解 母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 相关练习: 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . A C D E B

2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。 求证:(1)△AME ∽△NMD; (2)ND 2 =NC ·NB 3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。 求证:EB ·DF=AE · DB 4.在?ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。 求证:∠=?GBM 90 5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各 5分) 已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为 y . (1)求证:AE =2PE ; (2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积. A C B P D E (第25题图) G M F E H D C B A

相关主题
文本预览
相关文档 最新文档