当前位置:文档之家› 地形辅助导航系统的关键技术

地形辅助导航系统的关键技术

地形辅助导航系统的关键技术
地形辅助导航系统的关键技术

水下机器人地形辅助导航(英文)

Advanced Robotics,Vol.15,No.5,pp.533–549(2001) óVSP and Robotics Society of Japan2001. Full paper Towards terrain-aided navigation for underwater robotics STEFAN WILLIAMS¤,GAMINI DISSANA YAKE and HUGH DURRANT-WHYTE Australian Centre for Field Robotics,Department of Mechanical and Mechatronic Engineering, University of Sydney,NSW2006,Australia Received27July2000;accepted19November2000 Abstract—This paper describes an approach to autonomous navigation for an undersea vehicle that uses information from a scanning sonar to generate navigation estimates based on a simultaneous localization and mapping algorithm.Development of low-speed platform models for vehicle control and the theoretical and practical details of mapping and position estimation using sonar are provided. An implementation of these techniques on a small submersible vehicle‘Oberon’are presented. Keywords:Terrain-aided navigation;localization;mapping;uncertainty;autonomous underwater vehicle. 1.INTRODUCTION Current work on undersea vehicles at the Australian Centre for Field Robotics concentrates on the development of terrain-aided navigation techniques,sensor fusion and vehicle control architectures for real-time platform control.Position and attitude estimation algorithms that use information from scanning sonar to complement a vehicle dynamic model and unobservable environmental disturbances are invaluable in the subsea environment.Key elements of the current research work include the development of sonar feature models,the tracking and use of these models in mapping and position estimation,and the development of low-speed platform models for vehicle control. While many land-based robots use GPS or maps of the environment to provide accurate position updates for navigation,a robot operating underwater does not typically have access to this type of information.In underwater scienti c missions, a priori maps are seldom available and other methods for localisation must be considered.Many underwater robotic systems rely on xed acoustic transponders that are surveyed into the robot’s work area[1].These transponders are then ¤To whom correspondence should be addressed.E-mail:stefanw@https://www.doczj.com/doc/b95840364.html,.au

全球卫星导航系统的发展现状

0.引言 GPS的投入运行对当今社会经济、军事产生了革命性影响,各个国家对它的依赖性不断加大。同时,为了避免受制于人,各国纷纷研制自己的全球卫星导航系统。紧随美国之后,俄罗斯建成了GLONASS 系统,但由于资金长期短缺以及其他种种原因,导致在轨工作卫星曾大量空缺,不能提供全天候、全球性的定位服务。而欧盟正在开发的伽利略(GALILEO)卫星导航系统是一个独立的,性能优于GPS,与现有全球卫星导航系统具有互用性的民用全球卫星导航系统。争奇斗艳的全球卫星导航定位系统将会给当今的信息社会带来深远的影响。 1.美国GPS的发展现状 1.1GPS导航定位原理GPS是在美国海军导航卫星系统的基础上发展起来的以卫星为基础的无线电导航定位系统。它具有全能性、全球性、全天候、连续性和实时性的导航、定位和定时功能,能为用户提供精密的三维坐标、速度和时间。 GPS系统由空间卫星星座、地面监控系统及用户设备组成。GPS 空间星座部分由24颗GPS卫星(含3颗备用卫星)组成,卫星均匀分布于倾角为55°的6个轨道面上,轨道平均高度约为20200km。每颗GPS卫星发射两个载波(1575.42MHz/L1和1227.60MHz/L2)信号,在其上用相位调制技术加载了测距码和导航电文,供用户接收机使用。地面监控系统由一个主控站、3个注入站和5个监控站组成,其主要功能是采集数据、编算GPS导航电文及系统维护等。用户设备是实现GPS卫星导航定位的终端设备,由GPS接收机硬件和数据处理软件组成,它通过接收并处理GPS卫星信号,可得到用户的时间、位置、速度等参数[1][2]。 1.2GPS自身的缺陷 现行的GPS系统存在如下的缺陷:BlockⅡ(BlockⅡA)GPS卫星信号的强度极其微弱(天顶运行的GPS卫星的信号强度仅有3.5E-16W),几乎淹没于背景噪音之下,并能被建筑物等阻挡物反射,产生多路径效应。 调制于L1载波上的C/A码和P码都位于L1的中心频带,易于受到人为干扰。通常情况下,对P码的捕获和跟踪是通过先捕获C/A码和巧用Z计数的方法实现的。这样,如果人为地干扰C/A码的接收,也就等效于P码受到干扰。 民间用户难以同时获得L1-P码伪距和L2-P码伪距,无法实现GPS双频观测的电离层效应距离偏差改正,限制了GPS单点定位精度的提高。 GPS的系统组成和信号结构都不能满足当前的需要。例如:在高纬度地区,严重影响导航和定位,在中、低纬度地区,每天总有两次盲区、每次盲区历时20~30分钟,盲区时,PDOP值远大于20,给导航和定位带来很大的误差。 为确保导航定位的精度,GPS的卫星导航电文必须每天更新一次,地面监控系统担负着编算和注入导航电文的重要任务,一旦地面监控系统受到破坏,军用和民用用户都不能得到高精度的GPS导航定位服务。 1.3GPS现代化的举措[3] 针对上述情况,GPS执行委员会(IGEB)、GPS顾问委员会(GIAC)和导航学会(ION)召开多次国际会议,讨论GPS现代化的问题。根据GPS 执行委员会有关资料,GPS现代化的主要措施主要有: 取消了GPS SA政策,给民用用户带来了明显的效益。 发射BlockⅡR卫星更换BlockⅡ/ⅡA卫星。与BlockⅡ/ⅡA卫星相比,BlockⅡR卫星在功能上有如下扩充:在L2载波上增设C/A码(或L2C码);在L1和L2载波上各增设一个军用伪噪声码(M码);可根据指令增强L2载波上的P(Y)码、L1载波上的P(Y)码和C/A的功率。BlockⅡR-M卫星的功能更进一步加强:能作卫星之间的距离测量;能在轨自主更新和精化GPS卫星的广播星历和星钟A系数;能进行星间在轨数据通讯,在无地面监控系统干预的情况下,可进行自主导航。 发射BlockⅡF卫星。BlockⅡF卫星除具有BlockⅡR卫星的全部功能外,还在保护波段增加第三民用信号L5(1176.45MHz),并增加了卫星间的数据通道。到2008年6月,GPS在轨卫星共有31颗,其中BlockⅡA卫星13颗,BlockⅡR卫星12颗,BlockⅡR-M卫星6颗。 发射BlockⅢ(GPSⅢ)卫星。目前正在研究未来GPS卫星导航的需求,讨论制定GPSⅢ型卫星系统结构,系统安全性、可靠程度和各种可能的风险。计划在2009年发射GPSⅢ的第一颗实验卫星,2030年完成整个星座的更新。 地面监控系统现代化的措施主要有:给监测站装备数字式GPS 信号接收机和计算机;用分布式结构计算设备替换现有的主计算机;采用精度改善技术建立卫星控制集成网络,完善BlockⅡR卫星的全运行能力;在美国本土(卡纳维拉尔角)增建一个监控站(使监控站增至6个);在范登堡空军基地建立一个备用主控站;增强BlockⅡR卫星的指令和控制能力。 2.俄罗斯GLONASS的发展现状 2.1GLONASS简介 为了应对美国的全球卫星定位系统GPS,前苏联从上世纪80年代初开始建设与美国GPS系统相类似的卫星定位系统GLONASS (Global Orbiting Navigation Satellite System),于1995年12月将其发展成为由24颗GLONASS卫星组成的工作星座。该系统也由空间卫星星座、地面监测控制站和用户设备三部分组成。空间卫星星座为21颗卫星分布在夹角为120°的3个倾角为64.8°轨道面上,另外3颗卫星备用。GLONASS通过两个频率发射导航信号,但它的每颗卫星的频率都不相同。 GLONASS可供国防、民间使用,不带任何限制,也不计划对用户收费,并声明不引入选择可用性(SA)。但由于俄罗斯经济困难,卫星的补充和维护得不到保证,GLONASS在轨卫星曾大量空缺(2000年情况最严重时只剩下6颗卫星),破坏了其星座完整程度,致使该系统的可用性大大下降。 2.2GLONASS的恢复和现代化 GLONASS的危机引起了俄方的重视,俄罗斯认识到“出于国家安全战略的考虑,俄罗斯应该使用本国的GLONASS系统,而非美国的GPS或者是欧洲的GALILEO导航系统”。随着经济复苏,俄政府在本世纪初制定了“拯救GLONASS”的补星计划,并决定启动逐步改善和提高GLONASS性能的现代化改造。 补星和现代化计划共分三个阶段:第一阶段为补充新的卫星以满足GLONASS系统正常运行的最低要求。第二阶段为GLONASS-M计划,即研制新的GLONASS-M卫星。新的GLONASS-M卫星搭载了铯钟,增强了信号的稳定性;改善了信号结构,增加了附加信息;安装了滤波器,消除了1601.6MHz~1613.8MHz以及1660.0MHz~ 1670.0MHz频段的信号干扰;与此同时,其寿命也由原来的3年延长至7~8年;该阶段计划达到18颗在轨运行卫星(包括GLONASS卫星 全球卫星导航系统的发展现状 项鑫1刘红旗2李军杰3 (1.中国地质大学<武汉>地空学院湖北武汉430074;2.平顶山煤业集团土建公司河南平顶山467000; 3.河南城建学院河南平顶山467000) 【摘要】GPS现代化计划提出了更新星座和地面系统、增加第三民用信号L5、增加卫星间的数据通道、发射BlockⅢ(GPSⅢ)卫星等措施,GLONASS正在逐步实施补星和现代化计划,GALILEO可望提供六项更优的服务。分析了全球导航定位系统的发展与应用状况,讨论了导航定位信息的融合情况与应用前景。 【关键词】GPS;GLONASS;Galileo;CNSS;信息融合 66

水库水下地形测量中GPS结合测深仪应用

水库水下地形测量中GPS结合测深仪应用 摘要:随着GPS技术的不断发展,RTK技术的出现和计算机技术的飞速发展,平面定位技术实现了高精度、自动化、数字化和实时化。随着探测技术的数字化和 自动化,为水下地形测量数字化、自动化和水利测量提供了基础,为测绘提供了 先进的手段。文章介绍GPS结合测深仪在水下地形测量中的实际应用、测深设备 的基本工作原理,以及在测量过程中会遇到的问题及处理方法。 关键词:水下地形测量;GPS;测深仪 0引言 水下地形测量在许多工程建设项目上有着重要的作用,它可以为桥梁、码头、水库、港口等工程建设项目提供必要的基础数据,是现代水利工程中的一项重要 工程技术。由于传统水下测量模式存在着诸多弊端,譬如测量难度大、数据不精确、不能反映真实水下地形等问题。现代的“GPS+数据处理软件+测深仪”的测量 模式逐步取代传统的测量模式。 1控制测量 水下地形测量应与地面上的国家控制点或高级控制点构成统一整体,只在需 求的情况下单独建立水下地形测量的高程和平面控制。 2水下地形测量 2.1数字测深仪的工作原理 数字测深仪是利用声波的传导特性,实现水下地形测量的仪器。数字测深仪 的原理是通过振荡器发出超声波后遇到障碍物,再通过接收器接收反射回的声波,通过时间差t,求出距离D=Ct/2,C为超声波波速。 2.2水下地形测量系统组成 水下地形测量利用GPSRTK和数字测深仪、计算机联合使用作业。作业人员 应在测量前将测区的范围图导入计算机,按规范要求在测量前设计好测线,测量 时应按照测线进行测量活动。利用RTK的定位定向功能指导船只航行。利用计算 机的测深软件实时观测船只的航向、航速、船只的平面坐标、水深及RTK的解状态。声波在水中传播速度受到水温、水深、水的盐度等因素的影响,因此要进行 相关参数的修改,同时可以利用声抛仪辅助修改相关参数,用以获得准确的测深 数据。 2.3水下地形测量工作原理 用测深仪专用连接杆连接测深仪与RTK,再将连接好的连接杆安装在船只上,将测深仪没入水下,连接杆要始终保持垂直于水面,并保持连接杆与船只的相对 位置不变,RTK可以实时的获得平面坐标与高程坐标,由RTK所获得的高程减去RTK距水面的高度。同时船只有一定程度的摇晃及水流的波动,因此,此时所获 得的水面高程仅为参考值。所以要求我们在工作时选择较大型的船只,同时注意 保持航速,航速不宜过快,保证数据的准确性。 2.4水下地形测量具体过程 实际工作中三人即可完成操作,由一人驾驶船只,船只要按既定航线行驶, 同时保持船只行驶速度,速度不宜快。一人利用电脑操作GPS接收机和测深仪, 实时观测数据及解状态,另一人利用声抛仪每隔一段距离测量一次声速,用以进 行声速改正,如发现问题,及时处理。 2.5设备的安装 所选用的船只尽量选择大而稳的。测深仪的换能器要尽量远离船只的发动机、

机载增强的全球定位系统(GPS)机载辅助导航传感器

编号:CTSO-C196b 日期: 局长授权 批准: 中国民用航空技术标准规定 本技术标准规定根据中国民用航空规章《民用航空材料、零部件和机载设备技术标准规定》(CCAR37)颁发。中国民用航空技术标准规定是对用于民用航空器上的某些航空材料、零部件和机载设备接受适航审查时,必须遵守的准则。 机载增强的全球定位系统(GPS)机载辅助导航传感器 1. 目的 本技术标准规定(CTSO)适用于为机载增强的全球定位系统(GPS)机载辅助导航传感器申请技术标准规定项目批准书(CTSOA)的制造人。本CTSO规定了机载增强的全球定位系统(GPS)机载辅助导航传感器为获得批准和使用适用的CTSO标记进行标识所必须满足的最低性能标准。CTSO-C196b包含了CTSO-C145d中的许多技术性能改进,但不包括星基增强系统(SBAS)技术要求以及SBAS 星基增强的运行特点。 注:本次修订允许申请人使用CTSO-C206 GPS电路板组件(CCA)功能传感器作为CTSO申请的重要组成部分。 2. 适用范围 本CTSO适用于自其生效之日起提交的申请。按本CTSO批准的设备,其设计大改应按CCAR-21-R4第21.353条要求重新申请CTSOA。

3. 要求 在本CTSO生效之日或生效之后制造并欲使用本CTSO标记进行标识的机载增强的全球定位系统(GPS)机载辅助导航传感器应满足RTCA/DO-316《全球定位系统/机载增强系统机载设备最低运行性能标准》第2.1节(2009.4.14发布)。 CTSO-C196b申请人可以选择使用CTSO-C206 GPS CCA功能传感器。选择使用CTSO-C206 GPS功能传感器的申请人可凭借CTSO-C206 的CTSOA而获得如下的审定符合性的置信度: ●满足最低性能标准(MPS)第2.1节规定的要求; ●硬件/软件鉴定; ●失效状态类别; ●MPS第2.3节的性能试验(功能鉴定),本CTSO附录1中规定的除外。 使用CTSO-C206 GPS CCA功能传感器的CTSO-C196b申请人应开展附录1中所述的试验,并满足本CTSO其它章节中上述所列几点未涵盖的关于获得CTSO-C196b CTSOA的要求。使用CTSO-C206 GPS CCA功能传感器作为其CTSO-C196b申请一部分的终端制造人,依照CCAR21部,对其获取的CTSO-C196b CTSOA中规定的设计和功能负全部责任。 a.功能 (1) 本CTSO的标准适用于接收信号,并为可结合预期飞行航道输出偏航指令的导航管理单元应用提供位置信息的设备,或者为如

实时ICCP算法重力匹配仿真

第19卷第3期 中国惯性技术学报 V ol.19 No.3 2011年6月 Journal of Chinese Inertial Technology Jun. 2011 收稿日期:2011-01-14;修回日期:2011-05-16 基金项目:国家自然科学基金项目(40774002, 40904018,41071295);国家杰出青年基金项目(40125013) 作者简介:童余德(1984—),男,博士研究生,从事重力匹配辅助导航技术研究。E-mail :tongyude@https://www.doczj.com/doc/b95840364.html, 联 系 人:边少锋(1961—),男,教授,博士生导师。E-mail :sfbian@https://www.doczj.com/doc/b95840364.html, 文章编号:1005-6734(2011)03-0340-04 实时ICCP 算法重力匹配仿真 童余德,边少锋,蒋东方,肖胜红 (海军工程大学 导航工程系,武汉 430033) 摘要:利用地球物理场进行辅助匹配导航是组合导航技术研究领域的新方向,该技术为水下潜器无源定位提供新的手段。迭代最近等值线算法作为重要的匹配导航算法之一,但存在实时性不强、搜索速度慢等缺点。考虑到以上两方面缺点,采用固定初始序列长度的方式对算法采样结构进行改善并推导出单点迭代公式,同时采用滑动窗搜索方式缩小搜索范围提高算法速度,最终实现实时ICCP 算法设计。基于MATLAB 平台下实现了实时ICCP 算法重力匹配仿真系统,仿真系统采用0.40.4′′×重力异常数据库。由仿真结果可以看出,该实时ICCP 算法能够实现单点迭代,匹配结果能实时跟踪真实航迹且匹配精度能达到一个重力图网格。 关 键 词:迭代最近等值线算法;重力匹配;辅助导航;实时 中图分类号:U666.1 文献标志码:A Gravity matching simulation of real-time ICCP algorithm TONG Yu-de, BIAN Shao-feng, JIANG Dong-fang, XIAO Sheng-hong (College of Electrical Engineering and Information Engineering, Naval University of Engineering, Wuhan 430033, China) Abstract: The aided navigation with geophysical field is a new research direction in integrated navigation technology, and it provides a new method for the autonomous and passive navigation of underwater vehicle. As one of the important matching navigation algorithms, the Iterative Closest Contour Point (ICCP) algorithm has some disadvantages such as bad real-time performance, low searching speed. With respect to the two limitations mentioned above, the way to fix length of the sample sequence is adopted to improve the sampling structure, and a new iteration equation with single sample point is derived. What’s more, the searching mode of moving window is adopted to reduce the searching area and improve the operation speed of the algorithm. Finally, the real-time ICCP algorithm is designed. The gravity matching simulation system of real-time ICCP algorithm is implemented based on MATLAB, and the system adopts 0.40.4′′× gravity anomaly database. The simulation results show that the matching results can track the real positions in time and the matching error is restrained to one gravity map grid. Key words: iterative closest contour point algorithm; gravity matching; aided navigation; real-time 潜艇水下航行要求其具备高度的隐蔽性。目前,潜艇水下导航主要采用惯性导航定位技术。然而,惯性导航系统(INS)定位误差随时间积累,无法长时间保持高精度。重力匹配辅助导航能有效地对惯性导航系统误差进行水下重调校正,是真正意义上的无源导航。 该技术已引起人们极大的关注,其代表性产品包括美国Lockheed Martin 公司研制的通用重力模块(UGM)所组成的重力导航系统(NGS)和贝尔公司研制的重力辅助导航系统(GAINS)。 匹配算法是重力辅助惯性导航技术中的核心问

全球四大导航系统

全球四大卫星定位系统 目前,世界上只有少数几个国家能够自主研制生产卫星导航系统。当前全球有四大卫星定位系统,分别是美国的全球卫星导航定位系统GPS、俄罗斯的格罗纳斯GLONASS系统、欧洲在建的"伽利略"系统、和中国的北斗卫星导航系统。 一、美国GPS长期垄断 美国国防部从1973年开始实施的GPS系统,这是世界上第一个全球卫星导航系统,在相当长的一段时间内垄断了全球军用和民用卫星导航市场。GPS全球定位系统计划自1973年至今,先后共发射了41颗卫星,总共耗资190亿美元。GPS原来是专门用于为洲际导弹导航的秘密军事系统,在1991年的海湾战争中首次得到实战应用。随后,在科索沃战争、阿富汗战争和伊拉克战争中大显身手。从克林顿时代起,该系统开始应用在了民用方面。现运行的GPS系统由24颗工作卫星和4颗备用卫星组成。美国利用GPS获得了巨大的经济利益,多年来在出售信号接收设备方面赚取了巨额利润。以1986年为例,当时一台一般精度的GPS定位仪价格5万美元,高精度的则达到10万美元。现在价格虽然有所下降,但也可推算出20年来GPS"收获颇丰"。以GPS为代表的卫星导航定位应用产业,已成为八大无线产业之一。据美国国家公共管理研究院进行的调查评估表明,GPS的全球销售额将以每年38%的速度增长,2005年全球GPS市场已达到310亿美元。长期以来,美国对本国军方提供的是精确定位信号,对其他用户提供的则是加了干扰的低精度信号--也就是说,地球上任何一个目标的准确位置,只有美国人掌握,其他国家只知道个"大概"。在海湾战争时,美国还曾置欧盟各国利益不顾,一度关闭对欧洲GPS服务。 2003年3月20日,伊拉克战争爆发。大批轰炸机、战斗机猛扑向伊拉克首都巴格达,用炸弹准确地将一座建筑彻底摧毁,行动代号:"斩首行动";4月,一架B-1B"枪骑兵"轰炸机临时接到任务,用炸弹摧毁了另一座建筑。他们的目标都是一个人:萨达姆侯赛因,他们所使用的炸弹都是一种:联合攻击炸弹(JDAM),这些炸弹之所以都能够精确的打击目标,是因为他们都是通过卫星定位来实现定位,提供这种定位服务的正是由24颗美国卫星组成的全球定位系统--GPS。 由于GPS技术所具有的全天候、高精度和自动测量的特点,作为先进的测量手段和新的生产力,已经融入了国民经济建设、国防建设和社会发展的各个应用领域。 随着冷战结束和全球经济的蓬勃发展,美国政府宣布,在保证美国国家安全不受威胁的前提下,取消SA政策,GPS民用信号精度在全球范围内得到改善,利用C/A码进行单点定位的精度由100米提高到10米,这将进一步推动GPS技术的应用,提高生产力、作业效率、科学水平以及人们的生活质量,刺激GPS市场的增长。 二、俄罗斯GLONASS(格洛纳斯)系统 "格洛纳斯GLONASS"是俄语中"全球卫星导航系统GLOBAL NAVIGATION SATELLITE SYSTE"的缩写。作用类似于美国的GPS、欧洲的伽利略卫星定位系统。最早开发于苏联时期,后由俄罗斯继续该计划。俄罗斯1993年开始独自建立本国的全球卫星导航系统。1995年俄罗斯耗资30多亿美元,完成了GLONASS导航卫星星座的组网工作。它也由24颗卫星组成,原理和方案都与GPS类似,不过,其24颗卫星分布在3个轨道平面上,这3个轨道平面两两相隔120°,同平面内的卫星之间相隔45°。每颗卫星都在19100千米高、64.8°倾角的轨道上运行,轨道周期为11小时15分钟。地面控制部分全部都在俄罗斯领土境内。俄罗斯自称,多功能的GLONASS系统定位精度可达1米,速度误差仅为15厘米/秒。如果必要,该

面向地形辅助导航的地形信息分析

面向地形辅助导航的地形信息分析 刘鹰1,张继贤o,柳健1 (1华中理工大学电信系图像教研室,武汉430074) (o中国测绘科学研究院 100039) 摘要:对地形D EM(数字高程模型)数据中所含信息的多少及信息的可利用程度进行了分析,地形信息的分析结果可作为地形辅助导航和飞行路线选择的参考依据。 关键词:惯性导航系统;地形轮廓线匹配;地形高程模型 中图分类号:P20 文章标识码:A 文章编号:1000-3177(2000)58-0021-03 1 引 言 在飞行过程中,一般需要利用地形辅助导航系统来纠正INS(惯性导航系统)所积累的导航定位误差,TERCOM(地形轮廓线匹配)是其中一种比较典型的辅助导航系统。它的工作原理说明,飞行器位置的确定是利用实测的地形高程剖面与根据INS位置信息和地形高程数据库计算所得的地形高程剖面,按一定的算法作相关分析,所得的相关极值点对应的位置就是飞行器的当前位置。然而,由匹配计算理论及飞行实验我们知道,整块平坦地区的误匹配概率要比有一定起伏地区的误匹配概率高。因此在航迹规划时,我们要让航迹尽量避开那些连续的平坦区域,而选择具有一定起伏的区域,在这里,我们称前者的信息量少,而后者则相反。但是,在进行地形的匹配搜索运算时,考虑到不同地形块之间的相似性,因此尽管有些地形的信息量较大,但由于相关性太大而导致可利用的程度不高,所以要对地形进行相关程度的分析。用以上分析的结果来指导航迹的选择,进行飞行任务的合理规划。 2 地形信息的分析 2.1 地形特征参数的选择 地形信息的分析作为地形分析的一部分,是通过研究与地形辅助导航密切相关的地形特征因素及各因素的贡献,从而为地形信息分析提供实验和理论依据。理论上来说,一旦地形的高程值给定之后,有关地形的信息就已经完全得到了。因此,根据回归分析法研究常用特征参数之间的关系,我们选取以下7项特征参数作为地形分析的主要度量指标: 1分形维数; o地形标准差; ?X,Y方向相关长度; ?X,Y方向块相似度; ?粗糙度; ?斜率均方差; ?频域收敛度。 这7个特征参数基本上可以反映出地形的主要情况。因此,我们就可以根据这几个参数来衡量地形的信息量大小。 2.2 地形的类型初判 在对某块地形作直观描述时,我们常用到“平原、丘陵、高山”等字眼,这些词粗略地反映了地形的概貌。用数学方法和语言来描述,就是反映地形数据的平均高程值大小和标准差的大小。例如,我们平时称为“平原”的地区,其对应的高程值和标准差值都比较小。为了对地形的类型作进一步较精确的分类,我们在此还引入了地形的另一特征参数地形的自相似系数H。 H和地形分形维数D之间的关系是: D=3-H(1)由分形理论分析可知,H参数反映了地形微起伏的复杂程度或表面的破碎程度,是对地形复杂情况的一种抽象和概括,也直接影响地形的匹配概率和匹配精度。H值越大,则地形表面越简单,信息量较小;H值越小,则地形的表面越复杂,信息量相对来说较大。根据经验值取分形门限H为: 0.7~1.0:信息贫乏区 0.3~0.7:可匹配区 0.0~0.3:地形危险区 作者简介:刘鹰,男,(1975~)华中理工大学电信系信息与信号处理专业硕士研究生,主要研究方向为图像处理,模式识别和信号处理。 21

【CN209485376U】共享单车安全导航辅助装置【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920526696.X (22)申请日 2019.04.18 (73)专利权人 吉林大学 地址 130012 吉林省长春市前进大街2699 号 (72)发明人 王楠 张峻伟 吉林杰 张茜  陈秋昀 庞礼健 杜瑞 刘建业  刘涵  (74)专利代理机构 长春吉大专利代理有限责任 公司 22201 代理人 朱世林 张晶 (51)Int.Cl. G01C 21/36(2006.01) G01C 21/26(2006.01) B62J 3/00(2006.01) B62J 6/00(2006.01) (54)实用新型名称共享单车安全导航辅助装置(57)摘要本实用新型属于车辆导航技术领域,涉及一种震动与灯光辅助骑行的导航装置。包括智能把手和智能灯环,智能把手设置于共享单车两侧的把手处,以代替原有把手位置;所述智能灯环设置于共享单车的车头上;智能把手8包括LED灯A、震动马达、主芯片A和锂电池A;主芯片A与LED灯A、震动马达相连接,以发送控制信号;智能灯环由LED灯B、主芯片B、锂电池B、蓝牙模块、显示屏组成;蓝牙模块与主芯片B相连接,以接收第三方App导航软件的导航数据;主芯片B与显示屏和LED灯B相连接,以发送控制信号。有效解决骑行者骑单车时使用手机导航不方便的问题,也不再需要单独设计新的导航系统,节约开发成本,市 场上已有的手机导航APP能够继续被用户使用。权利要求书1页 说明书4页 附图3页CN 209485376 U 2019.10.11 C N 209485376 U

《惯性导航简介》

惯性导航简介 ——《导航概论》课程论文 专业:测绘工程A组姓名:师嘉奇学号:2015301610091 一.摘要与关键字 1.本文摘要:本文主要对导航工程的基本内涵,方法与原理进行简单介绍,主要介绍有关惯性导航的相关内容,并且根据在本学期《导航概论》这门课程上所学习的内容谈一谈自己对导航应用的设想以及对本课程教学的建议。 2.关键字:惯性导航,定位技术,应用与服务,发展与前景 二.导航工程基本内涵 导航定位的历史与人类自身发展的历史一样久远。人类的导航定位活动源自于其生活和生产的需要。陆地上的导航定位最早发生在人类祖先外出寻找食物或狩猎的过程中,那时,他们通常在沿途设置一些特殊的“标记”来解决回家迷路的问题。随着探索遥远地域的愿望与行动的出现,他们则通过观察和利用自然地标(如山峰、河流、树木、岩石等)以及自然天体(恒星)来解决导航定位问题这也使得他们能够翻越高山、跨越河流。谈到导航,很多人会认为这是一个在近现代才提出的词汇,但是,导航的历史已经非常久远了。从古代黄帝作战使用的指南车,到战国时期的司南,从近代航海使用的指南针,再到当今社会人手一部的智能手机,导航已经有了很悠久的历史。那么,导航工程的基本内涵到底是什么呢?

首先,我们可以通过两个英文的句子来大概了解一下到底什么是导航“when am I?”和“How and when to get there?”,这两个问题问的是我现在在哪?我要怎么到那里去?它们也指出了导航的内涵,那就是在哪,怎样去,多久到达。因此,通过科学的定义,将航行载体从起始点引导到目的地的过程称为导航,导航系统给出的基本参数是载体在空间的即时位置、速度和姿态、航向等,导航参数的确定由导航仪或导航系统完成。通过这种技术引导载体方向的过程即为导航。导航是解决人,事件,目标相互位置动态关系随时间变化的科学,技术,工程问题。 在室外或者自然环境中的导航,按照载体运动的范围,可分为海陆空天(海洋、陆地、空中、空间)导航四类;按照所采用的技术,常用的导航方法有,天文导航、惯性导航、陆基无线电导航、卫星导航、特征匹配辅助导航(如地形匹配、地磁匹配、重力匹配)等,以及上述导航方法之间的不同组合(组合导航)。室内定位导航作为当今导航技术发展的个重要分支,它借鉴室外导航的相关技术,同时结合现代通信技术、网络技术传感器技术以及计算机技术的最新发展,已经成为一个重要的研究热点并在人们日常工作和生活中逐步得到应用。室内导航与自然环境中的导航既有联系又有其自身的特点,其主要差异是来自于应用环境及所采用的技术方法不同。 导航系统有两种工作状态:指示状态和自动导航状态。如导航设备提供的导航信息仅供驾驶员操纵和引导载体用,则导航系统工作为指示状态,在指示状态下,导航系统不直接对载体进行控制,如果导

计算机辅助导航技术在骨科手术中的应用

国内讲堂11 继续医学教育 第21卷第12期计算机辅助导航技术在骨科手术中的应用 邱贵兴(中国医学科学院协和医科大学北京协和医院骨科 100710) 作者简介邱贵兴,男,江苏省无锡市人,教授,博士生导师,中华医学会骨科分会主任委员,中华医学会北京分会骨科专业委员会主任委员,中华骨科杂志主编,吴阶平医学基金会理事,中华医学会国际交流与合作工作委员会委员。影像导航技术问世之前,骨科医生在术中,凭借人体的骨骼解剖特点、术前患者的影像学资料(X线片、CT、MRI)和术中的X线透视进行定位。但是,解剖变异或解剖标志的缺乏等往往会导致术中的定位偏差。因此,手术者的实践经验就非常重要。然而,即使是非常有经验的骨科医生,用传统方法进行较精确定位的手术,也有出现偏差的可能性。临床和实验研究已经显示,用传统定位方法行腰椎椎弓根钉植入的失误率为20%~30%。然而,如果 应用影像导航技术,椎弓根钉植入的失误率只有0~4%。近年来,计算机辅助影像导航系统用于术前制定手术计划和术中导航,在手术过程中跟踪手术器械,帮助骨科医生更精确和更安全地进行多种复杂手术。因此,该技术有许多不可替代的优越性,已被越来越广泛地应用于骨科手术中。1 骨科计算机辅助导航技术的简史影像导航,也称为无框架立体定向。1986年Roberts首次报告使用声波数字化仪跟踪手术器械或显微镜的方法,从而开创了无框架立体定向神经外科。随后,Bernett和 Reinhard对超声波系统进行了改进,使导航精度有了一定的提高,但声学环境及温度很容易造成干扰而使导航失败。1991年日本的Wanatabe和美国的Pell相继发明了遥控机械臂定位系统,可以不受瞄准线约束。但因其体积过大,使医生的操作受限。1992年,使用红外线跟踪技术的影像导航系统在美国开始应用于临床。这是世界上首台光学手术导航系统,由于其精度较高,所以成为目前市场上的主流产品。同年,著名的神经外科专家Kevin Foley将光学手术导航系统应用于脊柱外科领域。1995年,Gunkel推出了电磁感应型导航系统,但由于手术室各种金属器械及仪器都会影响电磁场,从而影响其精度,所以未能很好推广。1999年首台完全针对骨科的手术导航系统进入市场。X线透视和红外线跟踪技术、计算机定点手术技术的结合提供了一种新颖的术中影像导航的方法,减少了术中X线透视的缺点。同时,应用术前的CT和MR扫描数据进行骨结构的三维重建,在术前进行手术方案设计,并在术中对正常或病变结构进行精确定位,以协助医生安全、精确地完成手术。2 骨科计算机辅助导航系统的组成及工作原理以X线透视影像导航为例,X线透视法和计算机技术的结合增加了标准透视法的优点,减少了缺点。在“C”型臂透视X线机的图像增强器上安装校准靶,经过一次或多次投照中获得的透视图像和位置校准后,计算机工作站就可以建立起一个透视图 像的模型,将追踪的手术器械与保存的图像叠加在 一起。当手术器械对之前获得的透视图像进行操作 时,系统可以同时显示它们在多个平面上的位置关系,这种方式称为“虚拟透视”。透视图像可保存,透视时手术人员可以从手术区域离开,大大减少了放射线辐射。而且系统已保存了多次投照的影像和有效的数据,因此不必重新摆放“C”型臂。“C”型臂可以推离手术区域,导航可以继续,而且不妨碍医生的操作。 近年来,新型的计算机辅助导航系统可将患者的术前薄层CT扫描(可以0.8 mm)或MR扫描数据进行处理,使患者的骨骼扫描数据变成三维立体虚拟图像储存在计算机中。医生可在术前利用该计算机系统进行详尽的手术设计。术中应用光学定位系统,跟踪测量手术器械上的发光二极管或被动反射球的位置。由计算机测算手术器械与被操作的骨结构之间的位置关系,可以动态的显示手术器械

北斗卫星导航系统概述

北斗卫星导航系统概述 00钟恩彬 引言 自从 1960 年美国发射第一颗导航卫星并于1964年组成美国海军导航卫星系 统(NNSS)以来,导航卫星经过了从多普勒定位技术到伪码扩频测距定位,从间断、部分覆盖导航到全天候、全天时、全覆盖导航,从单纯广播式导航到通信导航融合 技术的发展,其中运行了近二十年的美国 GPS 系统是卫星导航技术发展 的结晶。随着卫星导航系统应用价值的不断扩展, GPS 也暴露了一些不足,比如,GPS 能够解决单一用户的精确定位导航问题,但由于它是广播式的导航,用户不能与导航卫星建立通信,定位信息不能传输给用户中心,这一缺点使得它若在战场上运用时虽然能给导弹导航,但不能向指挥中心回传打击效果。我国充分吸收 GPS 的经验,于上世纪 80 年代开始研究设计自己的卫星导航系统—北斗卫星导 航系统。截至目前,我国已经发射了 16 颗组网卫星,基本实现了亚太区域覆盖,我们很快就将用上国产的北斗终端设备了。在此背景下,本文将主要从北斗卫星导航系统的基本原理、与其它系统的比较两个方面简要介绍北斗卫星导航系统。 一、北斗卫星导航系统的基本原理 卫星定位说白了就是测出几颗卫星到定位点的距离,然后在建立的三维空间坐标系中以这些距离为半径画几个球,球的交点即为定位点的坐标,至于导航就是选定一个参考点,测算出它的坐标,引导用户到该参考坐标点就是导航。 关键的问题是如何测量出实时的距离,这就需要利用电磁波在卫星与用户之间的来回传播来测算。不过实际的系统远不止这么简单,例如必须保证发射和接受同步,这就好比要使卫星和用户接收机同时开始播放同一首歌,这时站在接收机旁的人会停到两个版本的歌声,滞后的就是来自卫星的歌声,这个时延乘上光速 c 即为卫星到定位点的距离,当然,这个时延的测量也必须用精准的时钟。为了保证这些,电磁波上必须加载复杂的导航电文。导航电文不是由卫星单独产生的,而要有地面主控站来控制完成,所以为了不受制于人,我国决定开发自己的卫星导航系统。 北斗卫星导航系统由空间端、地面端和用户端组成,空间端包括 35 颗组网卫星,其中 5 颗为静止轨道 (GEO)卫星,地面端主要有主控站、注入站

GPS惯性导航系统

惯性导航系统(INS )与全球卫星定位系统(GPS ) 来源:中国自动化网 作者: 发表时间:2010-06-30 08:26:00 1 摘要 目前飞行器所使用的导航系统,能适应全天候、全球性应用的确实不多。传统无线电导航,如塔康(TACAN )等,在应用上存有很多的限制和不便之处。而为改善此缺点,一套不需要其它外来的辅助装置,就可提供所有的导航资料,让飞行员参考的惯性导航系统(Inertial Navigation System ),虽已被成功发展并广为应用,但其在系统上的微量位置误差会随飞行时间的平方成正比累积,因此长时间飞行会严重影响到导航精确度,如果没有适当的修正,位置误差在一个小时内会累积超过300米。另一套精密的导航系统GPS ,其误差虽不会随时间改变,但GPS 并非万能,有优点,也有先天的缺陷,它在测量高机动目标时容易脱锁并且会受到外在环境及电磁干扰,再者GPS 短时间的相对误差量大于INS ,若只依靠它来做导航或控制,会造成相反效果。所以在导航系统设计上,常搭配惯性系统来使用,正巧GPS 与INS 有互补的作用,可经过一套运算法则,将两者优点保留,去除缺点,本文即针对两种导航系统特性进行探讨,并利用卡尔曼滤波器法则完成简易测量数据关系推导,设计一套“GPS/INS 组合式导航系统”。 2 前言 早期舰船航行常利用“领航方法”来决定载体的位置及方向,观察陆地突出物,来引导船身驶向某处目标。随着飞行器的问世,初期飞行也全凭借着飞行员对当时自我方向、距离、高度及速度的感觉来控制驾驶,执行起飞、落地及飞机转场等等动作。这种控制载体由一个地方到另一个地方其间方向与距离指示的艺术,就称之为“导航”(Navigation )。然而仅仅依循着人为的导航方式,在天气良好条件下或周遭存有许多明显参考目标物时,单纯凭目视来判断飞行并不困难;但如果遇上天气条件不佳、能见度差、参考目标不存在活不明显时,就得依靠飞行员的经验、技巧及运气来进行方位及位置的判别,这无形中会造成飞行员的压力,更会严重影响到飞行安全的诸多不确定因素。因此,人们就积极开发各种导航技术,借着科技的快速发展与进步,导航的艺术也变得更多样化且精确可靠。 “导航科学”可定义为“计算并决定一个载体的位置与预先设定的目的地的方向的一种应用”。 较先进的无线电导航,如罗兰(Loran )、超高频全向装置(VOR )、距离测量装置(DME )、塔康(TACAN )及多普勒(Doppler )等均相继被开发出来,成功有效的帮助了航行者,提供导航重要的参考依据。然而,无线电系统毕竟尚有很多限制和不便之处,如使用距离、地物遮蔽等均可能会造成功能失效。另外,无线电导航其基本架构是需要“基地站”发射定位无线电信号,经飞机上的“接收机”天线接收、处理及计算才能显示两点的关系,获得导航资料;只要其中一方失效或无线电传输不良,即无法进行导航工作,这对在茫茫的空中飞行是一件非常危险的事情。因此到上个世纪50年代,美国国防部认为有必要发展一套导航系统,不需要其它外来的辅助装置,就可提供所有的导航数据资料,让飞行员参考。就在当时,由麻省理工学院(MIT )开发出第一套飞机使用的惯性导航系统(Inertial Navigation System ),此系统完全自我包容、为独立源、不受外界的环境影响即可测量并提供所有的导航资料,包括载体的精确位置、对地速度、姿态与航向等,提供给自动导航仪及飞行仪表(如地平仪及方位仪等)。由于惯性导航系统的功能、尺寸大小、重量等特性远比其它导航系统要好,所以近年来INS 始终能在导航领域独占鳌头。 然而惯性导航系统所提供的位置信息,仍有少量的误差,虽然其误差变化很慢,但位置误差的累积随飞行时间的平方成正比;因此对长时间飞行的导航精确度会有所影响;如果没有适当的修正,位置误差在一小时之内会累积超过300米,所以INS 虽然是一种独立自主的工作系统,但仍有缺点,而造成误差的原因不外与加速度计及陀螺仪的品质、重力场变化、起始位置、方位输入值及安装误差等因素有关。当然系统本身的品质,因价格的不同,仍有很大的差异。由于INS 主要误差源为陀螺仪的角速率漂移率及加速度计的偏差,且会因时间的累积而扩大,因此若能采用某种设备,在一定时间内适当修正INS 所造成的误差,一定可以大幅度改善系统导航精确度。 到60年代,美国海军开发出一套TRANSIT 导航卫星供舰船及潜艇定位使用,至今,地面许多载体仍然

相关主题
文本预览
相关文档 最新文档