Bezier曲线的拼接及其连续性
- 格式:ppt
- 大小:521.00 KB
- 文档页数:30
Bezier 曲线什么是 Bezier 曲线?Bezier 曲线是一种数学曲线,由法国工程师 Pierre Bézier 于20世纪50年代发明。
它是计算机图形学中最基本和最常用的曲线之一。
由于其简单性和灵活性,Bezier 曲线被广泛应用于计算机图形、工业设计、动画制作等领域。
Bezier 曲线的特点Bezier 曲线由一系列控制点确定,并通过调整这些控制点的位置和参数来定义曲线的形状。
以下是 Bezier 曲线的一些特点:1.可调节性:调整控制点的位置和参数可以改变曲线的形状、弯曲程度和速度。
2.平滑性:Bezier 曲线能够平滑连接控制点,使得曲线在控制点之间呈连续曲率。
3.参数化形状:Bezier 曲线可以通过调整参数来生成无限多种形状,从简单的直线到复杂的曲线。
4.逼近性:Bezier 曲线可以用来逼近其他复杂的曲线,如圆弧、椭圆等。
Bezier 曲线的数学表达Bezier 曲线是通过插值和多项式生成的数学曲线。
根据控制点的个数,可以确定 Bezier 曲线的阶数。
一般情况下,Bezier 曲线的阶数等于控制点数减1。
对于一维的 Bezier 曲线,它可由以下公式表示:Bezier 1DBezier 1D其中,n 为阶数,t 为参数,Pi 为控制点,Bi, n(t) 为 Bezier 基函数。
对于二维的 Bezier 曲线,它可由以下公式表示:Bezier 2DBezier 2D其中,n 为阶数,t 为参数,Pi 为控制点,Bi, n(t) 为 Bezier 基函数。
Bezier 曲线的应用Bezier 曲线的应用非常广泛,以下是一些常见的应用场景:1.计算机图形学:Bezier 曲线可以用来绘制平滑的曲线和曲面,用于构建2D和3D图形。
2.工业设计:Bezier 曲线可以用来设计平滑的汽车车身、家具等产品。
3.动画制作:Bezier 曲线可以用来定义动画路径,使得动画流畅而自然。
★★★★★
1、试推导三次Bezier曲线的一阶几何连续的拼接条件
答:
1)如图所示,设首段Bezier曲线由P0P1P2P3组成,第二段由Q0Q1Q2Q3组成
2)则两段曲线方程为:
3)满足零阶连续条件为:
4)满足一阶几何连续(光滑连续)的条件为:
,由此可得:
5)
2、计算由控制点P0(0,0,0)、P1(20,40,0)、P2(60,50,0)、P3(80,0,0)确定的三次Bezier曲线参数t=0.5时曲线上点的值
答:
= [ 1/8 3/8 3/8 1/8 ] [ A B C D]T
将上式A、B、C、D以题目中P0、P1、P2、P3坐标代入,
得:[ x y z ] = [ 0,30,15 ]
3、如图所示形体,填写Brep表达的边表和环表,给出形体的点、边、环、面数目
注:只填写ABFE面上的边表
注:只填写ABFE 面和CDEF 面上的环表
该形体的顶点数为: ,边数为: ,环数为: ,面数为: 。
答案:
豆丁致力于构建全球领先的文档发布与销售平台,面向世界范围提供便捷、安全、专业、有效的文档营销服务。
包括中国、日本、韩国、北美、欧洲等在内的豆丁全球分站,将面向全球各地的文档拥有者和代理商提供服务,帮助他们把文档发行到世界的每一个角落。
豆丁正在全球各地建立便捷、安全、高效的支付与兑换渠道,为每一位用户提供优质的文档交易和账务服务。
任课教师:李陶深教授tshli@任课教师:李陶深教授tshli@12 曲线的基本概念Bézier 曲线5曲线与曲面的概述 4 3 6 B 样条曲线NURBS 曲线 常用的曲面Bézier曲线是由法国雷诺汽车公司工程师的Pierre Bézier在1971年发明的一种构造样条曲线和曲面的方法, 用来进行雷诺汽车的车身设计, 现在Bézier曲线曲面广泛应用在计算机图形学中的外形设计, 以及字体表示中.◆Bé◆在折线的各顶点中,只有第一点和最后一点在曲线上且作为曲线的起始处和终止处,其他的点用于控制曲线的形状及阶次。
◆曲线的形状趋向于多边形折线的形状,要修改曲线,只要修改折线的各顶点就可以了。
多边形折线又称的控制多边形,其顶点称为控制点。
6.3 Bézier 曲线—曲线的定义Bézier 曲线是由一组控制顶点和Bernstein 基函数混合(blending)得到的曲线.()[],0(), 0,1n i i n i t B t t ==∈∑C P 其中, P i (i =0,1,…,n)称为控制顶点; 顺序连接控制顶点生成控制多边形.()()[],1,0,1n i i i i n n B t C t t t -=-∈为Bernstein 基函数.Bézier 曲线的次数, 就是Bernstein 基函数的次数; Bézier 曲线的阶数, 就是控制顶点的个数. 阶数为次数加1.6.3 Bézier曲线—定义(2)给定空间n+1个点的位置矢量P i(i=0,1,2,…,n),则n次Bézier曲线上各点坐标的插值公式定义为:B i,n(t)是n次Bernstein基函数P i构成该Bézier曲线的特征多边形6.3 Bézier曲线—曲线的定义(3)Bézier曲线曲线的形状趋于特征多边形的形状①正性②权性由二项式定理可知:③对称性: 若保持原全部顶点的位置不变, 只是把次序颠倒过来, 则新的Bézier曲线形状不变, 但方向相反。
(4条消息)曲线曲面基本理论(二)一、Bezier曲线的生成生成一条Bezier 曲线实际上就是要求出曲线上的点。
下面介绍两种曲线生成的方法:1、根据定义直接生成 Bezier 曲线绘制Bezier曲线主要有以下步骤:2、Bezier 曲线的递推 (de Casteljau)算法根据 Bezier 曲线的定义确定的参数方程绘制 Bezier 曲线,因其计算量过大,不太适合在工程上使用。
de Casteljau 提出的递推算法则要简单得多。
Bezier 曲线上的任一个点(t),都是其它相邻线段的同等比例( t ) 点处的连线,再取同等比例( t ) 的点再连线,一直取到最后那条线段的同等比例 ( t )处,该点就是Beizer曲线上的点( t ) 。
以二次 Bezier 曲线为例,求曲线上t=1/3的点:当t 从0变到1时,它表示了由三顶点P0、P1、P2三点定义的一条二次Bezier曲线。
二次Bezier曲线P02可以定义为分别由前两个顶点(P0,P1)和后两个顶点(P1,P2)决定的一次Bezier曲线的线性组合。
由(n+1)个控制点Pi(i=0,1,...,n)定义的n次Bezier曲线P0n可被定义为分别由前、后n个控制点定义的两条(n-1)次Bezier曲线P0n-1与P1n-1的线性组合:这便是著名的de Casteljau算法。
用这一递推公式,在给定参数下,求Bezier曲线上一点P(t)非常有效。
de Casteljau算法稳定可靠,直观简便,可以编出十分简捷的程序,是计算Bezier曲线的基本算法和标准算法。
这一算法可用简单的几何作图来实现。
3、Bezier曲线的拼接几何设计中,一条Bezier曲线往往难以描述复杂的曲线形状。
这是由于增加特征多边形的顶点数,会引起Bezier曲线次数的提高,而高次多项式又会带来计算上的困难。
采用分段设计,然后将各段曲线相互连接起来,并在接合处保持一定的连续条件。
Bezier曲线曲面的拼接Bezier曲线曲面是一种常见的计算机图形学中的曲线曲面构造方法。
其原理是通过数学公式来描述一个点集合的形状。
在实际应用中,我们通常需要根据实际需求来构造或者拼接Bezier曲线曲面。
本文将着重介绍Bezier曲线曲面的拼接方法。
一、Bezier曲线曲面的构造Bezier曲线曲面的构造方法很简单,只需要给定点的坐标和曲线方程即可。
其中,点的坐标用于描述曲线上的控制点位置,而曲线方程则用于描述控制点间的线段的形状。
对于一条Bezier曲线,它的方程可以表示为:$$P(u)=\\sum_{i=0}^{n}B_i^n(u)P_i$$其中,$n$代表控制点的数量,$P_i$表示第$i$个控制点的坐标,$B_i^n(u)$是权重多项式,它可以通过如下公式计算:$$B_i^n(u)={n\\choose i}u^i(1-u)^{n-i}$$这个公式包含两个部分。
第一部分是二项式系数$C_n^i={n\\choose i}$,它描述的是从$n$个点中选取$i$个点的组合数。
第二部分是$u^i(1-u)^{n-i}$,它描述的是每个控制点在曲线上占据的位置和弧长。
通过这两部分的组合,我们可以得到一个平滑连续的Bezier曲线。
对于一条Bezier曲面,它的方程可以表示为:$$P(u,v)=\\sum_{i=0}^{n}\\sum_{j=0}^{m}B_i^n(u)B_j^m(v)P_{ij}$$其中,$n$和$m$分别代表控制点的数量,$P_{ij}$表示第$i$行,第$j$列的控制点的坐标。
这个方程就是通过控制点的二维数组来描述空间中的三维曲面的。
二、Bezier曲线曲面的拼接当需要在一个三维场景中绘制复杂的曲面形状时,往往需要将不同的曲面拼接起来。
Bezier曲线曲面的拼接可以通过各种方法实现。
以下介绍两种常用的拼接方法。
1. 曲面连接法曲面连接法需要将拼接曲面共享一个相邻控制点,从而使得两个曲面连接处的网格点重合。
bezier曲线的拼接及其连续性
贝塞尔曲线是一种二次多项式曲线,它可以表示物体在三维空间中的运动状态,从而可以以精确的方式模拟物体的运动轨迹。
贝塞尔曲线可以非常精准地模拟物体的移动,如自然界中物体的运动曲线,如果使用椭圆形或抛物线,无论是位移还是移动的加速度都可以被精确地模拟出来。
这些特性决定了贝塞尔曲线在各种科学,工程和艺术领域的广泛应用,例如城市设计,动画,建筑,电影制作,图形设计,工业设计,舞蹈,等等。
因为它可以表达丰富多样,复杂形式、自然运动状态,更容易处理处理复杂动画和游戏平台中的小游戏功能。
贝塞尔曲线一般被研究为一簇控制点,通过理论分析可以证明,连接控制点的位置及其特性关系,可以用来提取参数表达的曲线。
为了确保曲线的连续性,贝塞尔曲线可以像串联火柴一样,用控制点和节点来表达曲线,控制点是具有控制功能的点,它控制曲线的变化,节点是分别由控件点定义的点,通过节点的相互连接,可以有条理的拼接出贝塞尔曲线,从而保证曲线的连续性。
贝塞尔曲线的连续性是贝塞尔曲线的重要特性之一,它决定了贝塞尔曲线的控制精度和平滑度。
也就是说,连续性是控制贝塞尔曲线的重要条件之一。
建立贝塞尔曲线的前提是形成一簇连续性好的控制点,然后,通过各个控制点将贝塞尔曲线拼接起来,最终形成具有良好连续性的曲线。
因此,要想实现质量不变的曲线,而且满足曲线连续性的要求,节点和控制点之间的位置及其特性关系对其求出来的曲线拼接结果至关重要。
贝塞尔曲线的拼接及其连续性是重要的,因为它可以表示物体的精确运动轨迹。
正是贝塞尔曲线的控制精度和平滑度,才有可能表达丰。
有理Bézier曲线段的几何连续拼接于存光;王宏久【期刊名称】《价值工程》【年(卷),期】2011(30)3【摘要】本文提出了通过调整权因子而不是改变控制顶点采修改有理三次Bézier 样条曲线的形状,实现了相邻两段Bézier曲线间的C3连续拼接:实现了两段分离的Bézier曲线之间的G3连续过渡;在不改变给定控制顶点的情况下,能实现整体曲率连续的闭曲线造型;在仅仅修改或插入两点的情形下实现了整体G3连续的闭曲线造型.%In this thesis, a new method is proposed for adapting the shape of the rational cubic Bézier curve via the change of the weights.As a result, the continuity between two adjacent rational cubic Bézier curves and the continual transition between two separate rational cubic Bézier curves ar e achieved.Furthermore, the closed curve modeling of the complete continuity can be realized by changing or inserting two vertices instead of modifying the defined controlling vertices.【总页数】1页(P205-205)【作者】于存光;王宏久【作者单位】黑龙江科技学院,哈尔滨,150027;黑龙江科技学院,哈尔滨,150027【正文语种】中文【中图分类】O18【相关文献】1.一类有理参数变换及其在曲面几何连续拼接中的应用 [J], 姜献峰;鲁聪达2.关于有理Bezier曲面片的几何连续拼接问题 [J], 康宝生;周儒荣3.三次有理Bézier曲线与HC-Bézier曲线的拼接 [J], 张丹丹;吴欢欢4.两种Bézier曲面形式的转换及几何连续拼接 [J], 胡事民5.有理Bézier曲线的几何连续条件及其应用 [J], 姜献峰;梁友栋因版权原因,仅展示原文概要,查看原文内容请购买。
bezier曲面的应用-Bezier曲线曲面的拼接Bezier曲线曲面的拼接摘要曲线曲面的表示是计算机图形学的重要研究内容之1,Bézier曲线曲面又是计算机图形学中常用的曲线曲面,它采用分段和分片参数多项式的形式。
Bézier曲线曲面之所以被广泛使用是因为它有许多特别适合计算机图形学和计算机辅助几何设计的特点。
本文依次详细论述了Bézier曲线的定义和性质、Bernstein基函数性质、介绍了双3次Bézier曲面、递推算法、构图法及其应用、Bézier曲线曲面的拼接。
通过对Bézier曲线曲面的论述,阐述了Bézier曲线曲面的原理及其特性,研究Bézier曲线拼接的几何连续性及参数连续性,总结出G ,G 及C ,C 连续的几何意义。
最后研究了Bézier曲面拼接的几何连续性。
关键词: C 连续;G 连续;Bernstein基函数;参数连续性;几何连续性Abstract The curve curved surface expression is one of computer graphics important research contents, Bézier the curv e curved surface also is in the computer graphics the commonly used curve curved surface, it uses the partition and the lamination parameter multinomial form. Bézier the curve curved surface the reason that by the widespread use is because it has many suits the computer graphics and the computer assistance geometry design characteristic specially. This article in detail elaborated Bézier the curve definition and the nature, the Bernstein primary function nature in turn, introduced a pair of three Bézier cu rved surface, the recursion algorithm, the composition law and the application, Bézier curve curved surface splicing. Through to Bézier the curve curved surface elaboration, elaborated Bézier the curve curved surface principle and the characteristic, the r esearch Bézier curve splicing geometrycontinuity and the parameter continuity,Summarizes G,G and C,C continual geometry significance. Finally has studied Bézier thecurved surface splicing geometry continuity.Key words: C continuity ; G continuity; Bernstein basic function ; parametric continuity ; geometric continuity。