电力系统继电保护实验指导书一--三段式电流保护与自动重合闸装置综合实验
- 格式:docx
- 大小:236.08 KB
- 文档页数:17
实验三三段式电流保护实验【实验名称】三段式电流保护实验【实验目的】1.掌握无时限电流速断保护、限时电流速断保护及过电流保护的电路原理,工作特性及整定原则;2.理解输电线路阶段式电流保护的原理图及保护装置中各继电器的功用;3.掌握阶段式电流保护的电气接线和操作实验技术。
【预习要点】1.复习无时限电流速断保护、限时电流速断保护及过电流保护相关知识。
2.根据给定技术参数,对三段式电流保护参数进行计算与整定。
【实验仪器设备】【实验原理】1.无时限电流速断保护三段式电流保护通常用于3-66kV电力线路的相间短路保护。
在被保护线路上发生短路时,流过保护安装点的短路电流值,随短路点的位置不同而变化。
在线路的始端短路时,短路电流值最大;短路点向后移动时,短路电流将随线路阻抗的增大而减小,直至线路末端短路时短路回路的阻抗最大,短路电流最小。
短路电流值还与系统运行方式及短路的类型有关。
图3-1曲线1表示在最大运行方式下发生三相短路时,线路各点短路电流变化的曲线;曲线2则为最小运行方式下两相短路时,短路电流变化的曲线。
图3-1 瞬时电流速断保护的整定及动作范围由于本线路末端f1点短路和下一线路始端的f2点短路时,其短路电流几乎是相等的(因f1离f2很近,两点间的阻抗约为零)。
如果要求在被保护线路的末端短路时,保护装置能够动作,那么,在下一线路始端短路时,保护装置不可避免地也将动作。
这样,就不能保证应有的选择性。
为了保证保护动作的选择性,将保护范围严格地限制在本线路以内,就应使保护的动作电流I op1.1(为保护1的动作电流折算到一次电路的值)大于最大运行方式下线路末端发生三相短路时的短路电流I f.B.max,即I op1.1 I f.b.max,I op1.1=K rel I f.b.max式中,K rel—可靠系数,当采用电磁型电流继电器时,取K rel=1.2~1.3。
显然,保护的动作电流是按躲过线路末端最大短路电流来整定,可保证在其他各种运行方式和短路类型下,其保护范围均不至于超出本线路范围。
实验一 电流电压联锁保护原理与实验一、实验目的1、通过实验进一步理解电流电压联锁保护的原理、并掌握其整定和计算的方法。
2、掌握电流电压联锁保护适用的条件。
二、实验原理 1、电压速断保护在电力系统的等值电抗较大或线路较短的情况下,当线路上不同地点发生相间短路时,短路电流变化曲线比较平坦,见图10-1所示的无时限电流速断保护。
电流速断保护的保护范围较小,尤其是在两相短路和最小运行方式时的保护范围更小,甚至没有保护范围。
在这种情况下,可以采用电压速断保护,而不采用电流速断保护。
在线路上不同地点发生相间短路时,母线上故障相之间残余电压Ucy 的变化曲线如图10-2所示。
从图中看出,短路点离母线愈远,Ucy 愈高。
其中:①表示最大运行方式下Ucy 变化曲线;②表示最小运行方式下的 Ucy 变化曲线。
电压速断保护是反应母线残余电压Ucy 降低的保护。
在保护范围内发生短路时,Ucy 较低,保护装置起动;在保护范围以外发生短路时,Ucy 较高,保护装置不起动。
如同电流速断保护一样,电压速断保护可以构成无时限的,也可以构成有延时的。
在图10-2所示的线路上,如果装有保护相间短路的无时限电压速断保护,它的动作电压Udx 应整定为kLd kcy K X I K U Udx )3(min .min .3==(10-1)式中Ucy.min —— 最小运行方式下在线路末端三相短路时,线路始端母线上的残余电压;)3(min .d I —— 上述短路时的短路电流;X l —— 线路电抗;Kk —— 可靠系数,考虑到电压继电器的误差和计算误差等因素,它一般取1.1~1.2。
从图10-2可见,在最小运行方式下,电压速断保护的保护范围(Ib.min )最大;在最大运行方式下,保护范围(Ib.max )最小。
所以电压速断保护应按最小运行方式来整定动作电压,按最大运行方式来校准保护范围。
在线路上任何一点发生短路时,不论是三相短路还是两相短路,母线上故障相之间的残余电压是相等的。
实验一 阶段式过电流与自动重合闸前加速一、实验目的1、熟悉自动重合闸前加速保护的原理与接线。
2、掌握自动重合闸与继电保护的配合形式。
3、理解继电保护与自动重合闸前加速这种配合形式的使用场合。
二、实验说明重合闸前加速保护是当线路发生故障时,靠近电源侧的保护首先无选择性地瞬时动作,使断路器跳闸,尔后再借助于自动重合闸来纠正这种非选择性的动作。
重合闸前加速保护的动作原理可由图12-1说明,线路X-1上装有无选择性的电流速断保护1和过流保护2,线路X-2上装有过流保护4,ZCH 仅装在靠近电源的线路X-1上。
无选择性电流速断保护1的动作电流,按线路末端的短路电流来整定,动作不带延时。
过流保护2、4的动作时限按阶梯原则来整定,即t 2>t 4。
图 12-1 自动重合闸前加速保护原理示意图当任何线路、母线(I 除外)或变压器高压侧发生故障时,装在变电所I 的无选择性电流速断保护1总是先动作,不带延时地将1QF 跳开,尔后ZCH 动作再将1QF 重合。
若所发生的故障是暂时性的,则重合成功,恢复供电;若故障为永久性的,由于电流速断已由ZCH 的动作退出工作,因此,此时通过各电流保护有选择性地切除故障。
图12-2示出了ZCH 前加速保护的原理接线图。
其中1LJ 是电流速断,2LJ 是过流保护。
从该图可以清楚地看出,线路X-1故障时,首先速断保护的1LJ 动作,其接点闭合,经JSJ 的常闭接点不带时限地动作于断路器,使其跳闸,随后断路器辅助触点起动重合闸装置,将断路器合上。
重合闸动作的同时,起动加速继电器JSJ ,其常闭接点打开,若此时线路故障还存在,但因JSJ 的常闭接点已打开,只能由过流保护继电器2LJ 及SJ 带时限有选择性地动作于断路器跳闸,再次切除故障。
自动重合闸前加速保护有利于迅速消除故障,从而提高了重合闸的成功率,另外还具有只需装一套ZCH 的优点。
其缺点是增加了1QF 的动作次数,一旦1QF 或ZCH 拒绝动作将会扩大停电范围。
SCIENCE & TECHNOLOGY COLLEGE OF
NANCHANG UNIVERSITY
《专业综合实验与设计》任务书
TASK PLAN FOR INTEGRA TED EXPERIMENT AND DESIGN
题目三段式电流保护与自动重合闸后加速
学科部、系:信息学科部
专业班级:电气工程
学号:07电气
学生姓名:
指导教师:黄灿英许仙明
起讫日期:2010.11.16----2010.11.27
说明
1.课程设计任务书由指导教师填写,并经专业学科组审定,下达到
学生。
2.进度表由学生填写,交指导教师签署审查意见,并作为课程设计
工作检查的主要依据。
3.学生根据指导教师下达的任务书独立完成课程设计。
4.本任务书在课程设计完成后,与论文一起交指导教师,作为论文
评阅和课程设计答辩的主要档案资料。
三段式电流保护带自动重合闸前加速保护实验一、原理说明重合闸前加速保护是当线路上发生故障时,靠近电源侧的保护首先无选择性地瞬时动作使断路器跳闸,而后再借助自动重合闸来纠正这种非选择性动作。
重合闸前加速保护的动作原理可由图19-1说明,线路X-1上装有无选择性的电流速断保护1和过流保护2,线路X-2上装有过流保护4,ZCH仅装在靠近电源的线路X-1上。
无选择性电流速断保护1的动作电流,按线路末端短路时的短路电流来整定,动作不带延时。
过流保护2、4的动作时限按阶梯原则整定,即t2>t4。
图 19-1 自动重合闸前加速保护原理说明图当任何线路、母线(I除外)或变压器高压侧发生故障时,装在变电所I的无选择性电流速断保护1总是首先动作,不带延时地将1QF跳开,而后ZCH动作再将1QF 重合,若所发生的故障是暂时性的,则重合成功,恢复供电;若故障为永久性的,由于电流速断已由ZCH的动作退出工作,因此,此时只有各过流保护再次起动,有选择性地切除故障。
图19-2示出了ZCH前加速保护的原理接线图。
其中1LJ是电流速断,2LJ是过流保护。
从该图可以清楚地看出,线路X-1故障时,首先速断保护的1LJ动作,其接点闭合,经JSJ的常闭接点不带时限地动作于断路器使其跳闸,随后断路器辅助触点起动重合闸继电器,将断路器重合。
重合闸动作的同时,起动加速继电器JSJ,其常闭接点打开,若此时线路故障还存在,但因JSJ的常闭接点已打开,只能由过流保护继电器2LJ及SJ带时限有选择性地动作于断路器跳闸,再次切除故障。
自动重合闸前加速保护有利于迅速消除故障,从而提高了重合闸的成功率,另外还具有只需装一套ZCH 的优点。
其缺点是增加了1QF 的动作次数,一旦1QF 或ZCH 拒绝动作将会扩大停电范围。
实验设备 L实验步骤和操作方法1、根据过电流保护的要求整定2LJ的动作电流值,和SJ的动作时限2、根据速断保护的要求整定1LJ的动作电流(例:取1LJ动作电流为3A)。
电⼒系统继电保护课程实验指导书电⼒系统继电保护实验指导书王荆中编著2014年4⽉⽬录第⼀章学⽣实验守则 (1)第⼆章电⼒系统继电保护实验 (5)实验⼀电流、电压继电器实验............................ . (5)实验⼆功率⽅向继电器特性实验........................ . (9)实验三电流速断保护及电压联锁 (11)实验四⽅向性过流保护 (15)实验五电流保护综合实验........................... ...... .17 实验六⽅向阻抗继电器特性实验...................... . (21)实验七负序电压继电器特性测试................ . (25)实验⼋⾃动重合闸前加速保护实验 (27)实验九差动继电器特性实验 (31)实验⼗变压器保护综合实验 (33)附TQXDB-IB多功能继电保护实验台说明 (37)第⼀章学⽣实验守则实验时应保证⼈⾝安全,设备安全,爱护国家财产,培养科学作风。
为此,在本实验室应遵守下列守则:1、严守纪律,按时开始实验。
2、特性实验信号源24V电源和电压源出⼝严禁短接。
3、严禁带电拆线、接线。
4、⾮本次实验⽤的设备器材,未经教师许可不得动⽤。
5、实验中如有异常情况要保持镇定,⽴即停⽌实验,迅速切断电源,并向教师报告。
6、若⾃⼰增加实验内容,须事先征得教师同意。
7、保持实验室整洁、安静,实验室内不得吸烟、喧哗,乱扔杂物,实验台上严禁放书包,⾐物。
8、实验结束应先拆电源端接线,后拆除负荷端接线。
必须将设备关闭电源,整理好桌椅后征得指导⽼师同意再离开教室。
9、实验完成后须按时上交实验报告。
第⼆章电⼒系统继电保护实验实验⼀:电流、电压继电器实验⼀、实验⽬的1、了解常规电流、电压继电器的构造及⼯作原理,动作定值的⽅法;2、测试DL-31型电流继电器的动作值、返回值和返回系数。
3、测试DY-36型电压继电器的动作值、返回值和返回系数。
实验一三段式电流保护综合实验(微机型)一、实验目的:1.掌握无时限电流速断保护、带时限电流速断保护及过电流保护的电路原理、工作特性及整定原则。
2. 理解输电线路阶段式电流保护的原理图、展开图及保护装置中各继电器的功用。
二、预习与思考:1. 三段式电流保护为什么要使各段的保护范围和时限特性相配合?2. 由指导教师提供有关技术参数,你能对三段式电流保护进行计算与整定吗?3. 为什么在实验中,采用单相接线三段式保护能满足教学要求?4. 三段式保护模拟动作操作前,是否必须对每个继电器进行参数整定?为什么?5.三段式电流保护各段是如何实现选择性的?为什么电流Ⅲ段的动作最灵敏?三、实验仪器与设备:JSY-2000继电保护实验台四、实验原理:1. 电流速断保护原理及整定原则。
2. 限时电流速断保护原理及整定原则。
3.定时限过电流保护原理及整定原则。
4.三段式电流保护的原理。
1)三段式电流保护的构成无时限电流速断只能保护线路的一部分,带时限电流速断只能保护本线路全长,但却不能作为下一线路的后备保护,还必须采用过电流保护作为本线路和下一线路的后备保护。
由无时限电流速断、带时限电流速断与定时限过电流保护相配合可构成的一整套输电线路阶段式电流保护,叫做三段式电流保护。
图1-1 三段式电流保护各段的保护范围及时限配合输电线路并不一定都要装三段式电流保护,有时只装其中的两段就可以了。
例如用于“线路-变压器组”保护时,无时限电流速断保护按保护全线路考虑后,此时,可不装设带时限电流速断保护,只装设无时限电流速断和过电流保护装置。
又例如在很短的线路上,装设无时限电流速断往往其保护区很短,甚至没有保护区,这时就只需装设带时限电流速断和过电流保护装置,叫做二段式电流保护。
在只有一个电源的辐射式单侧电源供电线路上,三段式电流保护装置各段的保护范围和时限特性见图1-1。
XL-1线路保护的第Ⅰ段为无时限电流速断保护,它的保护范围为线路XL-1的前一部分即线路首端,动作时限为t1I,它由继电器的固有动作时间决定。
实验三三段式电流保护一、实验目的1.加深了解三段式电流保护的原理。
2.掌握三段式电流保护的参数整定及各段保护之间的配合。
二、实验内容三段式电流保护分电流速断保护(I段保护),限时电流速断保护(II 段保护)和过电流保护(III段保护):包括以下4个部分:(1)电流保护I段:它是经过傅立叶模块变换的电流与预先设置的继电器电流相比较,若大于预置值则输出0,反之输出1。
其动作电流按躲开线路末端发生三相短路的短路电流整定;因为电流I段是瞬时动作,所以延时时间很小(延时0.05S)。
它只能保护线路的一部分,不能保护全长。
(2)电流保护II段:其动作原理与电流I段相同,其动作电流按与下一级线路的I段或II段配合来整定,整定值小于I段,延时时间0.5S,它能保护本线路的全长。
(3)电流保护I段:其动作原理与电流保护I段相同,其动作电流按躲开最大负荷电流整定,保护经过一个动作延时启动并切出故障,它不仅能保护本线路的全长,而且能保护下级相邻线路的全长。
当满足灵敏度的情况下,它的动作时间应与下一保护的ni段相配合。
(4)保护出口部分,该部分的功能就是将电流I、II和n段的输出信号相与。
模拟单侧电源系统中,线路发生故障时保护的动作情况。
ContinuousThnee-Pha&e Sfluroe 1)三相电源模排,战电压为1MV二A相的相柱南为0:^电内部连接方式为Yg;内部电限力内部也感为0,04比疑问2)格踞殁模块起始状态身close,勾iiA, H,白拜美,不在胃触发:勾逸开、断时间为外部校前方式□・» In1 DirtlSwtKygtem 3Three-PhaseFault5)故障发时4)二相卤端,500KW9.图3-1仿真模型图3-2子系统模型主要模块参数设置如下:(1)三相电源模块:线电压设置为10kV ; A 相的相位角设置参数为0;频 率设置参数为50Hz,内部连接方式设置为Yg ,星形连接;电源的内部电阻 设置参数为3。
实验一三段式电流保护与自动重合闸装置综合实验(-)实验目的1.了解电磁式电流保护的组成。
2.学习电力系统电流保护中电流、时间整定值的调整方法。
3.研究电力系统中运行方式变化对保护灵敏度的影响。
4.分析三段式电流保护动作配合的正确性。
()基本原理1.电流保护实验基本原理图in 电流保护实验一次系统图1)三段式电流保护当网络发生短路时,电源与故障点之间的电流会增大。
根据这个特点可以构成电流保护。
电流保护分无时限电流速断保护(简称I段)、带时限速断保护(简称II 段)和过电流保护(简称II段)。
下面分别讨论它们的作用原理和整定计算方法。
(1)无时限电流速断保护(I段)单侧电源路线上无时限电流速断保护的作用原理可用图1-2来说明。
短路电流的大小人和短路点至电源间的总电阻R E及短路类型有关。
三相短路和两相短路时,短路电流人与R E的关系可分别表示如下:/⑶=E, = E,K R E凡+ R。
,/ (2)=心* Esk — 2R +R,ls式中,E——电源的等值计算相电势;R——归算到保护安装处网络电压的系统ss等值电阻;Ro——路线单位长度的正序电阻;I ――短路点至保护安装处的距离。
由上两式可以看到,短路点距电源愈远(Z愈长)短路电流&愈小;系统运行方式小(尺愈大的运行方式)4亦小。
4与I的关系曲线如图1-2曲线1和2所示。
曲线1为最大运行方式(R,最小的运行方式)下的衣=/( /)曲线,曲线2为最小运行方式(Rs最大的运行方式)下的I K=JU)曲线。
路线AB和BC上均装有仅反应电流增大而瞬时动作的电流速断保护,则当路线AB上发生故障时,希翼保护KA?能瞬时动作,而当路线BC 士故障时,希望保护KAi 能瞬时动作,它们的保护范围最好能达到本路线全长的00%。
但是这种愿望是否能实现,需要作具体分析。
以保护KA 2为例,当本路线末端妇点短路时,希翼速断保护KA2能够瞬时动作切除故障,而当相邻路线BC的始端(习惯上又称为出口处)化点短路时,按照选择性的要求,速断保护KA2就不应该动作,因为该处的故障应由速断保护KAi动作切除。
但是实际上,也和幻点短点时,从保护KA2安装处所流过短路电流的数值几乎是一样的,因此,希翼刈点短路时速断保护KA2能动作,而危点短点时又不动作的要求就不可能同时得到满足。
图1-2单侧电源路线上无时限电流速断保护的计算图为了获得选择性,保护装置KA2的动作电流Lp2必须大于被保护路线AB外部(危点)短路时的最大短路电流4 max。
实际上*2点与母线B 之间的阻抗非常小,因此,可以认为母线B上短路时的最大短路电流4B max=4 axo根据这个条件B得到:少=式中,一一可靠系数,考虑到整定误差、短路电流计算误差和非周期分量的影响等,可取为1.2 1.3由于无时限电流速断保护不反应外部短路,因此,可以构成无时限的速动保护(没有时间元件,保护仅以本身固有动作时间动作)。
它彻底依靠提高整定值来获得选择性。
由于动作电流整定后是不变的,在图1-2上可用直线3来表示。
直线3与曲线1和2分别有一个交点。
在曲线交点至保护装置安装处的一段路线上短路时,4>Lp2保护动作。
在交点以后的路线上短路时,4<Lp2保护不会动作。
因此,无时限电流速断保护不能保护路线全长的范围。
如图1-2所示,它的最大保护范围是Zmax,最小保护范围是如n。
保护范围也可以用解析法求得。
无时限电流速断保护的灵敏度用保护范围来表示,规程规定,其最小保护范围普通不应小于被保护路线全长的15% 20%。
实验时可调节滑线电阻,找寻保护范围。
电流速断保护的主要优点是简单可靠,动作迅速,于是获得了广泛应用。
它的缺点是不可能保护路线AB的全长,并且保护范围直接受系统运行方式变化影响很大,当被保护路线的长度较短时,速断保护就可能没有保护范围,于是不能由于无时限电流速断不能保护全长路线,即有相当长的非保护区,在非保护区短路时,如不采取措施,故障便不能切除,这是不允许的。
为此必须加装带时限电流速断保护,以便在这种情况下用它切除故障。
(2)带时限电流速断保护(II段)对这个新设保护的要求,首先应在任何故障情况下都能保护本路线的全长范围,并具有足够的灵敏性。
其次是在满足上述要求的前提下,力求具有最小的动作时限。
正是由于它能以较小的时限切除全路线范围以内的故障,因此,称之为带时限速断保护。
带时限电流速断保护的原理可用图1-3来说明。
由于要求带时限电流速断保护必须保护本路线AB的全长,因此,它的保护范围必须伸到下一路线中去。
例如,为了使路线AB上的带时限电流速断保护A 获得选择性,它必须和下一路线BC±的无时限电流速断保护B配合。
为此,带时限电流速断保护A 的动作电流必须大于无时限电流速断保护B的动作电流。
若带时限电流速断保护A的动作电流用I:表示,无时限电流速断保护B的动作电流用1:pB表示,则也=KMB ( 1-1)P式中,K%——可靠系数,因不需考虑非周期分量的影响,可取为1.1 1.2 保护的动作时限应比下一条路线的速断保护高出一个时间阶段,此时间阶段以&表示。
即保护的动作时间代=也(攵普通取为0.5s)。
带时限电流速断保护A的保护范围为(见图1-3)。
它的灵敏度按最不利情况(即最小短路电流情况)进行检验。
即及n=Is ( 1-2)式中,人min——在最小运行方式下,在被保护路线末端两相金属短路的最小短路电流。
规程规定火二应不小于1.3 1.5火5必须大于L3的原因是考虑到短路电流的计算值可能小于实际值、电流互感器的误差等。
由此可见,当路线上装设了电流速断和限时电流速断保护以后,它们的联系工作就可以保证全路线范围内的故障都能够在0.5s的时间内予以切除,在普通情况下都能够满足速动性的要求。
具有这种性能的保护称为该路线的“主保护”。
带时限电流速断保护能作为无时限电流速断保护的后备保护称近后备)即故障时,若无时限电流速断保护拒动,它可动作切除故障。
但当下一段路线故障而该段路线保护或者断路器拒动时,带时限电流速断保护不一定会动作,故障不一定能消除。
所以,它不起远后备保护的作用。
为解决远后备的问题,还必须加装过电流保护。
(3)定时限过电流保护(III段)过电保护通常是指其启动电流按照躲开最大负荷电流来整定的一种保护装置。
它在正常运行时不应该启动,而在电网发生故障时,则能反应电流的增大而动作。
在普通情况下,它不仅能够保护本路线的全长范围,而且也能保护相邻路线的全长范围,以起到远后备保护的作用。
为保证在正常运行情况下过电流保护不动作,它的动作电流应躲过路线上可能浮现的最大负荷电流/Lmax,于是确定动作电流时,必须考虑两种情况:其一,必须考虑在外部故障切除后,保护装置能够返回。
例如在图1-4所示的接线网络中,当虹点短路时,短路电流将通过保护装置5、4、3,这些保护装置都要启动,但是按照选择性的要求,保护装置3动作切除故障后,保护装置4 和5由于电流已经减小应即将返回原位。
其二,必须考虑当外部故障切除后,电动机自启动电流大于它的正常工作电流时,保护装置不应动作。
例如在图1-4中,ki点短路时,变电所B母线电压降低,其所接负荷的电动机被制动,在故障由3QF保护切除后,B母线电压迅速恢复,电动机自启动,这时电动机自启动电流大于它的正常工作电流,在这种情况下,也不应使保护装置动作。
图1-4选择过电流保护启动值及动作时间的说明考虑第二种情况时,定时限过电1流保护的整定值应满足:/HI〉K /1 op 1L max式中,K ――电动机的自启动系数,它表示自启动时的最大负荷电流与正常SS运行的最大负荷电流之比。
当无电动机时Kss=l,有电动机时KssNl o考虑第一种情况,保护装置在最大负荷时能返回,则定时限过电流保护的返回值应满足(1-3) 考虑到I < ,将式(3-3)它改写为re/性=用*疽L max ( 1-4)式中,氏岩 --- 可靠系数,考虑继电器整定误差和负荷电流计算不许确等因素,取为1. 1 1. 2考虑到K =I II ,所以re re np岩=!(砍区,/5点(1-5)为了保证选择性,过电流保护的动作时间必须按阶梯原则选择(如图1-5)。
两个相邻保护装置的动作时间应相差一个时限阶段过电流保护灵敏系数仍采用式(1-2)进行检验,但应采用/岩代入,当过电流保护作为本路线的后备保护时,应采用最小运行方式下本路线末端两相短路时的电流进行校验,要求KsenZ1.3 1.5当做为相邻路线的后备保护时,则应采用最小运行方式下相邻路线末端两相短路时的电流进行校验,此时要求KsenZ1.2。
定时限过电流保护的原理图与带时限过电流保护的原理图相同,只是整定的时间不同而已。
图1-5过电流保护动作时间选择的示意图(4)保护的延时特性以及各段保护的保护范围示于图1-7。
必须指出,在有些情况下,例如:当主保护(I段)能保护路线全长时,可以只采用两段保护(如I 、II 跋或者 IX II#).2. 保护的整定值计算电流保护整定值计算图1-1中若取电源线电压为100V (实际为变压器副方输出线电压为100V ), 系统阻抗分别为Xs.max=2Q 、Xs. N =4Q 、X sm .=5 Q 路线段的阻抗为10 Q 。
路线中串有 一个2Q 的限流电阻,设路线段最大负荷电流为1.2A 。
无时限电流速断保护可靠 系数K ,=l. 25带时限电流速断保护可靠系数为过电流保护可靠 系数Km=l. 15,继电器返回系数瑶=0.85,自启动系数K =1. 0ozq 根据上述给定条件:(1)理论计算路线段电流保护各段的整定值计算:I’ =Ki xlf =i. 25华 X - 1 ------- = 5. 16 (A)末 max 73 2 + 2 + 10iax—x A 2x --------- 2. 78 (A)四 Ku 尬n 1. 2 73 2 + 5 + 10I' : =(Kni x A ) X Z = (1. 15 X I —%x 1. 2 = 1. 62 姉 temax 85 3. 常规电流保护的接线方式电流保护常用的接线方式有彻底星形接线、不彻底星形接线和在中性线上接 入电流继电器的不彻底星形接线三种,如图1-8所示。
*=oS t HIpu 图1-7三段式电流保护的延时特性和保护范围电流保护普通采用三段式结构,即电流速断(I段),限时电流速断(II段),定时限过电流(II段)。
但有些情况下,也可以只采用两段式结构,即I段(或者II段)做主保护,II段作后备保护。
下图示出几种接线方法,供接线时参考。
(a)彻底星形两段式接线图(b)不彻底星形接线(c)在中性线上接入电流继电器的不彻底星形接线图1-8电流保护常用的几种接线(三)实验内容DJZ-III试验台的常规继电器都没有接入电流互感器,在实验之前应参阅图1-1 的保护接线图,接好线后才干进行实验。