高一物理力的合成与分解单元复习
- 格式:doc
- 大小:445.50 KB
- 文档页数:5
高一物理力的合成和分解知识点力的合成和分解是高中物理中一个非常重要的知识点,它是力学研究的基础。
在这篇文章中,我们将探讨力的合成和分解的概念、方法以及应用。
一、力的合成力的合成是指将多个力合成为一个力的过程。
当多个力作用于同一个物体时,可以将它们合成为一个等效的力。
1.1 向量图示法向量图示法是力的合成的一种常用方法。
我们将多个力用箭头表示,箭头的长度代表了力的大小,箭头的方向表示了力的方向。
将多个力的箭头连在一起,起点为物体的起始位置,终点为物体的终止位置,最后结果的箭头即为合成力。
1.2 分解求合分解求合是另一种常用的力的合成方法。
对于平行四边形法则中的图形,我们可以用三角形法则将合力分解为两个分力。
分解时,需要确定一个参考方向,将合力拆分为垂直于参考方向的两个分力。
二、力的分解力的分解是指将一个力分解为平行或垂直于某一方向的两个力的过程。
力的分解可以将一个复杂的问题简化为两个相对简单的问题,便于计算。
2.1 平行分解平行分解是将一个力分解为平行于某一参考方向的两个力的过程。
利用力的平行四边形法则,我们可以通过确定一个参考方向,将合力拆分为两个平行力。
2.2 垂直分解垂直分解是将一个力分解为垂直于某一参考方向的两个力的过程。
利用力的三角形法则,我们可以通过确定一个参考方向,将合力拆分为一个垂直于参考方向的力和一个平行于参考方向的力。
三、力的合成和分解的应用力的合成和分解在物理学中有广泛的应用。
下面我们将介绍几个常见的应用。
3.1 平面力问题在平面力问题中,物体受到多个平面力的作用。
利用力的合成和分解的方法,可以将这些力合成为一个等效力,从而简化问题的求解。
3.2 斜面上的力在斜面上,一个物体同时受到重力和斜面给予的支持力的作用。
利用力的分解,我们可以将这两个力分解为平行于斜面和垂直于斜面的两个力,以便求解问题。
3.3 物体受力平衡问题在物体受力平衡问题中,物体受到多个力的作用,且力的合力为零。
高一物理《力的合成与分解》专题辅导知识要点梳理知识点一——合力与分力、共点力1、合力与分力几个力共同作用的效果与某一个力单独作用的效果相同,则这一个力就叫做那几个力的合力。
那几个力称为这一个力的分力2、共点力如果几个力同时作用在物体上的同一点或者它们的作用线相交于同一点,我们就把这几个力叫做共点力。
知识点二——力的合成1、同一直线上两个力的合成若两个力同方向, F =F1 +F2,方向与分力的方向相同若两个力反方向,,方向与分力大的方向相同2、不在同一直线上两个力的合成,满足平行四边形定则若两个分力大小分别为F1、F2,夹角为,则两个力合力的大小讨论:a.当θ=00时,F =F1 +F2b. 当θ=1800时,c. 当θ=900时,d. 当θ=1200时,且F1 =F2时,F = F1 =F2e.当θ在00∽1800内变化时,当θ增大时,F随之减小,θ减小时,F随之增大知识点三——力的分解1、求一个已知力的分力叫做力的分解。
力的分解是力的合成的逆运算。
力的分解同样也遵守平行四边形定则。
2、把一个力分解成两个分力,仅是一种等效替代关系,不能认为这两个分力有两个施力物体。
同时分力的作用点也一定要和已知力的作用点相同。
3、力的分解时,应该根据力的实际效果来确定它的分力,因为分力与合力只有在相同作用效果的前提下才能够相互代替。
因此力的分解的关键是找出力的作用效果。
常见的几种情况分析如下:(1)斜面上的物体的重力一方面使物体沿斜面下滑,另一方面使物体紧压斜面,因此重力一般分解为沿斜面向下和垂直于斜面向下的两个力F1、F2,如图所示。
(2)地面上物体受斜向上的拉力F,拉力F一方面使物体沿水平地面前进,另一方面向上提物体,因此拉力F可分解为水平向前的力F1和竖直向上的力F2,如图所示。
(3)用绳子挂在墙上的篮球受到的重力G产生了两个效果,一个效果将绳子拉紧,另一个效果使球压墙,所以球的重力G可分解为斜向下拉绳子的力F1和水平压墙的力F2,如图所示。
高一物理力的分解与合成知识点总结力的分解与合成是高一物理学习中力学的基础内容,下面是店铺给大家带来的高一物理力的分解与合成知识点总结,希望对你有帮助。
高一物理力的分解知识点(1)力的分解求一个力的分力叫做力的分解。
力的分解同样遵循力的平行四边形定则。
(2)矢量和标量1)既有大小又有方向,相加时遵从平行四边形定则(或三角形定则)的物理量叫做矢量。
2)只有大小,没有方向,求和时按照算术法则相加的物理量叫做标量。
(3)力的正交分解法1)将一个力分解为相互垂直的两手分力的分解方法叫做力的正交分解法。
如图所示,将力F沿x轴和y轴两个方向分解,则2)力的正交分解的优点在于:借助数学中的直角坐标系对力进行描述,几何图形是直角三角形,关系简单、计算简便,因此在很多问题中,常把一个力分解为相互垂直的两个力。
特别是物体受多个力作用求合力时,把物体所受的不同方向的各个力都分解到相互垂直的两个方向上去,然后再分别求每个方向上的分力的代数和,这样就把复杂的矢量运算转化成了简单的代数运算,最后再求两个互成角的力的合力就简便多了。
高一物理力的合成知识点(1)合力与分力当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力产生的效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力,原来的几个力叫做分力。
(2)力的合成求几个力的合力的过程或求合力的方法,叫做力的合成。
(3)平行四边形定则两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这个法则叫做平行四边形定则。
(4)共点力如果一个物体受到两个或更多力的作用,有些情况下这些力共同作用在同一个点上,或者虽不作用在同一个点上,但它们的延长线交于一点,这样的一组力叫做共点力。
(5)合力与分力的关系合力与分力是等效替代关系。
高一物理学习方法一、要善于观察,将实际与理论相结合物理学得比较好的同学,大多是勤于观察,善于观察的。
必修一物理力的分解合成知识点
必修一物理力的分解合成知识点包括以下几个方面:
1. 力的合成:当多个力作用于同一个物体时,可以将这些力按照大小和方向进行合成,得到合力。
合力的大小等于各个力大小的矢量和,合力的方向与各个力的方向相同或
相反,取决于各个力的大小和方向。
合力可以通过几何法、分解法或向量法进行计算。
2. 力的分解:当一个力作用于物体上时,可以将这个力分解为两个或多个分力,分力
的方向可以任意选择,但它们的合力必须等于原力。
分力的大小和方向可以通过三角
函数(如正弦、余弦)来计算。
3. 平行力的合成与分解:当多个平行力作用于同一个物体时,可以将这些力按照大小
和方向进行合成或分解。
平行力的合力等于各个力大小的代数和,方向与各个力的方
向相同或相反。
分解平行力时,可以根据力的大小和方向,按照比例关系将力分解为
若干个平行力的合力。
4. 力的分解中的特殊情况:在力的分解过程中,有几种特殊情况需要特别注意。
如力
的分解角度为45度时,分解的两个力大小相等;如果力的方向与坐标轴平行或垂直时,分解的力具有特殊的形式。
5. 力的分解与合成在实际问题中的应用:力的分解与合成经常应用于实际问题的求解中。
例如,可以将一个斜面上的重力分解为垂直于斜面的分力和平行于斜面的分力;
可以将一个物体沿斜面下滑的摩擦力分解为垂直于斜面的分力和平行于斜面的分力等。
以上是必修一物理力的分解合成的一些基本知识点,通过掌握这些知识点,可以更好
地理解力的作用与分析,并能够解决实际问题中与力有关的计算与推理。
高一物理力的合成和分解知识点一、知识概述《力的合成和分解知识点》①基本定义:- 力的合成就是求几个力的合力。
打个比方,你和你朋友一起推一个箱子,你们俩各自用的力就相当于分力,你们俩劲儿往一处使,箱子受到的总的推动力量就是合力。
从数学上来说就是遵循矢量加法规则(这个后面会详细说怎么加)。
- 力的分解则相反,是把一个力看成是几个力共同的作用效果。
比如说,灯挂在天花板上,灯对绳子有个向下的拉力,这个拉力就可以分解成水平和垂直方向上作用在天花板与墙连接点或者灯与绳子连接点上的力,为啥要这么分解呢,因为这样在解决具体力学问题,像是算天花板受到多大拉力的时候方便。
②重要程度:- 在高中物理里,这可是个基石般的存在。
力学是整个高中物理的大头,很多力学题目都要用到力的合成和分解。
就像是建房子打地基一样,这部分掌握不好,后面学更复杂的动力学、静力学就像在晃悠的地基上盖楼,一塌糊涂。
③前置知识:- 得先知道力的基本概念,力是物体对物体的作用这个要明白。
还要懂矢量和标量的区别,矢量有大小有方向,力就是矢量,像温度这种只有大小没有方向的就是标量。
④应用价值:- 在现实生活中应用可广了。
比如建筑桥梁的时候,工程师要算各种力咋合成咋分解,才能保证桥梁结实不塌。
还有体育运动里,标枪运动员投标枪,他使的劲得分解成水平和垂直方向,这样就能分析标枪为啥能飞那么远了。
二、知识体系①知识图谱:- 在整个高中物理的力学体系里,力的合成和分解是中间非常关键的一环。
它连接着最基本的力的概念,又为后面学牛顿运动定律等做了很好的铺垫。
简单说就是在你从认识力到分析力的作用效果和物体运动关系这个学习道路上,这部分是个必经的中转站。
②关联知识:- 与牛顿运动定律联系紧密。
知道了力怎么合成分解,就能更好地算出物体受到的合力,再结合牛顿第二定律才能明白物体到底咋运动呢。
跟后面学的功和能等知识也有点关系,因为力是做功的要素之一,要是力的合成分解弄错了,功也算错了。
第三章相互作用——力4 力的合成与分解知识点一合力与分力力的合成1.合力、分力.如果一个力作用在物体上产生的效果跟原来几个力的共同作用效果相同,这个力就叫做那几个力的合力,原来的几个力叫做分力.*注意:合力与分力是等效替代的关系.受力分析时不能同时考虑合力和分力,否则出现重复.2.力的合成:求几个力的合力的过程.3.平行四边形定则:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向.4.合力与分力间的大小关系.当两分力F1、F2大小一定时,(1)最大值:两力同向时合力最大,F=F1+F2,方向与两力同向;(2)最小值:两力方向相反时,合力最小,F=|F1-F2|,方向与两力中较大的力同向;(3)合力范围:两分力的夹角θ(0°≤θ≤180°)不确定时,合力大小随夹角θ的增大而减小,所以合力大小的范围是:|F1-F2|≤F≤F1+F2.知识点二力的分解1.力的分解:已知一个力求它的分力的过程.2.分解法则:力的分解是力的合成的逆运算,同样遵循平行四边形定则.3.分解依据:通常依据力的作用效果进行分解.4.一般把一个力沿水平方向和竖直方向分解或沿斜面方向和垂直斜面方向分解.5.一个合力可分解为唯一的一组分力的条件.(1)已知合力和两个分力的方向时,有唯一解.(2)已知合力和一个分力的大小和方向时,有唯一解.(3)已知合力F以及一个分力F1的方向和另一个分力F2的大小时,若F与F1的夹角为α,有下面几种可能:①当F sin α<F2<F时,有两解,如图甲所示②当F2=F sin α时,有唯一解,如图乙所示③当F2<F sin α时,无解,如图丙所示④当F2>F时,有唯一解,如图丁所示*按实际效果分解的几个实例.实例分析地面上物体受斜向上的拉力F,其效果为一方面使物体沿水平地面前进,另一方面向上提物体,因此可分解为水平向前的力F1和竖直向上的力F2.F1=F cos α,F2=F sin α质量为m的物体静止在斜面上,其重力产生两个效果:一是使物体具有沿斜面下滑趋势的分力F1,二是使物体压紧斜面的分力F2·F1=mgsin α,F2=mgcos α质量为m的光滑小球被竖直挡板挡住而静止于斜面上时,其重力产生两个效果:一是使球压紧板的分力F1,二是使球压紧斜面的分力F2. F1=mgtan α,F2=mg cos α质量为m的光滑小球被悬线挂靠在竖直墙壁上,其重力产生两个效果:一是使球压紧竖直墙壁的分力F1,二是使球拉紧悬线的分力F2. F1=mgtan α,F2=mg cos α质量为m的物体被OA、OB绳悬挂于O点,重力产生两个效果:对OA的拉力F1和对OB的拉力F2. F1=mgtan α,F2=mg cos α质量为m的物体被支架悬挂而静止,其重力产生两个效果:一是拉伸AB的分力F1;二是压缩BC的分力F2. F1=mgtan α,F2=mg cos α1.矢量:既有大小又有方向,相加时遵从平行四边形定则(或三角形定则)的物理量.2.标量:只有大小,没有方向,求和时按照算术法则相加的物理量.3.三角形定则:如图所示,三个矢量F1、F2和F构成一个三角形,其中首尾连接的矢量F1、F2为两个分矢量,从一个矢量的箭尾指向另一个矢量的箭头的矢量F为合矢量,矢量三角形三条边的长度和方向分别表示三个矢量的大小和方向.知识点三实验:验证力的平行四边形定则一、实验原理1.若用一个力F′或两个力F1和F2共同作用都能把橡皮条沿某一方向拉至相同长度,即力F′与F1、F2的共同作用效果相同,那么F′为F1、F2的合力.2.用弹簧测力计分别测出F′和F1、F2的大小,并记下它们的方向,作出F′和F1、F2的图示,以F1、F2的图示为邻边作平行四边形,其对角线即为用平行四边形定则求得的F1、F2的合力F.3.比较F′与F,若它们的长度和方向在误差允许的范围内相等,则可以证明平行四边形定则的正确性.二、实验器材方木板、白纸、弹簧测力计(两只)、橡皮条、细绳套、三角板、刻度尺、图钉(若干).三、实验步骤(1)用图钉把白纸钉在水平桌面上的方木板上.(2)用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套.(3)用两只弹簧测力计分别钩住细绳套,互成角度地拉橡皮条,使橡皮条伸长到某一位置O,如图所示,记录两弹簧测力计的读数,用铅笔描下O点的位置及此时两细绳套的方向.(4)用铅笔和刻度尺从结点O沿两细绳套方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以F1和F2为邻边用刻度尺作平行四边形,过O点画平行四边形的对角线,此对角线即为合力F的图示.(5)只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧测力计的读数和细绳的方向,用刻度尺从O点按同样的标度沿记录的方向作出这只弹簧测力计的拉力F′的图示.(6)比较力F′与平行四边形定则求出的合力F在大小和方向上是否相同.(7)改变两个力F1与F2的大小和夹角,再重复实验两次.四、误差分析1.误差来源.除弹簧测力计本身的误差外,还有读数误差、作图误差等.2.减小误差的办法.(1)实验过程中读数时眼睛一定要正视弹簧测力计的刻度,要按有效数字和弹簧测力计的精度正确读数和记录.(2)作图时用刻度尺借助于三角板,使表示两力的对边一定要平行.(3)因两个分力F1、F2间的夹角θ越大,用平行四边形定则作出的合力F的误差ΔF就越大,所以,实验中不要把θ取得太大,但也不宜太小,以60°~120°之间为宜.五、注意事项1.使用弹簧测力计时应注意的问题.(1)弹簧测力计的选取方法将两只弹簧测力计调零后互钩水平对拉,若两只弹簧测力计在对拉过程中,读数相同,则可选;若读数不同,应另换,直至相同为止.(2)弹簧测力计不能在超出它的测量范围的情况下使用.(3)使用前要检查指针是否指在零刻度线上,否则应校正零位(无法校正的要记录下零误差).(4)被测力的方向应与弹簧测力计轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦.(5)读数时应正对、平视刻度.2.验证力的平行四边形定则时应注意的问题.(1)不要直接以橡皮条端点为结点,可拴一短细绳连两细绳套,以三绳交点为结点,应使结点小些,以便准确地记录结点O的位置.(2)在同一次实验中,使橡皮条拉长时结点O的位置一定要相同.(保证作用效果相同)(3)不要用老化的橡皮条,检查方法是用一个弹簧测力计拉橡皮条,要反复做几次,使橡皮条拉到相同的长度看弹簧测力计读数有无变化.(4)细绳套应适当长一些,便于确定力的方向.不要直接沿细绳套的方向画直线,应在细绳套末端用铅笔画一个点,去掉细绳套后,再将所标点与O点连直线确定力的方向.(5)在同一次实验中,画力的图示所选定的标度要相同,并且要恰当选取标度,使所作力的图示稍大一些.(6)用两个弹簧测力计勾住细绳套互成角度地拉橡皮条时,其夹角不宜太小,也不宜太大,以60°到120°之间为宜.【例1】(多选)两个共点力F1、F2大小不同,它们的合力大小为F,则()A.F1、F2同时增大一倍,F也增大一倍B.F1、F2同时增加10 N,F也增加10 NC.F1增加10 N,F2减少10 N,F一定不变D.若F1、F2中的一个增大,F不一定增大【例2】把一个80 N的力F分解成两个分力F1、F2,其中力F1与F的夹角为30°,求:(1)当F2最小时,另一个分力F1的大小.(2)F2=50 N时F1的大小.【例3】(多选)已知力F的一个分力F1跟F成30°角,大小未知,另一个分力F2的大小为33F,方向未知,则F1的大小可能是()A.33F B.32F C.233F D.3F【例4】如图中,用绳AC和BC吊起一个重50 N的物体,两绳AC、BC与竖直方向的夹角分别为30°和45°,求绳AC和BC对物体的拉力.【例5】某学在做“互成角度的两个力的合成”的实验时,利用坐标纸记下了橡皮筋的结点位置O点以及两只弹簧测力计的拉力,如图(a)所示.(1)试在图(a)中作出无实验误差情况下F1和F2的合力图示,并用F表示此力.(2)图(b)所示是甲和乙两位同学在做以上实验时得到的结果,其中哪一个比较符合实验事实?(F′是用一只弹簧测力计拉时的图示)随堂练习1.(多选)关于合力,下列说法正确的是()A.一个力的作用效果如果与几个力共同作用产生的效果相同,这个力就叫那几个力的合力B.合力一定大于任何一个分力C.合力就是几个力的代数和D.合力小于任何一个分力是可能的2.同时作用在某物体上的两个方向相反的力,大小分别为6 N和8 N,当8 N的力逐渐减小到零的过程中,两力合力的大小()A.先减小,后增大B.先增大,后减小C.逐渐增大D.逐渐减小3.如图所示,为两个共点力的合力F随两分力的夹角θ变化的图象,则这两个分力的大小分别为()A.1 N和4 N B.2 N和3 N C.1 N和5 N D.2 N和4 N4.(多选)一个物体同时受到三个力作用,其大小分别是4 N、5 N、8 N,则其合力大小可以是()A.0 N B.10 N C.15 N D.20 N5.把一个力分解为两个力时()A.一个分力变大时,另一个分力一定要变小B.两个分力不能同时变大C.无论如何分解,两个分力不能同时小于这个力的一半D.无论如何分解,两个分力不能同时大于这个力的2倍6.如图所示,在同一平面内,大小分别为1 N、2 N、3 N、4 N、5 N、6 N的六个力共同作用于一点,其合力大小为()A.0 B.1 N C.3 N D.6 N7.某物体在n个共点力的作用下合力为零,若把其中一个力F1的方向沿顺时针方向转过90°,而保持其大小不变,其余力保持不变,则此时物体所受的合力大小为() A.F1 B.2F1C.2F1 D.08.如图所示,物体M在斜向右下方的推力F作用下,在水平地面上恰好做匀速运动,则推力F和物体M受到的摩擦力的合力方向()A.竖直向下B.竖直向上C.斜向下偏左D.斜向下偏右9.水平横梁一端A插在墙壁内,另一端装小滑轮B.轻绳的一端C固定于墙壁上,另一端跨过小滑轮后悬挂一质量m=10 kg的重物,∠CBA=30°,如图所示,则小滑轮受到轻绳的作用力为多大(取g=10 m/s2)?10.如图所示,在水平地面上放一质量为1.0 kg的木块,木块与地面间的动摩擦因数为0.6,在水平方向上对木块同时施加相互垂直的两个拉力F1、F2,已知F1=3.0 N,F2=4.0 N,取g=10 m/s2,则木块受到的摩擦力为多少?若将F2顺时针转90°,此时木块在水平方向上受的合力大小为多少?11.如设有五个力同时作用于质点P,它们的大小和方向相当于正六边形的两条边和三条对角线,如图所示,这五个力中的最小力的大小为F,则这五个力的合力等于()A.3F B.4F C.5F D.6F12.(多选)将质量为m的长方形木块放在水平桌面上,用与水平方向成α角的斜向右上方的力F拉木块,如图所示,则()A.力F的水平分力为F cos αB.力F的竖直分力为F sin α,它使物体m对桌面的压力比mg小C.力F的竖直分力为F sin α,它不影响物体对桌面的压力D.力F与木块重力mg的合力方向可以竖直向上13.F1、F2的合力为F,已知F1=20 N,F=28 N,那么F2的取值可能是()A.40 N B.70 N C.100 N D.6 N14.在同一平面内共点的四个力F1、F2、F3、F4的大小依次为19 N、40 N、30 N和15 N,方向如图所示,求它们的合力.15.在探究合力的方法时,先将橡皮条的一端固定在水平木板上,另一端系上带有绳套的两根细绳.实验时,需要两次拉伸橡皮条,一次是通过两细绳用两个弹簧测力计互成角度地拉橡皮条,另一次是用一个弹簧测力计通过细绳拉橡皮条.(1)实验对两次拉伸橡皮条的要求中,正确的是______.A.将橡皮条拉伸相同长度即可B.将橡皮条沿相同方向拉到相同长度C.将弹簧测力计都拉伸到相同刻度D.将橡皮条和绳的结点拉到相同位置(2)同学们在操作过程中有如下议论,其中对减小实验误差有益的说法是________.A.两细绳必须等长B.弹簧测力计、细绳、橡皮条都应与木板平行C.用两弹簧测力计同时拉细绳时两弹簧测力计示数之差应尽可能大D.拉橡皮条的细绳要长些,标记同一细绳方向的两点要远些第三章 相互作用——力4 力的合成与分解【例1】答案:AD解析:F 1、F 2同时增大一倍,F 也增大一倍,选项A 正确.F 1、F 2同时增加10 N ,F 不一定增加10 N ,选项B 错误.F 1增加10 N ,F 2减少10 N ,F 可能变化,选项C 错误.若F 1、F 2中的一个增大,F 不一定增大,选项D 正确. 【例2】答案:40 3 N (2)(403-30) N 或(403+30) N 解析:(1)当F 2最小时,如图甲所示,F 1和F 2垂直,此时F 1=F cos30°=80×32N =40 3 N. (2)根据图乙所示,F sin 30°=80 N×12=40 N<F 2,则F 1有两个值. F 1′=F cos 30°-F 22-(F ·sin 30°)2=(403-30) NF 1″=(403+30) N.【例3】答案:AC解析:因F 2=33F >F sin 30°,故对应的F 1的大小有两种可能. 如图所示,F 1的两个解分别对应于三角形的边长OC 和OD 的长度,由三角形的特点和对称性得CB =BD =F 22-⎝⎛⎭⎫F 22=36F ,所以F 1=32F ±36F ,A 、C 正确. 【例4】答案:50(3-1) N 252(3-1) N解析:此题可以用平行四边形定则求解,但因其夹角不是特殊角,计算麻烦,如果改用正交分解法则简便得多.以C 为原点建立直角坐标系,设x 轴水平,y 轴竖直,在图上标出F AC 和F BC 在x 轴和y 轴上的分力.F ACx =F AC sin 30°=12F AC , F ACy =F AC cos 30°=32F AC , F BCx =F BC sin 45°=22F BC , F BCy =F BCy cos 45°=22F BC . 在x 轴上,F ACx 与F BCx 大小相等:12F AC =22F BC ;① 在y 轴上,F ACy 与F BCy 的合力与重力相等:32F AC +22F BC =50 N ;② 联立①②得,绳BC 的拉力和绳AC 的拉力:F BC =25(6-2) N =252(3-1) N ,F AC =50(3-1) N.【例5】答案:(1)见解析图 (2)甲解析:(1)F 1和F 2的合力图示如图所示.(2)用平行四边形定则求出的合力可以与橡皮筋拉力的方向有偏差,但用一只弹簧测力计拉结点的拉力与橡皮筋拉力一定在同一直线上,故甲符合实验事实.随堂练习1、答案:AD解析:力的合成遵循力的平行四边形定则,力是矢量,既有大小,又有方向,所以求几个力的合力是求这几个力的矢量和,C 错,合力的大小可能大于任何一个分力,也可能小于任何一个分力,D 对.2、答案:A解析:当8 N 的力减小到6 N 时,两个力的合力最小为0,若再减小,两力的合力又将逐渐增大,两力的合力最大为6 N ,故A 正确.3、答案:B解析:两个分力之和为最大值,两个分力之差为最小值,即F 1+F 2=5 N ,F 1-F 2=1 N .解得F 1=3 N ,F 2=2 N 2,B 正确.4、答案:ABC解析:三力方向相同时合力有最大值,即4 N +5 N +8 N =17 N ,而F 1=4 N 和F 2=5 N 这两力合力F 的最大值为9 N ,最小值为1 N ,另一力为8 N ,且1 N<8 N<9 N ,取F 1和F 2适当夹角,可使其合力F 的大小为8 N ,再取F 3的方向与F 的方向相反,则F 1、F 2、F 3合力为零,此即为最小值,故三力合力的取值范围为0≤F ≤17 N ,选A 、B 、C.5、答案:C解析:设把一个力F 分解为F 1、F 2两个分力,当F 1、F 2在一条直线上且方向相反时,则有F =|F 1-F 2|,当F 1变大时,F 2也变大,A 、B 错.F 1、F 2可以同时大于F 的2倍,D 错.当将F 沿一条直线分解为两个方向相同的力F 1、F 2时,则有F =F 1+F 2,可知F 1、F 2不可能同时小于12F ,C 对. 6、答案:D解析:三对共线的分力分别求合力,大小均为3 N ,方向如图所示.夹角为120°的两个3 N 的力的合力为3 N ,且沿角平分线方向,故所给六个力的合力为6 N .D 正确.7、答案:B解析:物体受n 个共点力作用合力为零,则其中n -1个力的合力一定与剩下来的那个力等大反向,故除F 1以外的其他各力的合力的大小也为F 1,且与F 1反向,故当F 1转过90°时,合力应为2F 1.B 正确.8、答案:A解析:物体M 受四个力作用(如图所示),支持力F N 和重力G 的合力一定在竖直方向上,由平衡条件知,摩擦力F ′和推力F 的合力与支持力F N 和重力G 的合力必定等大反向,故F ′与F 的合力方向竖直向下.A 正确.9、答案:100 N解析:以滑轮与绳子的接触点B 为研究对象.悬挂重物的轻绳的拉力F =mg =100 N ,BC 段绳子在B 处有沿绳子斜向上的拉力、BD 段绳子在B 处有沿绳子竖直向下的拉力,大小都是100 N ,受力示意图如图所示∠CBD =120°,则∠CBE =∠DBE =60°,即△CBE 是等边三角形,故滑轮受到绳子的作用力大小为F 合=100 N.10、答案:5.0 N 1.0 N解析:由平行四边形定则可知,图中F 1与F 2的合力F =F 21+F 22=5.0 N .若木块滑动时,木块受到的滑动摩擦力大小为F ′=μF N =μmg =6.0 N .由于F <F ′,故木块处于静止状态,木块与地面间的摩擦力为静摩擦力,大小与F 相等,即为5.0 N.当F 2顺时针旋转90°时,F 1与F 2方向相同.它们的合力为F 1+F 2=7.0 N>6.0 N .此时木块运动受滑动摩擦力作用,木块受的合力为1.0 N.11、答案:D解析:根据平行四边形定则,F 1和F 4的合力为F 3,F 2和F 5的合力为F 3,所以五个力的合力等于3F 3,因为F 1=F ,根据几何关系知,F 3=2F ,所以五个力的合力大小为6F ,方向沿F 3方向,故选D 。
高一物理《力的分解与合成》知识点讲解力的分解与合成是物理学中一个重要的概念,它有助于我们理解多个力合成为一个力的效果,以及一个力如何分解为多个力的效果。
以下是对该知识点的讲解。
1. 力的分解力的分解是指将一个力分解为多个力的效果。
这样做有助于我们更好地理解和分析力的作用。
在力的分解中,我们常使用正交分解法和图解法。
1.1 正交分解法正交分解法是将一个力分解为两个分力,其中一个与给定方向垂直,另一个与给定方向平行。
这种方法常用于解决斜面问题和倾斜物体问题。
在正交分解时,我们可以根据三角函数关系来计算力的分解分量。
1.2 图解法图解法是通过绘制矢量图来展示力的分解。
我们可以使用比例尺来确定力的大小和方向。
通过观察图示,我们可以清楚地看到力的分解效果。
图解法常用于解决平面力系统和多个力合成问题。
2. 力的合成力的合成是指将多个力合成为一个力的效果。
这有助于我们将多个力简化为一个力进行分析。
力的合成有两种常见方法:向量法和平行四边形法。
2.1 向量法向量法是通过将多个力的矢量相加或相减来求得合成结果。
在向量法中,我们需要将各个力的大小和方向用矢量表示,然后按照矢量相加或相减的规则进行计算。
最终的合成力的大小和方向由向量相加或相减的结果得出。
2.2 平行四边形法平行四边形法是通过构造平行四边形来展示力的合成。
我们可以使用比例尺来确定力的大小和方向,并用图示表达力的合成效果。
通过观察平行四边形的对角线,我们可以得到合成力的大小和方向。
力的分解与合成是物理学中非常实用的技巧。
通过运用这些技巧,我们可以更好地分析和解决力的问题,提高问题解决的效率。
以上是对高一物理《力的分解与合成》知识点的简要讲解。
希望对您的学习有所帮助!。
F1F2 FOF1F2FO力的合成与分解1.力的合成(1)力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用代替几个力的作用,这个力就是那几个力的“等效力”(合力)。
力的平行四边形定则是运用“等效”观点,通过试验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律。
(2)平行四边形定则可简化成三角形定则。
由三角形定则还可以得到一个有用的推论:假如n个力首尾相接组成一个封闭多边形,则这n 个力的合力为零。
(3)共点的两个力合力的大小范围是|F1-F2| ≤F合≤F1+F2(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。
2.力的分解(1)力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边。
(2)两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为多数组分力,但在详细问题中,应依据力实际产生的效果来分解。
(3)几种有条件的力的分解①已知两个分力的方向,求两个分力的大小时,有唯一解。
②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解。
③已知两个分力的大小,求两个分力的方向时,其分解不惟一。
④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一。
(4)用力的矢量三角形定则分析力最小值的规律:①当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直。
如图所示,F2的最小值为:F2min=F sinα②当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件是:所求分力F2与合力F垂直,如图所示,F2的最小值为:F2min=F1sinα③当已知合力F的大小及一个分力F1的大小时,另一个分力F2取最小值的条件是:已知大小的分力F1与合力F同方向,F2的最小值为|F-F1|(5)正交分解法:把一个力分解成两个相互垂直的分力,这种分解方法称为正交分解法。
力的合成和分解1.通过实验探究,得出力的合成与分解遵从的规律——平行四边形定则。
2.会用作图法和直角三角形的知识解决共点力的合成与分解问题。
3.运用力的合成与分解知识分析日常生活中的相关问题,培养将物理知识应用于生活和生产实践的意识。
一、共点力如果几个力共同作用在同一点上,或者虽不作用在同一点上,但它们的延长线交于一点,这样的一组力叫做共点力.二、合力和分力1、定义:当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力产生的效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力,原来的几个力叫做分力.2、关系:合力与分力之间的关系是一种等效替代的关系,合力作用的效果与分力共同作用的效果相同.三、力的合成和分解1、力的合成(1)定义:求几个力的合力的过程. (2)运算法则①平行四边形定则:求两个互成角度的分力的合力,可以用表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.如图甲所示,F1、F2为分力,F 为合力.②三角形定则:把两个矢量的首尾顺次连接起来,第一个矢量的起点到第二个矢量的终点的有向线段为合矢量.如图乙,F1、F2为分力,F 为合力.2、共点力合成的方法①作图法:从力的作用点起,按同一标度作出两个分力F1和F2的图示,再以F1和F2的图示为邻边作平行四边形,画出过作用点的对角线,量出对角线的长度,计算出合力的大小,量出对角线与某一力的夹角确定合力的方向(如图所示)。
②计算法:根据平行四边形定则作出力的示意图,然后利用勾股定理、三角函数、正弦定理等求出合力.3、合力范围的确定(1)两个共点力的合力范围:|F1-F2|≤F≤F1+F2.①两个力的大小不变时,其合力随夹角的增大而减小.②合力的大小不变时,两分力随夹角的增大而增大.③当两个力反向时,合力最小,为|F1-F2|;当两个力同向时,合力最大,为F1+F2.(2)三个共点力的合力范围①最大值:三个力同向时,其合力最大,为F max=F1+F2+F3.②最小值:以这三个力的大小为边,如果能组成封闭的三角形,则其合力的最小值为零,即F min=0;如果不能,则合力的最小值等于最大的一个力减去另外两个力的大小之和,即F min=F1-(F2+F3)(F1为三个力中最大的力).(3)计算法:几种特殊情况的共点力的合成。
高一物理力的合成与分解单元复习1.如图为一轻质弹簧的长度L 和弹力f 大小的关系,试由图线确定:(1)弹簧的原长________;(2)弹簧的倔强系数________;(3)弹簧伸长0.05m 时,弹力的大小________。
2.如图所示,质量为m 的物体被劲度系数为k 2的弹簧2悬挂在天花板上,下面还拴着劲度系数为k 1的轻弹簧1,托住下弹簧的端点A 用力向上压,当弹簧2的弹力大小为mg /2时,弹簧1的下端点A 上移的高度是多少?3.如图所示,一个半球形的碗放在桌面上,碗口水平,O 是球心,碗的内表面光滑。
一根轻质杆的两端固定有两个小球,质量分别是m 1,m 2.当它们静止时,m 1、m 2与球心的连线跟水平面分别成60°,30°角,则碗对两小球的弹力大小之比是( )A .1∶2B .3∶1C .1∶3D .3∶24.如图物体A 叠放在物体B 上,B 置于光滑水平面上。
A 、B 质量分别为m A =6kg ,m B =2kg ,A 、B 之间的动摩擦因数μ=0.2,开始时F =10N ,此后逐渐增加,在增大到45N 的过程中,则 ( )A 、当拉力F <12N 时,两物体均保持相对静止状态B 、两物体开始没有相对运动,当拉力超过12N 时,开始相对滑动C 、两物体间从受力开始就有相对运动D 、两物体间始终没有相对运动5.如图所示,用大小相等,方向相反,并在同一水平面上的力N 挤压相同的木板,木板中间夹着两块相同的砖,砖和木板保持相对静止,则( ) A.砖间摩擦力为零 B. N 越大,板和砖之间的摩擦力越大 C.板、砖之间的摩擦力大于砖重 D. 两砖间没有相互挤压的力6.如图所示,A 、B 两物体的质量分别为M 、m ,A 、B 一起沿固定的、倾角为α的斜面C 匀速下滑,已知A 、B 间和A 、C 间的动摩擦因数分别μ1、μ2。
求C 对A 的摩擦力f 1和B 对A 的摩擦力f 2。
7.如图所示,物体B 的上表面水平,B 上面载着物体A ,当它们一起沿固定斜面C 匀速下滑的过程中物体A 受力是( )A .只受重力B .只受重力和支持力C .有重力、支持力和摩擦力D .有重力、支持力、摩擦力和斜面对它的弹力 8.如图所示,质量为m1=0.4㎏的物体A 与质量为m2=230°的斜面上,物体B 在平行于斜面向上的拉力F 作用下匀速运动,已知A 、B 总保持相对静止,若A 、B 间的动摩擦因数为0.43,B 与斜面间的动摩擦因数为3/4,(g 取10 m/s2)求:(1)则A 、B 间的摩擦力为多少? (2)拉力F 为多少? 9.如图所示容器内盛有水,器具壁AB 呈倾斜状,有一个小物块P 处于图示状态,并保持静止,则该物体受力情况正确的是( ) A .P 可能只受一个力 B .P 可能只受三个力C .P 不可能只受二个力D .P 不是受到二个力就是受到四个力 10.如图所示,将轻绳的一端拴住质量为m 的物块,并将它放在倾角为θ的斜面上,跨过定滑轮,绳的另一端悬吊着质量为M 的物块,且mg sin θ>Mg ,整个系统处于静止状态,若在物块m 上再叠加一个小物体,物体系统仍保持原来的静止状态,则( )A .绳的拉力一定增大B .物块m 所受的合力不变C .斜面对物块m 的摩擦力可能减小D .斜面对物块m 的摩擦力一定增大11.如图7所示,水平地面上的物体A ,在斜向上的拉力F 作用下,向右作匀速E M直线运动,则( )A .物体A 可能不受地面支持力的作用B .物体A 可能受到三个力的作用C .物体A 受到滑动摩擦力的大小为F cos θD .水平地面对A 的支持力的大小为F sin θ12.如图1-5所示,光滑小球夹于竖直墙和装有铰链的薄板OA 之间,当薄板和墙之间的夹角α逐渐增大到90°的过程中,则: [ ] A.小球对板的压力增大 B.小球对墙的压力减小C.小球作用于板的压力逐渐增大D.小球对板的压力不可能小于球所受的重力13. 如图所示,轻绳OA 的一端系在质量为m 物体上,另一端系在一个套在粗糙水平横杆MN 上的圆环上。
现用水平力F 拉绳上一点,使物体从图中实线位置缓慢上升到图中虚线位置,但圆环仍保持在原来位置不动,则在这一过程中,拉力F 、环与横杆的静摩力f 和环对杆的压力N ,它们的变化情况是: [ ]A .F 逐渐增大,f 保持不变,N 逐渐增大B .F 逐渐增大,f 保持增大,N 逐渐不变C .F 逐渐减小,f 保持减小,N 逐渐不变D .F 逐渐减小,f 保持增大,N 逐渐减小15.如图所示系统处于静止状态,M 受绳拉力为T ,水平地面对M 的摩擦力为f ,M 对地面压力为N ,滑轮摩擦及绳的重力不计。
当把M 从(1)位置移到(2)位置时,系统仍处于静止状态。
判断下列选项中正确的是( )A .N ,f ,T 均增大B .N ,f 增大,T 不变C .N ,f ,T 均减小D .N 增大,f 减小,T 不变16.直角劈形木块(截面如图8)质量M =2kg ,用外力顶靠在竖直墙上,已知木块与墙之间最大静摩擦力和木块对墙的压力成正比,即f m =kF N ,比例系数k =0.5,则垂直作用于BC 边的外力F 应取何值木块保持静止。
(g =10m/s 2,sin37°=0.6,cos37°=0.8)17.(13分)物体A 质量为m =2kg ,用两根轻绳B 、C 连接到竖直墙上,在物体A 上加一恒力F ,若图11中力F 、轻绳AB 与水平线夹角均为θ=60°,要使两绳都能绷直,求恒力F 的大小。
19.两个相同的小球A 和B ,质量均为m ,用长度相同的两根细线把A 、B 两球悬挂在水平天花板上的同一点O ,并用长度相同的细线连接A 、B 两小球,然后,用一水平方向的力F 作用在小球A 上,此时三根细线均处于直线状态,且OB 细线恰好处于竖直方向,如图所示。
如果不考虑小球的大小,两小球均处于静止状态,则(1)OB 绳对小球的拉力为多大?(2)OA 绳对小球的拉力为多大?(3)作用力F 为多大?20.如图所示,A 、B 两物体叠放在水平地面上,已知A 、B 的质量分别为m A =10kg ,m B =20kg ,A 、B 之间,B 与地面之间的动摩擦因数为μ=0.5。
一轻绳一端系住物体A ,另一端系于墙上,绳与竖直方向的夹角为37°今欲用外力将物体B 匀速向右拉出,求所加水平力F 的大小,并画出A 、B 的受力分析图。
取g=10m/s 2,sin37°=0.6,cos37°=0.8。
图7图8 图11力的合成与分解习题精选1. 二个共点力大小都是60N ,如果要使这二个力的合力也是60N ,这两个力的夹角应为A. 60°B. 45°C. 90°D. 120° 2.如图所示,在倾角为θ的光滑斜面上,重为G 的物体受到水平推力F 的作用,物体静止不动,则物体对斜面的压力大小为: ( ) A .Gsin θ B .Gcos θC .Gcos θ+Fsin θD .Gcos θ+Fcos θ第2题 第3题 第4题 第5题3.如右图所示,质量为m 的物体悬挂在轻质的支架上,斜梁OB 与竖直方向的夹角为θ。
设水平横梁OA 和斜梁OB 作用于O 点的弹力分别为F 1和F 2。
以下结果正确的是:A .1sin F mg θ=B .1sin mg Fθ=C .2cos F mg θ= D .2cos mgF θ= 4.有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质均为m ,两环间由一根质量可忽略不计、不可伸长的细绳相连,并在某一位置平衡(如图所示)现将P 环向左移动一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是:( )A. N 不变;T 变大B. N 不变;T 变小C. N 变大;T 变大D. N 变大;T 变 5.如图所示,重物的质量为m ,轻细绳AO 和BO 的A 、B 端是固定的,平衡时AO 水平 AO 拉力为 ,BO 的拉力2F 为 。
6.重为50N 的物体放在水平面上,今用10N 的水平力推物体,恰使其匀速运动;若用与水平方向成37°角斜向下的力F 推物体(如图所示),为恰使其匀速运动,求力F 的大小。
(已知sin 370.6=,cos370.8=)7.如图8所示,木块重60N ,放在倾角θ=370的斜面上,当用如图示方向的水平力F =10N 推它时恰能沿斜面匀速下滑....,求该物体与斜面间的动摩擦因数.(sin370=0.6,cos370=0.8)8.如图示,质量为m ,横截面积为直角三形的物块ABC ,∠ABC=α,AC 边靠在竖直墙面上,大小为F 的恒力垂直斜面BC 作用在物块上,物块静止不动,求竖直墙面对物块的摩擦力大小。
9.一质量为m 的木块恰好能在倾角为θ的斜面上做匀速运动下滑,木块与斜面间的动摩擦因数μ是多少?若用一弹簧秤沿斜面向上拉,使木块向上做匀速运动,弹簧秤的拉力是多少?(重力加速度用g 表示)图8参考答案:1.由胡克定律当x=0,弹簧处于原长L 0=10cm ;由图当弹簧伸长或压缩5cm 时,f=10N ,k=200N/m ;f=10N 。
2.解:A 点上升的高度等于弹簧2和1缩短的长度之和。
A 点上升,使弹簧2仍处于伸长状态时,弹力减小了mg /2,弹簧2比原来缩短⊿x 2=mg /2k 2,弹簧1的弹力为mg /2,压缩量为⊿x 1=mg /2k 1, 所以⊿x =⊿x 1+⊿x 2=mg (1/k 1+1/k 2)/2。
A 点上升,使弹簧2处于压缩状态时,向下的弹力mg /2,压缩量⊿x 2=mg /2k 2,所以弹簧2总的压缩量⊿x /=⊿x 2+mg /2k 2=3mg /2k 2。
弹簧1上的弹力为mg +mg /2,⊿x 1/=3mg /2k 2⊿x = 3mg (1/k 1+1/k 2)/2。
所以弹簧1的下端点A 上移的高度是⊿x =mg (1/k 1+1/k 2)/2,或3mg (1/k 1+1/k 2)/2。
3.B 4.AD 5. A6.把A 、B 作为整体考虑,它沿斜面匀速下滑,C 对A 的摩擦力是滑动摩擦力。
由平衡条件可知N=(m+M )g cos θ,f 1=μ2N=μ2 (m+M)g 。
隔离B ,B 受A 的摩擦力f 2′是静摩擦力,由平衡条件可知f 2= f 2′=mg sin α。