主蒸汽温度控制系统
- 格式:doc
- 大小:59.00 KB
- 文档页数:5
主蒸汽温度串级控制系统工艺流程图下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!主蒸汽温度串级控制系统工艺流程详解在现代工业生产中,主蒸汽温度的精确控制对于优化热效率、保障设备安全和提高产品质量具有至关重要的作用。
模糊自适应PID控制器在火电厂主蒸汽温度控制中的应用研究摘要:火电厂主蒸汽温度控制系统中的控制对象具有大滞后和大惯性等特点,并且影响主蒸汽温度变化的因素很多。
用传统的PID控制方式则很难将被调量控制在目前国家规程规定的允许偏差范围内。
本文分析了一种基于PID参数的模糊控制器的新型方法-模糊自适应PID控制器,并由仿真结果证明了其良好的控制效果。
关键词:主汽温系统模糊自适应PID控制仿真火力发电机组控制系统应用集散控制系统后,使发电机组的“自动投入率”等控制指标得到了较大提高。
然而,很多发电厂仍然沿袭传统的PID控制模式,使控制品质并没有得到明显提高。
例如很多火电厂的锅炉主蒸汽温度等控制系统,也很难控制在确定的目标范围内[1]。
在模糊控制的基础上,将模糊控制与传统PID结合得到的自适应PID控制器则能够在火电厂主汽温控制系统中的更加良好效果。
1 火电厂主汽温控制系统介绍主蒸汽温度控制的任务是维持过热器出口温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。
过热蒸汽温度是锅炉汽水系统中的温度最高点。
如果过热蒸汽温度偏低,则会降低发电机组能量转换效率;而且汽温偏低会使汽轮机尾部蒸汽湿度增大,严重影响汽轮机的安全运行[2]。
过热蒸汽温度串级控制系统由主参数、副参数、主调节器、副调节器、主回路、副回路、主对象和副对象组成。
串级控制系统具有很强的克服内扰的能力、提高系统的工作频率和有一定的自适应能力等特点。
2 PID控制与模糊控制在工业控制中,PID控制一直都被广泛应用。
PID控制器算法和结构比较简单,不要求精确的数学模型,并且其控制效果比较理想。
此外,对于受控对象特性的稍许变化,PID控制性能指标不是很敏感,这极大地保证了系统调节的有效性。
PID调节可用于补偿系统使之达到大多数品质指标的要求。
因此,PID调节是工业领域最广泛应用的基本控制方式[3~4]。
模糊控制具有许多传统控制无法与之比拟的优点,其中主要有:不需要掌握过程的精确数学模型;为一种非线性控制方法,工作范围宽,特别对复杂、非线性系统,其控制效果比PID控制的效果好等。
利用DCS的过热汽温系统控制系统设计一、集散控制系统分析集散控制系统是以微处理器为基础的集中分散控制系统。
自70年代中期第一套集散控制系统问世以来,集散控制系统己经在工业控制领域得到广泛的应用,越来越多的仪表和控制工程师已经认识到集散控制系统必将成为过程工业自动控制的主流。
集散控制系统的主要特性是它的集中管理和分散控制,而且,随着计算机技术的发展,网络技术己经使集散控制系统不仅主要用于分散控制,而且向着集成管理的方向发展。
系统的开放不仅使不同制造厂商的集散控制系统产品可以互相连接,而且使得它们可以方便地进行数据交换。
DCS集散式温度控制系统图二、DCS系统主要技术指标调研(1)操作员站及工程师站:CPU PⅢ850以上内存128M以上硬盘40G以上软驱 1.44M以太网卡INTEL 100M×2块加密锁组态王加密锁鼠标轨迹球键盘工业薄膜键盘显示器21寸显示器分辨率1280×1024过程控制站:CPU PⅢ850以上内存128M以上硬盘40G以上电子盘8M以上软驱 1.44M以太网卡INTEL 100M×1块串行通讯卡485卡×1块(可选)(2)I/O站技术指标1)EF4000网络EF-4000网络是多主站、双冗余高速网络,通信波特率为312.5K和1.25M可编程;EF4000网络配合EF4000系列测控站(前端),可以完成工业现场各类信号的采集、处理和各类现场对象的控制任务。
EF4000网络的主要技术指标如下:挂网主站数≤31挂网模块数≤100(不带网络中继器),最多240通讯速率 1.25MBPS和312.5KBPS可编程基本传输距离 1.2MBPS时≥500m,312.5KBPS时≥1600m允许中继级数≤4级双网冗余具备两个通信口互为冗余的功能网络通讯方式半双工同步传输介质聚乙稀双绞线网络隔离度≥500Vrms通信物理层全隔离、全浮空、平衡差动传输方式有效传输字节不小于34K字节/S(1.25MBPS通讯速率)2)通讯网卡主要技术参数型号EF-4000网络─ EF4001安装方式计算机PC总线扩展插槽插卡安装尺寸160×75mm宿主计算机具有AT插槽的IBM-PC及其兼容机I/O地址硬件任选100、120、140、160、180、1A0、1C0七种中断向量软件任意设定IRQ3、5、7、10、11、12、15或不使用耗电不大于1W工作方式连续可靠性指标MTBF80000Hr运行环境温度0~60C°,相对湿度≤80%3)模拟量输入前端模块型号EF4101输入通道数16路通道隔离电压400V(峰—峰值)网络隔离度≥500Vrms通道采样时间80mSA/D分辨率17位测量精度〈0.2%被测信号类型T/C、RTD、mV、mA4)模拟量输出前端模块型号EF4601输出通道数6路(全隔离)通道隔离电压500V网络隔离度≥500Vrms电压输出范围-10V ~ +10V电流输出范围0 ~ 20 mA控制精度0.2级5)数字量输入前端模块型号EF4201输入通道数28路通道隔离电压350V网络隔离度≥500Vrms计数速率≤500次/秒(低频通道)计数速率≤8000次/秒(高频通道)事件分辨率1mS(低频通道)计数长度24位(三字节)测频范围0 Hz ~ 8000 Hz(高频通道)6)数字量输出前端模块型号EF4203输出通道数16路(EF4203)通道隔离电压350V网络隔离度≥500Vrms结点开关电流≤100 mA结点开关电压≤350 V结点隔离电压≤350 V结点闭合时间≤0.6 mS结点断开时间≤0.15 ms7)执行器脉冲控制单元输出结点电压≤380 V输出结点电流≤5A系统网络采用国际上通用的Ethernet 网,通信速率为100Mbps,遵循IEEE 802.3协议。
660MW超临界机组过热蒸汽温度的控制系统及运行调整摘要:大型火电站当中,一项较重要的运行调整就是过热蒸汽温度控制和调整。
过热蒸汽温度控制系统,对于火电机组热效率的提升具有重要意义,能够保障机组发电过程中所产生的热量得到应有的利用,使发电效率大大提升。
因此在本文当中就将对某火力发电企业机组过热蒸汽温度控制系统设计工作进行分析,将设计工作当中对过热蒸汽温度控制系统大延迟、大惯性以及时变性和非线性内在机理问题,进行攻克的过程进行研究,同时对过热蒸汽温度的运行调整提出相关建议。
关键词:660MW;超临界机组;过热蒸汽温度;控制:调整1.前言浙能乐清一期2*660MW超临界机组,锅炉为超临界参数变压运行螺旋管圈直流炉,单炉膛、一次中间再热、采用四角切圆燃烧方式、平衡通风、固态排渣、全钢悬吊Π型结构、露天布置燃煤锅炉。
DCS系统用的是北京ABB贝利控制系统有限公司的Industrial IT Symphony 系统。
在本文当中,将主要对机组当中的过热蒸汽温度控制系统进行研究,过热蒸汽温度控制系统主要存在大延迟,大惯性以及时变性和非线性内在机理问题,并提出相应的运行调整分析。
2.过热蒸汽温度控制系统解析2.1工艺流程分析过热器喷水减温系统工艺流程:炉膛上部布置有前屏过热器和后屏过热器,水平烟道依次布置高温再热器和高温过热器,共有二级喷水减温器,将每一级减温器都进行左右两侧均匀布置。
在第一级减温器当中,主要是将减温器布置在后屏过热器的入口处,该级减温器的喷口量达到了总设计喷水量的2/3,对第一级减温器进行控制的是两个喷嘴和调节阀门。
在第二级减温器当中,主要是将其设置在末级过热器的入口处,该级减热器喷水量达到了总设计排水量的1/3。
图一过热减温水DCS画面2.2过热汽温控制系统2.2.1减温控制系统在第一级减温控制系统(以此为例)当中,进行温度调节时的被调量是前屏过热器出口处的气温,同时该控制系统还能够保护屏式过热器的管壁不会出现温度过高的现象,并与末级过热汽温控制系统进行配合协同工作,保证整体控制系统温度得以调节。
主蒸汽温度控制系统
本机组的锅炉为单汽包、单炉膛、再热式自然循环锅炉。
由汽包分离分离出的蒸汽依次流过顶棚、热回收包覆面、初级过热器、屏式过热器和未级过热器,最后达到一定的温度离开锅炉.
两级喷水减温器分别布置于初过出口、屏过入口处和屏过出口、未级过热器入口处,如图1所示。
主蒸汽温度控制系统,通过这两级喷水减温,将未级过热器出口主蒸汽温度控制在某个定值上,并且保护整个过热器管路乃至主蒸汽管道及汽机金属不被高温损坏.
该系统分两级喷水控制,每级喷水又分左右两侧控制,如图1所示,同一级的两侧减温控制设计思想是相同的。
一、二级减温水控制系统是相互独立的,现分别予以剖析。
1.1一级减温水控制
一级减温水的作用,简单地说是将一级减温器出口温度即屏过入口温度控制在某个定值上.图2为原理性框图。
这个温度定值通常是锅炉负荷(用汽机第一级压力P1代表),主汽压力P,主汽压偏差△P的函数(P1、P、△P).其中,定值与负荷的关系,如图2中的曲线所示,而与压力的关系待定。
但在特殊工况下,这个定值还要受最小减温水量和最大减温水量的限制。
①最小一级减温水量限制
限制最小减温水量的目的是为了防止屏式过热器被高温烧坏,因屏过接受炉内高温火焰辐射,防止屏过内蒸汽温度过高尤为重要,因此最小一级减温水量限制又可理解成屏过出口最高蒸汽温度限制。
图2中,A1为屏过出口所允许的最高汽温值.当屏过出口汽温高于这个最高值后,PID1将逐渐减小输出,最后在小值选择器之后,将取代通常的定值(P1、P,△P),
即去降低一级减温器出口温度定值,PID0将去增加一级减温水量,从而降低整个屏过段的蒸汽温度。
②最大一级减温水量限制
限制最大一级减温水量目的是为了防止屏过入口汽温过低以致低于此处当前压力下水蒸汽的饱和点,所以又可将最大一级减温水量限制理解成屏过入口最低温度限制。
图2中,f(x)输出为相应压力下屏过入口蒸汽的饱和温度,在此基础上再加上A2(约11℃)的过热度,这个和值在大值选择器中与前级的小选输出进行比较,取大值输出。
这样就可限制屏过入口蒸汽温度定值,使其不致低于饱和点,从而防止了屏过入口蒸汽带水。
如果不出现两种极端情况,即屏过出口汽温过高或屏过入口汽温过低,定值将是f(P1、P、△P).
实际屏过入口温度与其定值求偏差后,经PID0调节器运算,其输出去调节一级减温水量最终使屏过入口实际汽温与其定值相等。
由此可见,一级减温水控制回路只是一个单回路调节系统,虽然虽然在框图中有两个PID调节器“串联"在一起,但并不是串级控制系统。
1.2二级减温水控制
二级减温水的主要任务是将未级过热器出口蒸汽温度控制在某个定值上,原理框图见图3.这个温度定值是锅炉蒸汽负荷的函数,如图4.
该控制回路是一个典型的带导前信号的串级汽温控制回路.
调节器PID0的输出作为PID1的定值,与未级过热器入口汽温求偏差后,在PID1中进行运算,其输出则为二级减温水指令的一部分。
在这里,未级过热器入口汽温实际上是一个导前信号,它能迅速地反映未级过热器全段蒸汽温度变化的趋势,因此,在系统中它能起到改善主汽温调节品质的作用.
图3中,二级减温水采用f(P1、P、△P)作为前馈指令,当锅炉负荷增加时,及主汽压力下降时,这一指令有所增加.加入前馈指令,对于减轻锅炉负荷变化对主汽温度的扰动和由于锅炉运行压力变化对汽温特性的影响有积极作用。
前馈指令与PID1的输出相加,成为二级减温水量指令.
1.3减温水调节阀的分裂式(split)设计
如图1所示,每级每侧减温水调节阀都分成低流量调节阀和高流量调节阀,低流量调节阀的容量为该级该侧最大设计减温水量的25%,其余75%由高流量调节阀承担,这种设计有利于减小减温水调节阀体积,提高阀门的线性度和调节精度。
2.系统运行
2.1关断阀的控制
当下列条件全部满足时,自动打开关断阀。
①锅炉蒸汽流量>10%MCR.
②无主燃料跳闸MFT。
③控制系统已要求低流量阀有一定的开度(约2%).
上述任一条件不满足(对于条件③是指开度指令小于约1%),以及当大、小调节阀都已关闭时,则关闭关断阀。
2.2调节阀的运行
当下列条件全部满足时,允许对调节阀进行控制。
①锅炉蒸汽流量>10%MCR。
②无主燃料跳闸MFT。
任一条件不成立,则关闭调节阀.
2.3手动/自动站的运行(共四只站)
2.3.1一级减温水控制站(两侧相似)
作用:控制一级减温水量。
显示:PV柱,显示本侧屏过入口汽温(测量故障时,指示为零)。
(℃)。
SP柱,显示本侧屏过入口汽温定值℃).
下列任一条件出现,站切手动.
①本侧屏过出口温度或初过出口压力测量信号,或主汽压力、差压、流量信号测量质量不好,或传输到本系统后出现质量不好。
②本侧一级减温器出口温度测量系统发出“置手动"信号.
③本侧小流量调节阀开度已达6%,而关断阀仍处于关闭状态.
④主燃料跳闸MFT。
⑤主蒸汽流量小于10%MCR。
操作;
①无SP操作.
②手动方式时,可手操CO按扭,以改变减温水,但若由于MFT或主蒸汽流量小于10%MCR的原因而导致手动,站的输出将跟踪零,“TRACK”灯亮,此时不可手动改变控制输出.
2.3.2二级减温水控制站(两侧相似)
作用:控制二级减温水量。
显示:PV柱,显示未级过热器出口蒸汽温度(℃)。
SP柱,显示未级过热器出口温度定值(℃).
下列任一条件出现,站切手动。
①未级过热器出口蒸汽温度测量系统发出“置手动”信号。
②主蒸汽流量、一级压力、压力、差压信号测量系统发出“置手动”信号或者在传输到本系统后发现质量不好。
③本侧未过入口汽温信号质量不好.
④本侧小流量调节阀开度已达6%,而关断阀仍处于关闭状态.
⑤主燃料跳闸MFT.
⑥主蒸汽流量小于10%MCR。
操作:
①无SP操作.
②手动方式时,可手操CO按扭,以改变减温水,但若由于MFT或主蒸汽流量小于10%MCR的原因而导致手动,站的输出将跟踪零,“TRACK”灯亮,此时不可手动改变控制输出。