化工传递过程基础2
- 格式:ppt
- 大小:8.79 MB
- 文档页数:42
化工原理的动量传递
化工原理中的动量传递通常指的是质量传递和动量传递的过程。
质量传递是指物质的传输或流动过程,其背后涉及到物质的分子扩散、物质的对流、物质的传质等。
动量传递则是指质量传递过程中伴随的动量的转移与交换。
在化工过程中,动量传递常常与质量传递紧密相连,例如在液-液或气-液界面上,质量传递会导致物质的对流和扩散,这样液体或气体的动量也会随之传递。
动量传递的过程中,液滴或气泡的形成、合并和破裂等也会影响到动量的传递。
动量传递常常会对化工过程的宏观行为产生重要影响。
例如,在化工反应器中,反应物的传质进程会影响到反应速率和反应产物的选择性;在传送带或管道中,流体的动量传递决定了流速、压降和管道的输送能力等。
为了实现高效的动量传递,化工工程师通常会设计和优化传质设备,如洗涤塔、吸收塔、萃取塔等,采用适当的操作条件和传质介质,以获得所需的动量传递效果。
此外,还会应用流体力学、传热学、分离技术等基本原理和方法,优化传质过程。
化工传递过程过程性考核试卷(二)一、填空题(每空1分,本大题共31分)1. 离心泵的基本部件包括泵壳、叶轮和轴封装置。
2. 离心泵的基本性能参数有流量、压头、轴功率和效率。
3. 按照机械结构的不同,离心泵的叶轮可分为开式、半闭式和闭式;如输送含有固体颗粒的悬浮液,则应采用开式或半闭式叶轮。
4. 若离心泵输送流体的黏度增加,则其流量降低、压头降低、轴功率增大、效率降低。
5. 离心泵的性能曲线主要包括压头-流量曲线、轴功率-流量曲线和效率-流量曲线。
6. 离心泵的特性曲线上有一最高效率点,该效率点称为泵的设计点;离心泵的操作应尽可能在最高效率点附近的高效率区内进行。
7. 输送气体的机械根据其产生的压力高低,可以分为通风机、鼓风机、压缩机和真空泵。
8. 离心通风机的全风压是指静风压和动风压之和。
9. 离心泵的轴封装置可分为机械密封和填料函密封两种形式。
10. 离心泵按照叶轮的吸液方式可分为单吸泵和双吸泵;按照叶轮的数目可分为单级泵和多级泵。
二、单项选择题:(每空1分,本大题共5分)在每小题列出的四个备选项中选出一个正确答案的代号填写在题后的括号内。
11. 为获得较高的有效压头,离心泵叶轮一般所采用叶片的形式为(B )A. 前弯叶片B. 后弯叶片C. 径向叶片D. 不确定12. 若离心泵输送流体的密度增加,则其轴功率的变化为( A ) A. 增加 B. 减少 C. 不变 D. 不确定 13. 随着流量的增加,离心泵的气蚀余量( A ) A. 增加 B. 减少 C. 不变 D. 变化不确定 14. 下列泵中,不属于正位移泵的是( D ) A. 计量泵 B. 隔膜泵 C. 回转泵 D. 漩涡泵15. 往复压缩机的理想压缩循环应按照以下顺序进行( A ) A. 吸气-压缩-排气 B. 压缩-吸气-排气 C. 排气-压缩-吸气 D. 吸气-排气-压缩三、名词解释题:(每小题3分,本大题共12分)16. 气缚若离心泵启动时没有向泵壳内灌满要输送的液体,由于空气密度低,叶轮旋转后产生的离心力小,叶轮中心区不足以形成吸入贮槽内液体的低压,因而虽启动离心泵液泵能输送液体,这种现象称为气缚。
化工原理传质知识点总结一、基本概念1.1 传质的意义传质是指物质在不同相之间的传递过程。
在化工工程中,传质是指溶质在溶剂中的扩散、对流、传热、反应等传输现象。
1.2 传质的分类传质可以根据溶质与溶剂之间的接触方式分为不同的分类:(1)扩散传质:溶质在溶剂中的自由扩散过程,不需要外力的帮助。
(2)对流传质:通过溶剂的对流运动,加快溶质的扩散速率。
(3)辐射传质:发射源释放的辐射物质在空气中传输的过程。
1.3 传质的单位在化工工程中,我们通常使用质量通量或摩尔通量来描述传质的速率。
质量通量用kg/(m^2·s)或g/(cm^2·min)表示,摩尔通量用mol/(m^2·s)或mol/(cm^2·min)表示。
1.4 传质的驱动力传质的驱动力可以通过浓度差、温度差、压力差等来实现。
在传质过程中,驱动力越大,传质速率越快。
1.5 传质的应用传质在化工工程中有着广泛的应用,例如在化学反应中,传质过程可以影响反应速率和产物浓度。
在洗涤、脱水、吸附等过程中,传质也起到重要的作用。
二、传质过程2.1 扩散传质扩散传质是指溶质在溶剂中的自由扩散过程,不需要外力的帮助。
扩散传质的速率与溶质浓度梯度成正比,与扩散距离成反比,与传质物质的性质、温度等因素有关。
2.2 对流传质对流传质是指通过溶剂的对流运动,加快溶质的扩散速率。
对流传质速率与对流速度和溶质浓度梯度成正比,与传质物质的性质、温度等因素有关。
2.3 质量传递系数质量传递系数是评价传质速率的重要参数,表示单位时间内溶质通过单位面积的传质速率。
它与溶质的性质、溶剂的性质、温度、压力等因素有关。
2.4 传质速率传质速率是指单位时间内溶质通过单位面积的传质量。
它由传质物质的性质、浓度梯度、温度、压力等因素决定。
三、传质原理3.1 扩散传质的原理扩散传质的原理是由于溶质在溶剂中的无规则热运动。
在热运动的影响下,溶质会沿着浓度梯度自行扩散,直到浓度均匀。
膜蒸馏过程的传热与传质膜蒸馏是将膜与蒸馏过程相结合的分离方法。
热侧水溶液在蒸汽压差的作用下,在多孔疏水膜表面蒸发,水蒸气通过膜,进入低温侧,冷凝得到纯净水。
膜蒸馏传质的推动力是膜两侧温度下水的饱和蒸汽压差,是一种有相变的膜分离过程。
空气隙膜蒸馏的具有直接得到冷凝的纯水,对冷却水的纯度要求很低和在低压和较低温度的条件下进行分离的优点,而且操作简单、分离效率高,可以用于海水脱盐、非挥发性溶质水溶液浓缩、水溶液中挥发性有机物溶质的脱除以及废水处理等领域,所以膜蒸馏越来越引起人们的关注。
根据扩散到膜另一侧的蒸汽被冷凝的方式不同,膜蒸馏可以分为直接接触式膜蒸馏、真空膜蒸馏、气扫式膜蒸馏、气隙式膜蒸馏和减压膜蒸馏。
真空膜蒸馏与其他方式的膜蒸馏相比较, 热传导的损失一般可以忽略, 热效率较高,而且透过通量一般较大, 因此受到研究者越来越多的重。
1. 1 热量传递真空膜蒸馏的传热过程大体分为三步:1)热量从热侧料液主体传到热侧膜面;2)热量伴随挥发组分通过膜孔和膜本体传递(跨膜传热);3)热量伴随挥发组分在下游侧冷凝而传递。
1. 1. 1 边界层内的热量传递热量从热侧料液主体传到热侧膜面主要以对流方式传递, 其热阻主要集中在边界层。
流道内对流传热系数满足Dittus-Boelter方程。
但膜蒸馏的传热过程伴有质量传递,与换热器的传热多有不同,因而有必要对Dittus-Boelter方程中的常数重新进行测定。
Lawson[1] 等设计了新的膜组件,用纯水做实验介质对对流传热系数进行了测定,得到的结果与Dittus-Boelter方程基本一致。
阎建民[2]等介绍了应用减压膜蒸馏技术测定膜组件对流传热系数的理论方法,并通过实验测定了膜组件的对流传热系数,发现雷诺数及普朗特数对对流传热系数的影响与Dittus- Boelter 方程基本一致。
Mengual[3]等由努赛尔数、雷诺数和普朗特数关联式出发,通过实验测定了传热方程中的系数,并与在膜蒸馏法中常用的传热经验关联式进行了比较后得出结论:对于流体的不同流动情况,经验关联式的适用性是不同的;当使用传热的经验关联式来计算膜蒸馏过程中的传热时必须重新考虑特征常数。
化工原理基本知识点一、物质转化物质的转化是化工过程中最基本的环节之一、物质转化包括化学反应、分离提取以及催化等。
化学反应是指通过物质之间的化学反应,将原料转化为产物。
分离提取是将混合物中的各种组分分开或提取出所需的组分,常见的分离方法有蒸馏、结晶、吸附、萃取等。
催化是指通过催化剂的作用,促使反应速率提高或选择性改变。
二、能量转移能量转移是指在化工过程中,能量从一个系统传递到另一个系统的过程。
能量转移有传导、传热、传质、传动等形式。
传导是指热量、电流或质量在不同物体或介质之间由高温区向低温区传递的过程。
传热是指热量由高温物体通过传导、对流或辐射途径传递到低温物体的过程。
传质是指物质在不同浓度或温度条件下由高浓度或温度区向低浓度或温度区传递的过程。
传动是指物质在介质中的传递过程,包括传质、传热、传动等。
三、反应原理化学反应原理是研究化学反应中物质的物质转化或化学键的断裂与形成等过程的规律。
反应速率是反应条件下单位时间内反应物消失的量,影响反应速率的因素有温度、浓度、催化剂等。
反应平衡是指在一定温度下,反应物和生成物浓度达到一定比例时,反应物和生成物浓度不再发生变化的状态。
平衡常数是用来描述反应平衡程度的物理量。
四、化工工艺流程化工工艺流程是指将原料经过一系列的物质转化和能量转移的过程,得到所需产物的方法、步骤和设备。
化工工艺流程包括原料准备、反应过程、分离提取、能量转移和产品制备等。
原料准备是指将原料加工处理后,满足反应所需的要求。
反应过程是指根据反应条件,将原料转化为产物的过程。
分离提取是将反应生成物中得到所需产物并与其他组分分离的过程。
能量转移是热量、物质或动能在设备中的传递和转换过程。
产品制备是指根据产品的要求,经过加工、过滤、干燥等工艺,制得成品。
五、工艺控制工艺控制是指对化工工艺流程进行监测和调节,以保证工艺参数的稳定和产品质量的良好。
工艺控制包括温度、压力、流量、质量、液位等参数的调节和监测。
化工传递原理总结引言化工传递原理是化工工程中一项重要的基础理论,研究物质在化工过程中的传递过程。
化工过程中,物质的传递常常包括传质、传热和传动三个方面。
本文将对传质、传热和传动的基本原理进行总结和分析。
一、传质的基本原理传质是指物质在一个相对浓度差异的系统中,在分子热运动的作用下,从高浓度区向低浓度区的传递过程。
传质过程主要受到浓度差、扩散系数、物质运动距离和物质界面的影响。
1. 扩散扩散是物质在浓度梯度作用下,由高浓度区向低浓度区传递的过程。
扩散速率可以用扩散通量表示,扩散通量与浓度差和物质扩散系数成正比。
扩散系数与温度、物质性质以及介质的孔隙度和湿度有关。
2. 对流对流是指物质通过流体介质的传递过程,在流体流动的作用下,物质被带动从高浓度区传递到低浓度区。
对流传质过程中,流体的流动方式可以是强迫对流或自然对流。
对流传质速率与流体流动速度、浓度差和传质界面的接触面积等因素有关。
3. 吸附吸附是物质在表面上被吸附或解吸附的过程。
吸附传质过程受到物质在表面上的吸附力和解吸力的影响。
吸附过程中的吸附速率可以通过吸附量与时间的变化关系来描述。
4. 渗透渗透是指溶液在半透膜上的传递过程。
在渗透过程中,溶剂通过半透膜从低浓度溶液传递到高浓度溶液。
渗透过程中主要受到溶质浓度差、温度和半透膜的透过性能的影响。
二、传热的基本原理传热是指热量从高温区向低温区传递的过程。
传热过程可以通过传导、对流和辐射三种方式进行。
1. 传导传导是指物质中热量通过分子间的相互碰撞和传递。
在传导过程中,热量的传递速率与传导系数、温度差和传热界面的形状和尺寸有关。
不同物质的传导系数不同,传导系数与物质的导热性能有关。
2. 对流对流传热是指流体介质中热量通过流体的流动传递。
对流传热可以分为自然对流和强迫对流两种。
对流传热过程中,热传导通过流体的流动增强,从而加快了传热速率。
3. 辐射辐射是指热量通过电磁波的辐射传递。
辐射传热是一种无需介质传递的传热方式,可以在真空中传递。
第一节化工生产过程及工艺流程一、化工生产过程在化工生产中,将原料经过一系列的物理和化学加工处理制成目标产物的过程称为化工生产过程。
化工生产过程一般是由原料预处理、化学反应、产物的分离与精制及“三废”治理四个部分组成。
1 原料预处理在化工生产中,当一个反应确定之后,它就必须对原料有一定的要求,原料预处理的目的是为了使其达到化学反应所需要的条件。
例如:对固体原料需要进行粉碎、筛选,除去部分杂质;对液体原料一般需要配制成一定的浓度,再进行加热或气化;对气体原料通常需要一定的温度和压力等。
2 化学反应化学反应是化工生产过程的核心部分,通过化学反应实现原料到产物的转化过程。
1)化学反应的种类及条件◆化学反应种类很多,按反应体系中物料相态的不同分为均相反应和非均相反应;◆按催化剂的使用与否分为催化反应和非催化反应,当催化剂与反应物处于同一相态时称为均相催化反应,处于不同相态时称为非均相催化反应;◆按化学反应的特性分为氧化、还原、加氢或脱氢、聚合、缩合、重排、烃化、酰化、重氮化、硝化、磺化、歧化、异构化反应等。
实现化学反应通常需要一定的条件,如反应的温度、压力、催化剂、溶剂以及原料投料配比如何、反应的停留时间多少。
所以如何使反应过程进行较为合理,是化工工艺所要讨论的重点内容。
2)化学反应器实现化学反应过程的设备称为化学反应器,它是化工生产的关键设备。
反应器的设计和选型十分重要,这是因为反应器中进行的反应过程通常比较复杂,在反应的同时还有动量、热量和质量的传递。
由于各单元反应的特点各异,所以对反应器的要求也不相同,工业生产过程不仅与反应本身的特性有关,而且还与反应设备的特性有关。
反应器的种类繁多,结构各异,既可以按照反应的特性分类,也可以按照设备的特性进行分类。
◆按反应器中物质相态、反应器可分为均相和非均相反应器;◆按反应器的结构可分为釜式(槽式)、管式、塔式、固定床、流化床反应器等;◆按操作方式可分为间歇式、半间歇式和连续式反应器;◆按操作温度分为恒温式(等温式)和非恒温式反应器;◆按反应器与外界有无热量的传递可以分为绝热式和外部换热式反应器等。
强化传热技术的研究石油化工学院化学工程与工艺 120130404李富士目录目录 (1)摘要 (2)1 管程强化传热 (2)1.1 螺旋槽管 (2)1.2 波纹管 (2)1.3 内插物管 (3)2 壳程强化传热 (3)2.1 折流杆换热器 (3)2.2 螺旋折流板换热器 (3)2.3 曲面弓形折流板换热器 (4)3 整体强化 (4)3.1 螺旋扁管 (4)3.2 变截面管式 (4)4 传热强化的发展趋势 (4)参考文献 (5)摘要管壳式换热器在石油化工领域应用广泛,其强化传热技术的研究受到普遍关注。
主要介绍了近年来国内与国外高效节能管壳式换热器强化传热技术研究的进展情况,分别从管侧、壳侧和整体结构改进三方面分析了管壳式换热器的强化传热效果及特点,最后提出了强化传热的发展方向。
关键词:管壳式换热器;结构改进;强化传热;发展方向管壳式换热器具有一系列优点,例如应用广泛、结构简单、成本低、易于清洗等,因此在石化、炼油等领域占据着重要地位。
传统的弓形折流板换热器占总量的70%~80%,弓形折流板换热器固然有其优点,并为产业节能方面做出了巨大的贡献,但在新的节能减排形势下,其缺点(压降大、流动死区、易结垢、震动、传热效果差)严重的限制了其发展和生存的空间,为了节能降耗,提高换热器的传热效率,需要研发能够满足多种工业生产过程要求的高效节能换热器。
因此,近年来,高效节能换热器的研发一直受到人们的普遍关注,国内外先后推出了一系列新型高效换热器[1]。
1 管程强化传热管程强化传热主要有两种方式,一是改变管子形状或者提高换热面积,如:螺旋槽管、旋流管、波纹管、缩放管、螺纹管等[2];另一种就是增强管内的湍流程度,例如,管内设置各种形状的插入物[3]。
1.1 螺旋槽管螺旋槽管是通过专用轧管设备将圆管在其表面滚压出螺旋线形的凹槽,管子内部形成螺旋线形凸起,管内介质流动时受螺旋线型槽纹的导向使靠近管壁的部分介质沿槽纹方向螺旋流动,这就使得边界层的厚度较大程度的减薄,提高换热的效果;部分介质沿着壁面纵向运动,经过槽纹凸起处产生纵向漩涡,促使边界层分层,加速边界层中介质质点的运动,进而加快了管壁处介质与主体介质的热量传递[4,5]。
化工传递过程基础化工传递过程基础一、填空题(本题共20分,共10小题,每题各2分)1、相对压力又分为和两种。
2、流体静压力常采用两种不同的基准表示:一种是以为零作为基准计量;另一种是以作为基准计量。
3、当流体流过任一截面时,不随时间变化,称为稳态流动或定常流动。
4、当流体流动时,任一截面处的有关物理量中随时间变化,则称为非稳态流动或不定常流动。
5、、和费克定律都是描述分子运动引起的传递现象的基本定律。
6、传递过程也称传递现象,指物系内某物理量从区域自动地向区域转移的过程,是自然界和生产中普遍存在的现象。
7、壁面附近速度梯度的流体层称为边界层。
边界层外,速度梯度接近于的区称为主流区。
8、由于分子的无规则热运动使该组分由处传递至处,这种现象称为分子扩散。
9、当化学反应的速率大大高于扩散速率时,扩散决定传质速率,这种过程称为;当化学反应的速率远远低于扩散速率时,化学反应决定传质速率,这种过程称为。
10、由流体运动引起的物质传递称为。
二、计算题(本题共20分)三、简答题(本题共60分,每题12分,共5题)1、如何从分子传质和边界层理论两个角度理解三传之间存在的共性。
2、简述流体流动的两种观点欧拉法和拉格朗日方法。
3流体在圆管中流动时“流动已充分发展”的含义是什么?在什么条件下会发生充分发展的层流,又在什么条件下会发生充分发展的湍流?4、惯性力?粘性力?为何说爬流运动中可忽略惯性力,什么时候却不能简单的忽略粘性力的影响?5、当流体绕过物体运动时,什么情况下会出现逆向压力梯度?是否存在逆向压力梯度条件下一定会发生边界层分离?为什么?答案一、填空题(本题共20分,共10小题,每题各2分)1、表压力真空度2、绝对真空的状态的压力当时当地的大气压力为零3、流速、流率和其他有关的物理量4、只有一个随5、牛顿粘性定律傅里叶定律和6、高强度低强度7、较大零8、高浓度低浓度9、扩散控制过程反应控制过程。
10、对流传质三、计算题(本题共20分)三、简答题(本题共60分,每题12分,共5题)1、如何从分子传质和边界层理论两个角度理解三传之间存在的共性答:(1)通量=-扩散系数×浓度梯度(2)动量、热量、和质量的扩散系数的量纲相同,其单位均为m2/s(3)通量为单位时间内通过与传递方向相垂直的单位面积上的动量、热量和质量各量的量的浓度梯度方向相反,故通量的表达式中有一负号。
化工传递过程基础(第3版)1 工艺传递的定义工艺传递是指技术人员将一项制造或维护工艺的技术要素,全部或部分地传达给接受者,该接受者都是被认知为掌握该工艺的有资格的人员。
工艺传递的过程是一项艰巨的任务,一般来讲,它需要正确的策略、正确的方法性以及正确的技术支持,才可以保证该工艺传递过程的顺利实施和有效执行。
2 工艺传递的重要性工艺传递对结构件的安全性和可靠性有很大的影响,因此它在机械制造行业的应用具有重要意义。
工艺传递的成功执行,可以保证机械零件的质量,避免生产出不可用的零件;工艺传递的成功实施,可以建立跟踪记录,减少结构件缺陷;工艺传递的成功执行,可以防止零件之间出现关系问题,从而避免零件和装配安装不符;工艺传递的成功实施,可以确保零件按照指定要求和参数进行制造;工艺传递的成功执行,可以减少更换和更新零件,提高机械制造行业的效率和成本。
3 工艺传递的类型工艺传递的类型主要包括技术传输阶段、施工阶段和服务阶段。
技术传输阶段是传输工艺技术技术方案至用户单位,其中包括设计工艺技术、采购技术、生产技术和服务技术等各项技术信息的传送;施工阶段是按照传递的技术参数,在施工现场进行实施;服务阶段是在传递技术参数后,对生产制品进行维护和维修,以确保产品的高质量和高性能。
4 工艺传递的内容工艺传递的内容是一个复杂综合的实体,其内容包括制造技术、装配技术、检验技术以及各项配套服务技术。
制造技术,包括机械加工、焊接、热处理以及产品结构的制作等;装配技术,包括零件的可靠装配,以及零部件的校正和调整;检验技术,包括产品质量检验、材料抗击性检验及热机能检验等;各项配套服务技术,包括产品图纸绘制、产品夹具设计、机械动力及控制系统安装。
5 工艺传递的方法工艺传递的方法包括现场传递、指导方式和书面传递三种。
现场传递的方式需要有一位受训的技术指导人员,到应用单位及施工现场交叉检查,提供培训指导并实际操作,确保施工质量;书面传递的方式需要先建立工艺文件,将所有的工艺内容(设计要求、材料参数、加工要求等)书写明细,传递给受训者,再结合实践指导,确保受训者完全掌握该工艺;指导方式则需要技术指导人员介入技术制定新工艺,传授新技术,组织技术培训及熟练操作,调整新工艺技术及设计,从而使新工艺能够可靠稳定地运行成功。