食品化学 第四章 脂 质
- 格式:ppt
- 大小:3.21 MB
- 文档页数:72
食品化学问答题work Information Technology Company.2020YEAR第一章食品中的水分1食品的水分状态与吸湿等温线中的分区的关系如何?2食品的水分活度Aw与食品温度的关系如何?3食品的水分活度Aw与食品稳定性的关系如何(水分活度对食品稳定性/品质有哪些影响)4在水分含量一定时,可以选择哪些物质作为果蔬脯水分活度降低剂?5水具有哪些异常的物理性质?并从理论上加以解释。
6食品的含水量和水分活度有何区别?7 如何理解液态水既是流动的,又是固定的?8水与溶质作用有哪几种类型每类有何特点9为什么说不能用冰点以下食品水分活度预测冰点以上水分活度的性质?10 水在食品中起什么作用?11为什么说食品中最不稳定的水对食品的稳定性影响最大?12冰对食品稳定性有何影响(冻藏对食品稳定性有何影响)采取哪些方法可以克服冻藏食品的不利因素13食品中水的存在状态有哪些各有何特点14试述几种常见测定水分含量方法的原理和注意事项?15 水分活度、分子移动性和Tg在预测食品稳定性中的作用有哪些请对他们进行比较 16 为什么冷冻食品不能反复解冻—冷冻?17 食品中水分的转移形式有哪些类型如何理解相对湿度越小,在其他相同条件时,空气干燥能力越大第二章食品中的糖类1为什么杏仁,木薯,高粱,竹笋必须充分煮熟后,在充分洗涤?2利用那种反应可测定食品,其它生物材料及血中的葡萄糖请写出反应式3什么是碳水化合物,单糖,双糖,及多糖?4淀粉,糖元,纤维素这三种多糖各有什么特点?5单糖为什么具有旋光性?6如何确定一个单糖的构型?7什么叫糖苷如何确定一个糖苷键的类型8采用什么方法可使食品不发生美拉德反应?9乳糖是如何被消化的采用什么方法克服乳糖酶缺乏症10低聚糖的优越的生理活性有哪些?11为什么说多糖是一种冷冻稳定剂?12什么是淀粉糊化和老化?13酸改性淀粉有何用途?14 HM和LM果胶的凝胶机理?15卡拉胶形成凝胶的机理及用途?16什么叫淀粉糊化影响淀粉糊化的因素有哪些试指出食品中利用糊化的例子17影响淀粉老化的因素有哪些谈谈防止淀粉老化的措施试指出食品中利用老化的例子 18试述膳食纤维及其在食品中的应用试从糖的结构说明糖为何具有亲水性19 阐述美拉德反应的机理及其对食品加工的影响。
食品化学课程教学大纲课程名称:食品化学英文名称:Food Chemistry总学分:2.5 总学时:40 理论学时:40 实验学时:0(另设)适用专业:食品科学与工程,食品质量与安全一、课程的性质、目的本课程为食品科学与工程专业的专业基础课,其目的是使食品科学与工程、食品质量与安全等专业学生了解食品材料中主要成分的结构与性质,食品组分之间的相互作用和这些组分在食品加工和保藏中的物理变化、化学变化和生物化学变化,以及这些变化和作用对食品色、香、味、质构、营养和保藏稳定性的影响。
本课程为学生进一步学习食品加工与保藏的理论和技术提供一个必要的基础,同时也为学生今后从事食品加工、保藏和相关领域的研究和产品开发打下一个较宽广的理论基础。
二、教学基本要求本课程要求学生学习和掌握食品主要组分的结构、性质和在加工保藏过程中的变化以及这些变化对食品品质、营养和保藏稳定性的影响,同时在一定程度上学习和掌握控制这些变化的要求和方法。
水部分学习和掌握食品中水和非水组分的相互作用、水的存在形式、水分活度和食品稳定性的关系等。
碳水化合物部分学习和掌握主要的单糖、低聚糖和多糖(淀粉、纤维素、果胶等)的结构及其在食品中的功能,以及食品加工保藏过程中主要的碳水化合物反应。
脂类部分学习和掌握食品脂质的命名与分类、物理性质(同质多晶现象)、化学性质(脂解、自动氧化、抗氧化剂、热分解)和脂质的物理和化学变化对食品感官品质、安全及保藏稳定性等的影响。
蛋白质部分学习和掌握蛋白质的结构及其与食品相关的功能性质(水合、溶解、粘度、凝胶化、组织化、乳化、起泡)、蛋白质变性以及食品加工保藏过程中蛋白质结构与功能的变化和控制。
酶部分学习和掌握酶的基本概念、酶在食品材料中分布、影响酶作用的因素和控制酶活力的方法、酶的固定化及固定化酶反应动力学、食品加工保藏中重要的酶(果胶酶、淀粉酶、蛋白酶、脂酶、多酚氧化酶、过氧化物酶、脂肪氧合酶)的性质和在食品加工保藏中的作用、影响和控制等。
食品化学复习题第二章水1.水具有哪些异常的物理性质?并从理论上加以解释。
答:水异常的物理性质:高熔点,高沸点;介电常数大;表面张力高;热熔和相转变热焓高;密度低,凝固时有异常的膨胀率;粘度正常。
因为水分子中O—H键有极性,存在偶极矩,产生分子间吸引力,同时分子之间形成氢键,并形成氢键网络结构,而且分子之间存在缔合作用,大大增加水的稳定性,因此要破坏这一稳定性结构,需要异常大的能量。
2.什么是吸附等温线?各区有何特点?答:一定温度下,食品的含水量(用每单位干物质中的含水量表示)与其水分活度的图,称为水分吸附等温线。
区Ⅰ由构成水和邻近水构成,最强烈的吸附,最少流动,不能作为溶剂,可看作固体的一部分,是总水量的极小部分。
区Ⅱ是多层水,水分子通过氢键与相邻的水分子和溶质分子缔合流动性比体相水稍差,导致固体基质的初步膨胀和区Ⅰ水共占总水量的5%以下。
区Ⅲ的水为体相水,是被截留的或自由的,宏观运动受阻,性质与稀盐溶液中的水类似,占总水分的95%以上。
BET单层相当于一个干制品能呈现最高稳定性时含有的最大水分含量。
3.水分活度对食品稳定性有哪些影响?答:同类食品由于组成,新鲜度和其它因素而使a w有差异,而食品中的脂类自动氧化,非酶褐变,微生物生长,酶的反应等都与a w有很大关系。
当a w小于0.2时,除了氧化反应外,其它反应处于最小值;当a w在0.2~0.3时,反应为最小的反应速率;当a w为0.7~0.9时,中等水分时,麦拉德褐变反应,脂类氧化,维生素B1降解,叶绿素损失,微生物繁殖和酶反应均显示出最大速率。
但对中等水分和高水分食品,一般随着水活性的增加,反应速度反而降低。
4.水与溶质间的相互作用有哪几种类型?答:水与离子集团的相互作用——离子水合作用;水与有氢键键合能力中性基团的相互作用;水与疏水基团的相互作用——疏水相互作用;水与双亲分子的相互作用。
5.食品中水的存在状态有哪些?各有何特点?答:食品中水主要以体相水和结合水的形式存在。
《食品化学》课程标准一、课程概述食品化学是一门主要包括微生物、化学、生物学和工程学的多学科的科学,是食品科学主要课程,是食品专业的的专业基础课,它的主要任务包括:研究食品材料(原料和产品)中主要成分的组成、结构和性质;食品在贮藏、加工和包装过程中可能发生的化学和物理变化;食品成分的结构、性质和变化对食品质量和加工性能的影响等。
该课程的先修课程有无机及分析化学、有机化学、生物化学等,后续课程有食品工艺学、食品保藏原理、毕业论文等课程。
二、课程目标:1、知道该学科的性质、地位、独立价值、研究范围、基本框架、研究方法、学科进展和未来方向等。
2、通过对本课程的学习,让学生能够基本掌握食品中主要成分的组成、结构和性质;食品在贮藏、加工过程中可能发生的化学和物理变化;食品成分的结构、性质和变化对食品质量和加工性能的影响,并通过实验来加强对本课程的理解。
3、了解和掌握食品化学的基本知识和研究方法,从而在食品加工和保藏领域较好地从事教学、研究、生产和管理方面的工作。
三、课程的内容和要求这门学科的知识与技能要求分为知道、理解、掌握、学会四个层次。
这四个层次的一般涵义表述如下:知道———是指对这门学科认知。
理解———是指能懂得对这门学科涉及到的概念、原理与技术的说明和解释。
掌握———是指运用已理解的食品化学原理说明、解释并运用到实践中。
学会———是指能模仿或在教师指导下独立地完成食品化学的具体操作。
教学内容和要求表中的“√”号表示教学知识和技能的教学要求层次。
四、课程实施(一)课时安排与教学建议本课程属于食品工程(本科)专业必修课:理论课学时数35,实验课学时数9,学分2个。
具体课时安排如下:(二)教学组织形式与教学方法要求1、教学班是主要的教学组织,班级授课制是目前教学的主要组织形式。
2、注意教学方法的灵活性,组织学生自我经验叙述、讨论、问题教学、阅读指导等,尤其适当地采用多媒体的声像呈示,提供给学生原始的课堂实录,或者是问题情境,组织学生讨论,培养学生发现问题、分析问题、解决问题的能力和探究意识。
食品化学第二章水分1、名词解释:(1)水分活度:指食品的水分蒸汽压与相同温度下纯水的饱和蒸汽压的比值。
(2)水分的吸湿等温线:在恒定温度下,以食品中水分含量为纵坐标,以水分活度为横坐标绘制而成的曲线称为吸附等温线(MSI)。
(3)等温线的滞后现象:一种食物一般有两条吸附等温线。
一条是水分回吸等温线,是食品在吸湿时的吸附等温线;一条是水分解吸等温线,是食品在干燥时的吸附等温线;往往这两条曲线并不完全重叠,在中低水分含量部分张开了一细长的眼孔,把这种现象称为“滞后”现象。
2、问答题(1)水分活度与食品稳定性的关系。
①食品aw与微生物生长的关系:从微生物活动与食物水分活度的关系来看,各类微生物生长都需要一定的水分活度,一般说来:细菌为Aw>0.9;酵母为Aw>0.87;霉菌为Aw>0.8。
②食品aw与酶促反应的关系:一方面影响酶促反应的底物的可移动性,另一方面影响酶的构象。
食品体系中大多数的酶类物质在Aw<0.85 时,活性大幅度降低,如淀粉酶、酚氧化酶和多酚氧化酶等。
但也有一些酶例外,如酯酶在Aw为0.3甚至0.1时也能引起甘油三酯或甘油二酯的水解。
③食品aw与非酶化学反应的关系:降低食品的Aw ,可以延缓酶促反应和非酶反应的进行,减少食品营养成分的破坏,防止水溶性色素的分解。
但Aw过低,则会加速脂肪的氧化酸败,还能引起非酶褐变。
④食品aw与质地的关系:当水分活度从0.2~0.3增加到0.65时,大多数半干或干燥食品的硬度及黏着性增加。
水分活度为0.4~0.5时,肉干的硬度及耐嚼性最大。
(2)水分的吸附等温线的定义,以及3个区段的水分特性。
①在恒定温度下,以食品中水分含量为纵坐标,以水分活度为横坐标绘制而成的曲线称为吸附等温线。
②I区:为化合水和临近水区。
这部分水是食品中与非水物质结合最为紧密的水,为化合水和构成水,吸湿时最先吸入,干燥时最后排除;这部分水不能使干物质膨润,不能作为溶剂,在- 40℃不结冰。
《食品化学》习题集一、名词解释1二、填空题1三、判断题7四、选择题10五、分析题19六、简答题25七、论述题33、名词解释第一章水结合水、化合水、体相水、滞化水、自由水、水分活度、水的过冷现象、水分滞后现象、等温吸着曲线(回吸等温线)、解吸等温线;离子水合作用、疏水水合作用、疏水相互作用、笼形水合物;状态图、玻璃化转变温度、单分子层水、离子型缺陷第二章碳水化合物淀粉糊化、淀粉的老化、焦糖化作用、环状糊精、变性淀粉(ModifiedStarch)、糖苷、凝胶和胶凝、低聚糖、生氰糖苷、还原糖第三章脂质油脂同质多晶现象、必需脂肪酸(EssentialAminoAcids,并举一例)、固体脂肪指数(SFI)、塑性脂肪、脂肪的自动氧化、脂肪酸的0氧化、抗氧化剂、油脂的乳化、酸价(AcidValue)、油脂的氢化、碘值、皂化值、活性氧自由基、干性油脂与不干性油脂、中性脂肪、磷脂、衍生脂类、甘油磷脂、发烟点、闪点、着火点、乳化剂、乳状液、酸败、酯交换、脂类的酶促氧化、脂类水解、简单脂类、复合脂类、1O2淬灭剂(并举一例)、POV(PeroxidationValue)、脂肪光敏氧化、油脂的调温第四章蛋白质蛋白质的等电点、限制性氨基酸、蛋白质变性与复性、肽键、盐溶作用、盐析作用、乳化容量、蛋白质的二级结构第五章褐变酶促褐变、麦拉德反应(MaillardReaction)、非酶褐变、Strecker降解二、填空题第一章水1.食品一旦失水,()完全复水,因为()。
2.结冰对食品保藏不利的主要影响有()和()。
3.在食品中水的存在形式有()和游离水两种,其中对食品的保存性能影响最大的是()。
4.评定冰点以下的食品稳定性时,通常可用()作为指标。
5.食品的吸湿(附)等温线的()曲线和()曲线通常不重合,这即是吸附等温线的()现象。
6.食品中水的存在形式有()和()两种,测定食品水分含量的方法是()。
7.请写出水分活度AW的公式AW=(),纯水的水分活度为()。
第一章绪论1.天然食品中除糖类、蛋白质、脂类、维生素、矿物质和水六类人体正常代谢所必须的物质外,还含有________和________等。
2。
食品的化学组成分为_________和非天然成分,非天然成分又可分为_________和污染物质。
3。
简述食品化学研究的内容。
4.简述食品贮藏加工中各组分间相互作用对其品质和安全性的不良影响。
第二章水1.降低水分活度可以提高食品的稳定性,其机理是什么?2.食品的水分状态与吸湿等温线中的分区的关系如何?3。
水分活度4。
等温吸湿曲线及“滞后"现象5。
下列食品中,Aw值在0.95~1。
00范围的是( )A。
新鲜水果 B.甜炼乳 C.火腿 D.牛乳6.下列哪类微生物对低水分活度的敏感性最差?( )A.细菌B.酵母C。
霉菌D。
芽孢杆菌7.下列不属于结合水特点的是( )A。
在-40℃以上不结冰B。
可以自由流动C.在食品内可以作为溶剂D。
不能被微生物利用8。
属于自由水的有( )A.单分子层水B.毛细管水C。
多分子层水 D.滞化水9.结合水不能作溶剂,但能被微生物所利用。
()10.食品中的单分子层结合水比多分子层结合水更容易失去。
()11。
与自由水相比,结合水的沸点较低,冰点较高。
()12。
水分的含量与食品的腐败变质存在着必然、规律的关系。
()13。
高脂食品脱水,使其Aw降低至0。
2以下,对其保藏是有利的。
( )14.食品中的结合水能作为溶剂,但不能为微生物所利用。
( )15。
一般说来,大多数食品的等温吸湿线都成S形.()16.马铃薯在不同温度下的水分解析等温线是相同的.( )17。
结合水是指食品的非水成分与水通过_________结合的水。
又可分为单分子层结合水和_________。
18.吸湿等温线是恒定温度下,以水分含量为纵坐标,以_________为横坐标所作的图,同一食品的吸附等温线和解吸等温线不完全一致,这种现象叫做_________.19。
大多数食品的吸湿等温线呈___________形,而且与解吸曲线不重合,这种现象叫___________。
食品化学总结食品化学总结食品化学学习总结本学期学习了食品化学这门专业课。
作为食品质量与安全专业的学生,食品化学作为一门基础的专业课,理应透彻深入地学习它。
食品化学就是从化学的角度和分子水平上研究食品中上述成分的结构、理化结构、营养作用、安全性及可享受性,以及各种成分在食品生产、食品加工和储藏期间的变化及其对食品营养性、享受性和安全性影响的科学,是为改善食品品质、开发食品新资源、革新食品加工工艺和储运技术、科学调整膳食结构、改进食品包装、加强食品质量与安全控制及提高食品原料加工和综合利用水平奠定理论基础的科学。
食品化学是科学的一个重要的组成部分(食品科学是一门重要涉及微生物、化学、生物学、和工程学等多学科的科学),它是一门研究食品的组成特性及其产生化学变化的科学。
学习了这门课程以后,对于本专业有了更深入地了解,也为以后学习更多与食品有关的课程奠定了良好的基础。
扩展阅读:食品化学总结第二章水自由水:指没有与非水成分结合的水结合水:指存在于溶质及其它非水组分邻近的水单分子层水:可以近似地认为食品物质中构成水分与邻近水的总和即为单分子层水水分活度:在一定的温度下,食品体系当中水的蒸气压与纯水蒸气压之比滞后效应:采用回吸的方法绘制的吸附等温线和按解吸的方法绘制的吸附等温线并不相互重叠的现象疏水相互作用:当两个分离的非极性基团存在时,不相容的水环境会促使它们缔合,减少与非极性实体的界面面积,疏水基团之间进行缔合的作用2,水有哪些异常性质?并从理论上加以解释。
答:水的异常性质:(1)高熔点(0℃),高沸点(100℃)(2)介电常数大(3)表面张力高(4)热容(熔化热,蒸发热和升华热)和相转变热焓高(5)密度低(1g/cm ),凝固时的异常膨胀率(6)粘度正常(1cPa*s)原因:水分子在三维空间形成多重氢键,每个水分子具有相等数目的氢键给体和受体,能够在三维空间形成氢键网络结构,每个水分子最多能与其他四个水分子形成氢键形成四面体结构;与同样能形成氢键的分子比较水分子间的吸引力高很多;水合氢离子带正电笔非离子化水拥有更大的氢键给与能力而羟基则拥有更大的接受能力。
《食品化学》脂类试题(共4页)一、名词解释(每小题1分,本题满分8分)1. 同质多晶: 同一物质具有不同的晶体形态的现象。
2. 乳状液: 有两种不相容的液相组成的体系,其中一项为分散相,以液滴或液晶的形式存在,又称为非连续相;另一项为分散介质,又称为连续相。
3. 固体脂肪指数: 测定若干温度时25 克油脂固态和液态时体积的比例的比值,除以25 即为固体脂肪指数。
4. 油脂的酸败: 食品加工和贮藏期间,油脂因温度的变化及氧气、光照、微生物、酶等的作用,会产生令人不愉快的气味、苦涩味和一些有毒性的化合物,这些变化统称为酸败。
5. 脂肪的自动氧化 : 是活化的含烯底物与基态氧发生的游离基反应,包括链引发、链传递和链终止3个阶段。
6. 光敏氧化: 是不饱和双键与单线态氧直接发生的氧化反应。
7. Diels-Alder (狄尔斯-阿尔德)反应: 共轭二烯烃与双键的加成反应,生成产物是环乙烯。
8. 油脂的氢化: 指不饱和脂肪酸的双键在催化剂如镍、铂的作用下高温下与氧气发生加成反应,不饱和程度降低,使在室温下呈液态的油转变成部分氢化的半固态或塑性脂肪,这个过程称为油脂的氢化。
二、判断对错(每小题0.5分,本题满分11分)1. 天然油脂是甘油酯的混合物,并存在同质多晶现象,所以没有确切的熔点与沸点。
( √ )2. 脂肪在熔化时体积收缩,在同质多晶转换时体积增大。
(×)3. 脂肪的塑性取决于脂肪中的脂肪酸含量。
(×)4. 脂肪的β′晶型多则可塑性越大,而β晶型多则可塑性越小。
(√)5. 当固体含量一定时,若脂肪的晶体数量越多,结晶越小,则脂肪越硬。
如果冷却速率越慢,脂肪产生的结晶越大,则脂肪越软。
(√)6. 乳状液保持稳定主要取决于乳状液小液滴的表面电荷互相推斥作用。
(×)7. 若液滴半径小、两相密度差小,连续相的粘度小,则乳状液稳定性提高,上浮速度下降。
(×)8. 一般情况下,斥力等于引力,乳状液稳定性好。
《食品化学》课程教学大纲课程编号:课程性质:学科专业基础课课程组长:总学分值:总学分:2学分,其中理论2学分,实验实践0学分。
总学时数:总学时:32学时,其中理论学时32,实验实践0学时。
适用专业:酿酒工程先修课程:分析化学、有机化学后续课程:食品生物化学、食品营养学、食品微生物学一、课程简介1、课程性质与定位:本课程授课对象是食品科学与工程专业和食品质量与安全专业的全日制本科生,开设在三年级第一学期,理论教学32学时。
作为食品专业教学的主要基础课程之一,主要讲授食品营养成分(水分、蛋白质、糖类、脂肪、维生素、微量元素)的分类、化学性质、营养功能及其在加工贮藏过程中的变化;讲授食品中呈色、呈香和呈味物质的组成和性质;讲授食品添加剂性质、制备、添加和食品中的其它功能成分的组成、性质、分离提取和功能评价等。
先修课程包括物理化学、分析化学、有机化学、食品生物化学、食品营养学、食品微生物学,是学好食品化学的基础,灵活运用已经掌握的先修课程的理论知识,学习食品在保藏、加工、运输、销售等过程中发生的食品化学成分变化。
通过本课程的学习,便于加深对食品分析、食品工艺学等后续课程的学习和理解。
2、教学目的与要求:了解食品化学的概念,发展简史和食品化学研究的内容以及食品化学在食品工业技术发展中的重要作用,掌握食品中主要的化学变化以及对食品品质和食品安全性的影响。
熟悉食品化学的一般研究方法.食品化学是理论性和应用性均较强的课程,本课的教学环节包括课堂讲授、课外自学、查阅资料和考试。
课堂上应对食品化学的基本概念、基本理论进行必要的讲解,并详细讲授每章的重点、难点内容;讲授中应注意理论联系实际,启发学生的思维,加深学生对有关概念、理论等内容的理解。
要求学生关注重要术语的英文标注。
同时采用多媒体辅助教学,达到加深课堂讲授内容理解的目的。
考核采用闭卷考试方式;考试范围应涵盖所有讲授内容;考试内容应能客观反映出学生对本门课程主要概念、理论的理解、掌握程度以及综合运用能力;考试题型应尽量多样化。
绪论1:食品化学:是一门研究食品中的化学变化与食品质量相关性的科学。
2:食品质量属性(特征指标):色、香、味、质构、营养、安全。
第一章:水一:名词解释1:AW:指食品中水分存在的状态,即水分与食品结合程度(游离程度)。
AW=f/fo (f,fo 分别为食品中水的逸度、相同条件下纯水的逸度。
)2:相对平衡湿度(ERH): 不会导致湿气交换的周围大气中的相对湿度。
3:过冷现象:由于无晶核存在,液体水温度降到冰点以下仍不析出固体。
4:异相成核:指高分子被吸附在固体杂质表面或溶体中存在的未破坏的晶种表面而形成晶核的过程(在过冷溶液中加入晶核,在这些晶核的周围逐渐形成长大的结晶,这种现象称为异相成核。
)5:吸湿等温线(MSI):在一定温度条件下用来联系食品的含水量(用每单位干物质的含水量表示)与其水活度的图6:解吸等温线:指在一定温度下溶质分子在两相界面上进行的吸附过程达到平衡时它们在两相中浓度之间的关系曲线。
7:单层值(BET):单分子层水,量为BET,一般食品(尤为干燥食品)的水分百分含量接近BET时,有最大稳定性,确定某种食品的BET对保藏很重要。
8:滞后环:是退汞曲线和重新注入汞曲线所形成的圈闭线。
它反映了孔隙介质的润湿及结构特性。
9:滞后现象:MSI的制作有两种方法,即采用回吸或解吸的方法绘制的MSI,同一食品按这两种方法制作的MSI图形并不一致,不互相重叠,这种现象称为滞后现象。
二:简述题1:食品中水划分的依据、类型和特点。
答:以水和食品中非水成分的作用情况来划分,分为游离水(滞化水、毛细管水和自由流动水)和结合水【化合水和吸附水(单层水+多层水)】。
结合水:流动性差,在-40℃不会结冰,不能作为溶剂。
游离水:流动性强,在-40℃可结冰,能作为溶剂。
2:冰与水结构的区别答:水:由两个氢原子的s的轨道与一个氧原子的两个sp3杂化轨道形成两个σ共价键。
冰:由水分子构成的非常“疏松”的大而长的刚性结构,相比液态水则是一种短而有序的结构。
《食品生物化学教案》一、课程概述食品生物化学是食品科学与工程专业的一门重要基础课程,它主要研究食品中的化学成分及其在生物体内的代谢变化。
通过本课程的学习,学生将掌握食品中主要营养成分的结构、性质、功能和代谢途径,了解食品加工和贮藏过程中的化学变化及其对食品品质和安全性的影响,为后续专业课程的学习和从事食品相关工作打下坚实的基础。
二、教学目标1、知识目标掌握食品中主要营养成分(碳水化合物、蛋白质、脂类、维生素、矿物质等)的结构、性质和功能。
熟悉食品中生物大分子的代谢途径,包括糖代谢、脂代谢、蛋白质代谢等。
了解食品加工和贮藏过程中的化学变化及其对食品品质和安全性的影响。
2、能力目标能够运用所学知识分析和解决食品生产和加工中遇到的实际问题。
具备实验设计和数据处理的能力,能够进行简单的食品生物化学实验。
培养学生的自主学习能力和创新思维能力。
3、素质目标培养学生的科学态度和严谨的思维方式。
增强学生的食品安全意识和社会责任感。
培养学生的团队合作精神和沟通能力。
三、教学重难点1、教学重点碳水化合物、蛋白质、脂类的结构、性质和功能。
糖代谢、脂代谢、蛋白质代谢的主要途径和关键酶。
食品加工和贮藏过程中营养成分的变化及控制。
2、教学难点生物大分子代谢途径的调控机制。
食品化学变化与食品品质和安全性的关系。
四、教学方法1、讲授法系统讲解食品生物化学的基本概念、原理和知识体系。
运用多媒体教学手段,如图片、动画、视频等,帮助学生理解抽象的知识。
2、讨论法组织学生针对一些热点问题或实际案例进行讨论,培养学生的思维能力和表达能力。
引导学生通过讨论自主探究问题,加深对知识的理解和应用。
3、实验法安排一定数量的实验课程,让学生亲自动手操作,掌握实验技能和方法。
通过实验结果的分析和讨论,培养学生的科学研究能力和创新精神。
4、案例分析法结合实际食品生产和加工中的案例,分析其中涉及的食品生物化学原理和问题解决方法。
培养学生将理论知识应用于实际的能力。
食品化学习题集(第二版)参考答案第二章水名词解释1.水分活度:水分活度——食品中水分逸出的程度,可以近似地用食品中水的蒸汽分压与同温度下纯水饱和蒸汽压之比表示,也可以用平衡相对湿度表示。
2.吸湿等温线:在恒定温度下,食品水分含量(每单位质量干物质中水的质量)对Aw作图得到水分吸着等温线。
(等温条件下以食品含水量为纵坐标Aw为横坐标得到的曲线。
)3.滞后现象:对于食品体系,水分回吸等温线很少与解吸等温线重叠,一般不能从水分回吸等温线预测解吸现象(解析过程中试样的水分含量大于回吸过程中的水分含量)。
水分回吸等温线和解吸等温线之间的不一致性被称为滞后现象。
问答题1.食品中水的存在状态有哪些?各有何特点?答:食品中水的存在状态有结合水和自由水两种,其各自特点如下:①结合水(束缚水,bound water ,化学结合水)可分为单分子层水(monolayer water ),多分子层水(multilayer water )作用力:配位键,氢键,部分离子键特点:在-40 ℃以上不结冰,不能作为外来溶质的溶剂②自由水(free water )(体相水,游离水,吸湿水)可分为滞化水、毛细管水、自由流动水(截留水、自由水)作用力:物理方式截留,生物膜或凝胶内大分子交联成的网络所截留;毛细管力特点:可结冰,溶解溶质;测定水分含量时的减少量;可被微生物利用。
2.食品的水分活度Aw与吸湿等温线中的分区的关系如何?答:为了说明吸湿等温线内在含义,并与水的存在状态紧密联系,可以将其分为Ⅰ、Ⅱ、Ⅲ区:Ⅰ区Aw=0 ~0.25 约0~0.07g 水/g 干物质作用力:H2O—离子,H2O—偶极,配位键属单分子层水(含水合离子内层水)不能作溶剂,-40 ℃以上不结冰,与腐败无关Ⅱ区Aw=0.25 ~0.8 (加Ⅰ区,<0.45gH 2O/g 干)作用力:氢键:H2O—H2O H 2O—溶质属多分子层水,加上Ⅰ区约占高水食品的5%,不作溶剂,-40 ℃以上不结冰,但接近0.8 (Aw w)的食品,可能有变质现象。
课程名称:食品化学与分析课程代码:03264(理论)第一部分课程性质与目标一、课程性质与特点食品化学与分析是从化学的角度和分子水平上研究食品的组成、结构、理化性质、营养和安全性以及它们在生产、加工、贮藏、运输、销售过程中发生的变化,以及这些变化对食品品质和安全性影响的一门基础应用科学;并为改善食品品质、开发新的食物资源、革新食品加工工艺和贮运技术、科学调整膳食结构、改进食品包装、加强食品质量控制及提高食品原料加工和综合利用水平奠定理论基础的课程。
是食品科学与工程、食品安全专业本科学生的一门必修的专业基础课。
通过该课程的学习,使学生既能掌握最基本的教学内容,又能扩大知识面,并能联系实际建立起完整的理论知识体系,为今后从事食品产品的研究和开发奠定基础。
二、课程目标与基本要求1.掌握水、碳水化合物、脂质、蛋白质、维生素和矿物质等营养素的基本理化性质,它们在食品加工、贮藏、运输、销售过程中发生的重要化学反应。
2.理解食品中常见色素和风味物质在食品加工、贮藏中的变化和分析方法。
3.了解本学科前沿的某些研究热点问题,了解多糖在食品中的功能、化合物的气味与分子结构的关系。
三、与本专业其他课程的关系食品化学与分析是多学科相互渗透的学科,与化学、植物学、动物学、预防医学、食品营养与卫生、高分子化学、环境化学和分子生物学等学科有着密切而广泛的联系,其中有很多学科是食品化学与分析课程的基础。
基础化学、生物化学是学习此课程的先期课程,食品营养学、食品安全与卫生是后续课程。
第二部分考核内容与考核目标第1章绪论一、学习目的与要求掌握食品化学与分析的研究内容以及该课程在食品科学中的地位和意义。
二、考核知识点与考核目标1.1 食品化学的概念与发展简史(一般)识记:食品化学的概念。
1.2 食品化学研究的内容和范畴(一般)理解:食品化学的研究内容。
1.3 食品中主要的化学变化概述(一般)理解:主要食品成分的化学变化和相互关系。
第2章水分一、学习目的与要求了解水在食品中的重要作用、水和冰的结构及性质;掌握水在食品体系中的行为对食品的质地、风味、稳定性和易腐败性的影响;掌握水分活度与食品的稳定性之间的关系、等温线的概念及意义。
油脂的分类◆按物理状态:脂肪(常温下为固态)和油(常温下为液态)。
◆按来源:乳脂类、植物脂、动物脂、海产品动物油、微生物油脂。
◆按不饱和程度:✓干性油:碘值大于130,如桐油、亚麻籽油、红花油等;✓半干性油:碘值介于100-130,如棉籽油、大豆油等;✓不干性油:碘值小于100,如花生油、菜子油、蓖麻油等。
◆按构成的脂肪酸分:单纯酰基油,混合酰基油。
油脂类物质的物理性质(1)气味和色泽纯净的油脂无色无味,天然油脂由于混入叶绿素、叶黄素、胡萝卜素等有色物质而呈现不同的颜色;油脂特征的气味一般是由其中的非脂类成分引起的,如芝麻油中的乙酰吡嗪、椰子油中的壬基甲酮及菜油加热时产生的黑芥子苷等。
(2)熔点和沸点天然油脂无固定的熔点和沸点,而只有一定的熔点范围和沸点范围。
这是因为天然油脂是混合物且存在有同质多晶现象。
油脂组成中脂肪酸的碳链越长、饱和程度越高,熔点越高;反式脂肪酸、共轭脂肪酸含量高的油脂,其熔点较高;油脂的沸点随脂肪酸组成的变化而改变,但幅度不大。
)烟点、闪点及着火点✓①烟点:不通风条件下油脂发烟时的温度;✓②闪点:油脂中挥发性物质能被点燃而不能维持燃烧的温度;✓③着火点:油脂中挥发性物质能被点燃并维持燃烧时间不少于5s时的温度。
*油脂的纯度越高,其烟点、闪点及着火点均提高。
(4)结晶特性❍同质多晶现象:化学组成相同的物质可以形成不同形态晶体,但融化后生成相同液相的现象叫同质多晶现象,例如由单质碳形成石墨和金刚石两种晶体。
❍油脂在固态的情况下也有同质多晶现象。
❍油脂可能形成的晶体形态:主要有α型、βˊ型和β型三种。
几种晶体的基本特点:α型:有点阵结构但脂肪酸侧链呈现不规则排列β型:有点阵结构且脂肪酸侧链全部朝着一个方向倾斜。
按照序列内分子间交错排列的紧密程度,还有“二倍碳链长(DCL、β -2)”和“三倍碳链长(TCL、β-3)”之分。
甘油三酯结晶的主要晶型以及在晶格中的点阵如下图稳定性差别:α型<βˊ型<β型熔点:α<βˊ<β不同晶形之间可以相互转变,但转变是单向的,即只由不稳定状态向稳定状态转变。