动力总成悬置静、动刚度的测试研究
- 格式:pdf
- 大小:218.73 KB
- 文档页数:3
基于悬置⽀架动刚度分析的整车NVH性能分析及改进[摘要]动刚度指标是动⼒总成悬置⽀架等底盘零件NVH性能评价体系中的重要考核内容,基于有限元分析⽅法, 利⽤Altair RADIOSS软件的模态频率响应⽅法对悬置⽀架关键点的动态特性进⾏分析,可以得到相关零件的动刚度曲线。
通过对关键点进⾏动刚度分析,可以为车辆NVH性能改进提供理论参考,缩短开发周期和降低开发成本,对于提⾼车辆NVH性能设计⽔平具有重要的意义。
[关键词]悬置⽀架动刚度频率响应NVH【Abstract】The index of dynamic stiffness is theimportant assessment for the performance evaluation system of the chass pratssuch as powertrain mount bracket, based on method offinite element analysis,the modal frequency response method of Altair RADIOSS software isused toanalysis the dynamic characteristic of the critical points of the mount bracket.Dynamicstiffness analysis is done through the critical points ,it can providethe theoretical reference forthe vehicle NVH performance, shorten thedevelopment cycle and reduce development costs. Ithas the great significancefor improving the design capability of vehicle NVH performance. [Keywords] Mountingbracket;Dynamic stiffness;Frequency response;NVH1 引⾔随着消费者收⼊⽔平的提⾼,对汽车产品的舒适性需求越来越⾼,从⽽导致了在整车开发中对影响舒适性指标的振动噪声提出了更⾼的设计要求。
汽车动力总成悬置系统布置研究汽车动力总成悬置系统是指动力总成(发动机、离合器、变速器及附件等)与车架或车身之间弹性连接的系统,其设计性能对整车的振动噪音水平有重要影响,随着广大消费者对整车舒适性要求的不断提高,动力总成的隔振设计为广大汽车制造企业所重视,每套动力总成的质量特性不同,为达到最佳的动力总成悬置系统性能,理想来说应为每一个动力总成“量身打造”一套悬置系统。
标签:模块化设计;动力总成悬置系统;刚度;模态引言本文论述了基于某平台上动力总成悬置系统的模块化设计,实现了悬置系统元件最大化共用,且满足不同动力总成的悬置系统在该平台中的车身接口一致。
该平台的悬置系统模块化设计满足车型差异化的同时减少了零件数量,降低了设计、验证等工作量,从而有助于企业降低产品的研发与制造成本、提高生产系统的适应能力和客户响应速度。
1动力总成悬置系统模型建立1.1悬置系统六自由度动力学模型汽车动力总成一般通过四点悬置固定到车架上,悬置软垫采用橡胶材料并添加金属片限位,因此可以看作具有三向刚度的弹性阻尼元件。
悬置系统的固有频率远低于动力总成和车架弹性体的固有频率,因此可以把动力总成、车架简化为刚体,建立悬置系统的六自由度力学模型。
文中所设计悬置系统采用四点布置在发动机上。
建立动力总成坐标系O-XYZ,O为动力总成质心,X轴平行于曲轴中心线由飞轮端指向风扇端,Z轴竖直向上。
则动力总成的运动可以分解为沿X、Y、Z轴的平动和绕X、Y、Z轴的转动,共6个自由度,写成广义坐标的形式,表示为:根据拉格朗日法,得到动力总成悬置系统的六自由度振动微分方程式中:M为系统惯性矩阵;K为系统刚度矩阵。
通过MATLAB软件建立数学模型,即可求解出悬置系统的六阶固有频率及振型。
1.2能量解耦法模型车辆行驶过程中,由于发动机产生的激励力不通过质心引起动力总成在多个自由度上的振动响应,从而增加了悬置系统的振动耦合,使其振动幅值增大。
因此降低悬置系统的振动耦合,是提升整车舒适性的有效措施,工程应用中主要关注Z向及θx向的解耦率,一般采用能量解耦法来评价。
汽车整车状态下动力总成刚体模态试验研究翁建生(南京航空航天大学车辆工程系 南京 210016)摘要:本文在建立汽车动力总成刚体动力学模型基础上,采用比利时LMS国际公司模态测试系和分析软件,对某汽车整车状态下的动力总成进行试验模态分析。
介绍了整车状态下的动力总成模态试验方法和大阻尼结构模态分析和模态参数辨识方法。
试验结果为进一步的理论分析及改进动力总成悬置结构设计提供了指导。
关键词:动力总成、刚体模态、模态试验、模态识别1.引言汽车发动机常用往复活塞式发动机,它是由周期爆发的燃气压力产生的活塞往复运动,通过曲轴连杆机构转化为曲轴的旋转运动,对外输出功。
由于发动机气缸做功的不连续性,发动机运动部件的不平衡惯性力对发动机机体具有强烈的冲击和宽频带激励作用。
同时,发动机在工作工程中,由于实际工况和负荷的不断变化,反扭矩也在不断变化,从而对发动机造成一个扭矩激励作用。
在以上两种激励作用下,发动机会产生随转速变化的振动。
这种宽频带的振动与冲击无论对发动机的可靠性,还是对汽车的可靠性及乘坐舒适性都将造成极为不利的影响。
目前,随着汽车和发动机朝着高速、轻量化、大功率方向发展,其振动噪声问题日趋严重。
为了克服振动造成的各方面负面影响,人们采取了各种方法和途径来降低发动机和整车的振动。
汽车发动机工作中产生的不平衡力、力矩及路面不平度是引起汽车振动的激振的主要激振源。
为了减小发动机(动力总成)对整车振动和噪声的影响,一般是通过动力总成悬置连接在车架上的产生隔振效果。
理想的动力总成悬置元件应满足多方面的要求。
不但应该将发动机自身产生的振动与车架结构隔离,而且还必须对汽车在道路行驶中产生的扰动有满意的响应特性。
它必须在汽车突然加速、制动、转向等非稳态干扰时激发的低频扰动范围内有较大的动刚度和阻尼,以便限制动力总成的过分弹跳和过大的位移。
简单的说,理想的发动机悬置元件应该在低频范围有较大的动刚度和阻尼,而在高频范围有较低的动刚度[1]。
动力总成悬置系统刚体模态参数的试验与计算宋向荣;李建康;郑立辉【摘要】为研究动力总成悬置系统的动力特性,为悬置元件的设计和优化提供依据,进行了悬置系统怠速工况的运行模态测试和理论计算.首先测试了悬置元件的动刚度、静刚度、阻尼等参数,建立了Matlab计算模型,进行刚体模态计算.结果表明,怠速工况下采用悬置元件动刚度的计算结果与运行模态结果吻合,动力总成悬置系统的刚体模态参数不适宜在实验室环境下测试.【期刊名称】《实验技术与管理》【年(卷),期】2010(027)004【总页数】4页(P31-34)【关键词】动力总成悬置系统;刚体模态参数;动刚度;运行模态分析【作者】宋向荣;李建康;郑立辉【作者单位】江苏大学理学院,工程力学系,江苏,镇江,212013;江苏科技大学船海学院,江苏,镇江,212003;江苏科技大学船海学院,江苏,镇江,212003;江苏科技大学船海学院,江苏,镇江,212003【正文语种】中文【中图分类】U468.33随着汽车功率的加大,发动机是影响汽车乘坐舒适性的不可忽视的重要激振源。
动力总成悬置系统是发动机隔振性能的关键环节,悬置元件的动力学特性直接影响隔振效果。
研究动力总成悬置系统的刚体模态参数,对于悬置系统的隔振性能及悬置元件参数设计和优化具有重要的参考价值。
常用的悬置元件有橡胶悬置和液压悬置两种,其动力学特性具有很强的非线性,其设计要求低频时具有大刚度和大阻尼性质,而高频时要小刚度和小阻尼。
因此不同工作频率下,悬置系统的动态特性会有不同,在实验室环境下的模态测试不能完全反映其动态特性。
本文以怠速工况为例,研究了某轿车动力总成悬置系统的运行工况下的刚体模态参数。
实验测试了悬置元件的动刚度、静刚度、阻尼等参数,采用matlab进行刚体模态计算。
结果表明,怠速工况下采用悬置元件动刚度的计算结果与运行模态结果吻合,动力总成悬置系统的刚体模态参数不适宜在实验室环境下测试。
本文的方法和结论对汽车动力总成悬置元件的设计和性能测试具有重要的实用价值。
汽车动力总成液压悬置性能研究的开题报告一、研究背景与意义随着汽车工业的不断发展和进步,汽车动力总成和悬置系统的性能和可靠性要求也日益提高。
液压悬置系统已经成为当前高端汽车悬置系统的主流技术之一。
液压悬置系统通过电子控制单元(ECU)对液压缸的压力进行调节,来实现对车身高度的调整,改善车辆在高速行驶时的稳定性和舒适性,提高整车的驾驶品质和可靠性。
因此,研究汽车动力总成液压悬置性能,对于提升汽车动力总成和悬置系统的性能和可靠性具有重要意义。
二、研究内容和目标本研究以准备生产的高端汽车为研究对象,研究液压悬置系统的动力性能、安全性能和舒适性能,主要包括以下内容:1.液压悬置系统的基本原理和结构分析:主要研究液压悬置系统的工作原理、系统结构和组成部分。
2.液压悬置系统的动力性能研究:通过实验研究液压悬置系统在不同路面条件下的动态响应特性,分析其对车辆操控性和稳定性的影响。
3.液压悬置系统的安全性能研究:主要研究液压悬置系统的密封性能、防爆性能和故障排查技术,保证液压悬置系统的安全可靠性。
4.液压悬置系统的舒适性能研究:通过实验研究液压悬置系统对车辆行驶中的震动和噪音的消除效果,分析其对车内环境和驾驶人员的舒适性的影响。
研究的目标是建立高端汽车液压悬置系统的性能测试和评价体系,为大众汽车行业提供技术支持和研发理论依据。
三、研究方法与技术路线1.文献调研法:对国内外高端汽车液压悬置技术的现状和进展进行深入研究。
2.理论分析法:对液压悬置系统的基本原理和结构进行分析和研究。
3.仿真模拟法:采用虚拟样机和虚拟试验技术,完成液压悬置系统的动态响应和舒适性能分析。
4.实验研究法:通过实验研究液压悬置系统在不同路面条件下的动力性能、安全性能和舒适性能,获得实验数据并进行数据分析。
四、预期成果和意义通过本研究,预计可以获得以下成果:1.建立高端汽车液压悬置系统的性能测试和评价体系,为大众汽车行业提供技术支持和研发理论依据。
动力总成悬置系统位移控制计算方法研究动力总成悬置系统除了作为支承元件承受动力总成的质量以外,在发动机启动、汽车制动和转向等工况下,为避免动力总成产生过大的位移而与其它部件发生干涉,通常需从悬置的设计上以及结构上限制动力总成在各个方向的最大位移量。
1 动力总成的位移控制设计1.1位移控制设计的主要考虑因素通过上述的布置设计、移频设计和解耦设计,可确定每个悬置的安装位置、安装方位和悬置在其3个弹性主轴方向线性段的静刚度值和动刚度值。
其它各段的刚度值和拐点的确定主要考虑如下因素:(1)在汽车的各种行驶工况下(通用汽车公司的规定为29种工况),动力总成的姿态和动力总成位移的限值。
(2)在各种行驶工况下,希望悬置弹性主轴方向力~位移特性工作在何段。
(3)考虑工作点对悬置疲劳性能的影响。
图1-1给出了几种在不同的行驶工况下,期望悬置力~位移特性的工作点。
图1-1 不同行驶工况下,悬置力与位移曲线工作点1.2位移控制设计的要求在进行汽车动力总成的总布置时,要保证:(1)在正常行驶工况下悬置不能接触限位块;(2)非正常行驶况向下动力总成不能接触其他周围零部件,各个悬置受力相对均匀。
(3)动力总成的极限位移量要求: 前后左右位移量为±10mm ,上下方向为±15mm ,动力总成的绕3个轴转动的位移小于6o 或者更小。
(4)动力总成及其附件与车身的最小距离必须大于20mm ;(5)在各种行驶工况下,动力总成的姿态是静平衡时姿态的平行移动或者转动,希望悬置弹性主轴方向的载荷位于力一位移特性曲线上的确定位置。
2 悬置系统的静力分析动力总成静力分析是指发动机静止时系统在一定外力下广义坐标的变化情况,即外力和广义坐标的变化关系。
对悬置系统进行静力分析,便可估计汽车处于稳态和非稳态工况时,动力总成所处的位置,以及悬置的反力。
由这些结果,一方面可以对动力总成进行运动校核,以免和其他运动部件发生碰撞引起破坏;另一方面,为悬置强度校核提供依据,确保悬置块使用可靠。
合肥工业大学硕士学位论文汽车动力总成悬置系统优化设计与橡胶悬置研究姓名:王文亮申请学位级别:硕士专业:车辆工程指导教师:魏道高20100401汽车动力总成悬置系统优化设计与橡胶悬置研究摘要NVH性能是衡量汽车制造质量的一个综合性问题,它给汽车用户的感受是最直接和最表面的,如今已成国际汽车业各大整车制造企业和零部件企业关注和研究的重要问题之一。
而动力总成NVH特性研究是整车NVH特性研究的一个重要子系统,如何设计动力总成悬置系统,使动力总成传到车架上的振动得到有效隔离,是汽车研究的一个重要课题。
本文利用ADAMS对某款样车动力总成悬置系统进行了分析和优化设计,对橡胶悬置进行了有限元分析,其具体工作如下:1、研究动力总成悬置系统的发展现状、设计流程,分析并总结了动力总成悬置系统研究的理论方法,研究成果及现代设计发展趋势。
2、根据所研究的对象,测量分析出该动力总成悬置系统相关的实验数据和技术资料,为之后的仿真分析提供试验数据。
3、根据测量的数据,应用MSC.ADAMS/View模块建立了该动力总成悬置系统的空间六自由度虚拟样机模型。
通过ADAMS/Vibration模块分析出动力总成悬置系统的固有特性和能量分布情况,并分析了动力总成悬置系统在怠速工况、最大扭矩工况、紧急制动工况以及紧急转弯工况下的动态响应。
4、利用撞击中心理论和扭矩轴法验证悬置点位置的合理性,并以各支承处悬置元件的刚度为设计变量,以动力总成悬置系统六自由度解耦或部分解耦为优化目标,以系统固有频率的合理配置为约束条件,对动力总成悬置系统进行了优化,使得系统解耦程度更高,固有频率分配更加合理,振动传递率减小,此次优化取得了良好的隔振效果。
6、利用软件ABAi3US对橡胶悬置三维有限元模型的静动态弹性仿真研究,对其应力应变分析,计算出了悬置的各向静刚度,并根据仿真结果与实验结果的对比分析,验证了橡胶悬置静动态弹性特性有限元仿真方法的有效性。
轻型客车动力总成悬置系统rNVH优化与试验研究
黎程
【期刊名称】《柴油机设计与制造》
【年(卷),期】2016(022)004
【摘要】动力总成悬置系统的设计是汽车隔振和降噪的关键技术之一.本文以某轻型客车动力总成悬置系统为研究对象,对其进行NVH优化.首先,通过锤击法刚体模态试验,得到动力总成的转动惯量与惯性积及质心位置;对动力总成悬置系统进行解耦布置,确定后悬置的安装位置;建立动力总成悬置系统六自由度刚体动力学模型,对悬置刚度参数进行能量解耦优化,通过悬置系统的频率分布、振动能量分布以及位移限值的计算,验证优化效果;最后,进行整车试验验证.
【总页数】6页(P5-10)
【作者】黎程
【作者单位】同济大学,上海2000921
【正文语种】中文
【相关文献】
1.轻型客车动力总成弯曲振动控制的试验研究 [J], 张建文;吕振华
2.汽车动力总成悬置系统优化与试验研究 [J], 都朝利;卢剑伟;毛世伟
3.某商用车动力总成悬置系统NVH性能仿真与试验研究 [J], 吴静;黄勤
4.汽车动力总成全套悬置系统台架耐久模拟试验研究 [J], 徐有忠;章礼文
5.动力总成悬置系统影响车内噪声的试验研究 [J], 范让林;费振南;屈少举;邵炯炀;宋鹏俊
因版权原因,仅展示原文概要,查看原文内容请购买。
发动机悬置动静刚度试验分析Jia Chao【摘要】发动机是汽车振动的主要激振源之一,影响着汽车的乘坐舒适性,汽车发动机悬置系统合理的动静刚度等参数可以明显的衰减激振、降低噪声,汽车的乘坐舒适性能很好的提升.发动机悬置动静刚度试验分析能检测发动机悬置参数设计的合理性.【期刊名称】《汽车实用技术》【年(卷),期】2018(000)023【总页数】3页(P159-161)【关键词】发动机悬置;试验;动静刚度【作者】Jia Chao【作者单位】【正文语种】中文【中图分类】U464引言发动机悬置是汽车上连接发动机和车身的比较重要的零部件,其动静刚度性能好坏直接影响对发动机振动的衰减,乃至整车驾驶的舒适性,甚至发动机的使用寿命。
悬置系统设计解耦过程中,每个悬置元件都被赋予了不同的动静刚度参数,这些参数的合理性对实现其在整车上的功能有着很大的影响,同时又要满足其他部分的性能要求,比如悬置元件的耐久性、抗老化、拉伸强度等性能。
因此,发动机悬置动静刚度参数试验测试非常重要,日益受到重视与关注。
1 发动机悬置动静刚度参数1.1 悬置静刚度悬置静刚度(K)指力和位移曲线中力的变化量与位移变化量的比值,其计算公式为:式中,F1、F2为加载力,S1、S2为在加载力的作用下的变形量。
1.2 悬置动刚度悬置动刚度是在一定的预载荷、一定加载频率以及一定动态振幅下进行测量的,在幅值上等于动态力的峰一峰值与动态位移的峰一峰值之比,或者是扭矩的峰一峰值与角度的峰一峰值之比,其计算公式为:式中,Aload为动态力或动态力矩的峰一峰值,Adisp为动态位移或动态转角的峰一峰值。
经过相当多的试验测试、数据统计分析可知,悬置元件的动刚度一般都比静刚度要大,动刚度与静刚度比值一般在1.2—2.5倍之间。
2 静刚度试验及分析方法2.1 静刚度试验前提条件要求1)试验在零件完成一周后进行,样件不能有橡胶点、毛刺等;2)试验温度根据设计图纸要求,图纸无要求则设定为23℃±5℃;3)试验夹具的安装尽量与实际装车状态相一致。
汽车动力总成悬置系统布置研究汽车动力总成的悬置系统布置是整车设计中非常重要的一部分,直接关系到车辆的稳定性、舒适性和安全性。
该系统主要由几何形状、橡胶减震器和刚度等方面的因素组成。
正确的悬置系统布置可以减少车身的震动和扭曲,提高整车的稳定性和舒适性,并降低车辆的噪声、振动和疲劳。
首先,要考虑到悬置系统的几何形状。
通常来说,汽车动力总成的悬置系统规划应尽量避免底盘的干涉和碰撞。
在设计悬置系统时,需要根据车体结构和总成布置来确定最佳的安装位置。
对于前置发动机的车辆,前悬架的位置应该尽量靠前,并且需要满足车轮的位置和角度等技术要求。
后置发动机的车辆则需要考虑后悬架的位置,以确保车辆的稳定性和平衡性。
其次,橡胶减震器也是一个影响悬置系统性能的关键因素。
橡胶减震器可以有效地吸收路面震动和颠簸,从而减少车辆受到的冲击和振动。
因此,在选择和布置橡胶减震器时,需要考虑悬置系统的刚度和阻尼。
在高速行驶时,悬置系统应该具有较高的刚度和阻尼,以保证车辆的稳定性和控制性。
在行驶过程中,悬置系统还需要具有较好的稳定性和可靠性,以避免出现漏油等故障。
最后,悬置系统的刚度也是一个重要的方面。
汽车动力总成的刚度将直接影响车辆的刹车和加速性能,因此需要保证悬置系统的足够刚度。
在悬置系统的刚度设计中,需要综合考虑车辆的重量、驱动轮数量和轴距等要素,以保证车辆的平衡性和可控性。
综上所述,汽车动力总成悬置系统的正确布置和设计对于车辆的稳定性、舒适性和安全性具有重要意义。
在悬置系统的规划和设计中,需要综合考虑几何形状、橡胶减震器和刚度等因素,以确保车辆的性能和可靠性。
未来,随着科技的不断发展,汽车悬置系统将会进一步演进,并且更加注重可持续发展和环保,为驾驶者带来更为安全、舒适和便捷的出行体验。