动力总成悬置静、动刚度的测试研究
- 格式:pdf
- 大小:218.73 KB
- 文档页数:3
基于悬置⽀架动刚度分析的整车NVH性能分析及改进[摘要]动刚度指标是动⼒总成悬置⽀架等底盘零件NVH性能评价体系中的重要考核内容,基于有限元分析⽅法, 利⽤Altair RADIOSS软件的模态频率响应⽅法对悬置⽀架关键点的动态特性进⾏分析,可以得到相关零件的动刚度曲线。
通过对关键点进⾏动刚度分析,可以为车辆NVH性能改进提供理论参考,缩短开发周期和降低开发成本,对于提⾼车辆NVH性能设计⽔平具有重要的意义。
[关键词]悬置⽀架动刚度频率响应NVH【Abstract】The index of dynamic stiffness is theimportant assessment for the performance evaluation system of the chass pratssuch as powertrain mount bracket, based on method offinite element analysis,the modal frequency response method of Altair RADIOSS software isused toanalysis the dynamic characteristic of the critical points of the mount bracket.Dynamicstiffness analysis is done through the critical points ,it can providethe theoretical reference forthe vehicle NVH performance, shorten thedevelopment cycle and reduce development costs. Ithas the great significancefor improving the design capability of vehicle NVH performance. [Keywords] Mountingbracket;Dynamic stiffness;Frequency response;NVH1 引⾔随着消费者收⼊⽔平的提⾼,对汽车产品的舒适性需求越来越⾼,从⽽导致了在整车开发中对影响舒适性指标的振动噪声提出了更⾼的设计要求。
汽车动力总成悬置系统布置研究汽车动力总成悬置系统是指动力总成(发动机、离合器、变速器及附件等)与车架或车身之间弹性连接的系统,其设计性能对整车的振动噪音水平有重要影响,随着广大消费者对整车舒适性要求的不断提高,动力总成的隔振设计为广大汽车制造企业所重视,每套动力总成的质量特性不同,为达到最佳的动力总成悬置系统性能,理想来说应为每一个动力总成“量身打造”一套悬置系统。
标签:模块化设计;动力总成悬置系统;刚度;模态引言本文论述了基于某平台上动力总成悬置系统的模块化设计,实现了悬置系统元件最大化共用,且满足不同动力总成的悬置系统在该平台中的车身接口一致。
该平台的悬置系统模块化设计满足车型差异化的同时减少了零件数量,降低了设计、验证等工作量,从而有助于企业降低产品的研发与制造成本、提高生产系统的适应能力和客户响应速度。
1动力总成悬置系统模型建立1.1悬置系统六自由度动力学模型汽车动力总成一般通过四点悬置固定到车架上,悬置软垫采用橡胶材料并添加金属片限位,因此可以看作具有三向刚度的弹性阻尼元件。
悬置系统的固有频率远低于动力总成和车架弹性体的固有频率,因此可以把动力总成、车架简化为刚体,建立悬置系统的六自由度力学模型。
文中所设计悬置系统采用四点布置在发动机上。
建立动力总成坐标系O-XYZ,O为动力总成质心,X轴平行于曲轴中心线由飞轮端指向风扇端,Z轴竖直向上。
则动力总成的运动可以分解为沿X、Y、Z轴的平动和绕X、Y、Z轴的转动,共6个自由度,写成广义坐标的形式,表示为:根据拉格朗日法,得到动力总成悬置系统的六自由度振动微分方程式中:M为系统惯性矩阵;K为系统刚度矩阵。
通过MATLAB软件建立数学模型,即可求解出悬置系统的六阶固有频率及振型。
1.2能量解耦法模型车辆行驶过程中,由于发动机产生的激励力不通过质心引起动力总成在多个自由度上的振动响应,从而增加了悬置系统的振动耦合,使其振动幅值增大。
因此降低悬置系统的振动耦合,是提升整车舒适性的有效措施,工程应用中主要关注Z向及θx向的解耦率,一般采用能量解耦法来评价。
汽车整车状态下动力总成刚体模态试验研究翁建生(南京航空航天大学车辆工程系 南京 210016)摘要:本文在建立汽车动力总成刚体动力学模型基础上,采用比利时LMS国际公司模态测试系和分析软件,对某汽车整车状态下的动力总成进行试验模态分析。
介绍了整车状态下的动力总成模态试验方法和大阻尼结构模态分析和模态参数辨识方法。
试验结果为进一步的理论分析及改进动力总成悬置结构设计提供了指导。
关键词:动力总成、刚体模态、模态试验、模态识别1.引言汽车发动机常用往复活塞式发动机,它是由周期爆发的燃气压力产生的活塞往复运动,通过曲轴连杆机构转化为曲轴的旋转运动,对外输出功。
由于发动机气缸做功的不连续性,发动机运动部件的不平衡惯性力对发动机机体具有强烈的冲击和宽频带激励作用。
同时,发动机在工作工程中,由于实际工况和负荷的不断变化,反扭矩也在不断变化,从而对发动机造成一个扭矩激励作用。
在以上两种激励作用下,发动机会产生随转速变化的振动。
这种宽频带的振动与冲击无论对发动机的可靠性,还是对汽车的可靠性及乘坐舒适性都将造成极为不利的影响。
目前,随着汽车和发动机朝着高速、轻量化、大功率方向发展,其振动噪声问题日趋严重。
为了克服振动造成的各方面负面影响,人们采取了各种方法和途径来降低发动机和整车的振动。
汽车发动机工作中产生的不平衡力、力矩及路面不平度是引起汽车振动的激振的主要激振源。
为了减小发动机(动力总成)对整车振动和噪声的影响,一般是通过动力总成悬置连接在车架上的产生隔振效果。
理想的动力总成悬置元件应满足多方面的要求。
不但应该将发动机自身产生的振动与车架结构隔离,而且还必须对汽车在道路行驶中产生的扰动有满意的响应特性。
它必须在汽车突然加速、制动、转向等非稳态干扰时激发的低频扰动范围内有较大的动刚度和阻尼,以便限制动力总成的过分弹跳和过大的位移。
简单的说,理想的发动机悬置元件应该在低频范围有较大的动刚度和阻尼,而在高频范围有较低的动刚度[1]。
动力总成悬置系统刚体模态参数的试验与计算宋向荣;李建康;郑立辉【摘要】为研究动力总成悬置系统的动力特性,为悬置元件的设计和优化提供依据,进行了悬置系统怠速工况的运行模态测试和理论计算.首先测试了悬置元件的动刚度、静刚度、阻尼等参数,建立了Matlab计算模型,进行刚体模态计算.结果表明,怠速工况下采用悬置元件动刚度的计算结果与运行模态结果吻合,动力总成悬置系统的刚体模态参数不适宜在实验室环境下测试.【期刊名称】《实验技术与管理》【年(卷),期】2010(027)004【总页数】4页(P31-34)【关键词】动力总成悬置系统;刚体模态参数;动刚度;运行模态分析【作者】宋向荣;李建康;郑立辉【作者单位】江苏大学理学院,工程力学系,江苏,镇江,212013;江苏科技大学船海学院,江苏,镇江,212003;江苏科技大学船海学院,江苏,镇江,212003;江苏科技大学船海学院,江苏,镇江,212003【正文语种】中文【中图分类】U468.33随着汽车功率的加大,发动机是影响汽车乘坐舒适性的不可忽视的重要激振源。
动力总成悬置系统是发动机隔振性能的关键环节,悬置元件的动力学特性直接影响隔振效果。
研究动力总成悬置系统的刚体模态参数,对于悬置系统的隔振性能及悬置元件参数设计和优化具有重要的参考价值。
常用的悬置元件有橡胶悬置和液压悬置两种,其动力学特性具有很强的非线性,其设计要求低频时具有大刚度和大阻尼性质,而高频时要小刚度和小阻尼。
因此不同工作频率下,悬置系统的动态特性会有不同,在实验室环境下的模态测试不能完全反映其动态特性。
本文以怠速工况为例,研究了某轿车动力总成悬置系统的运行工况下的刚体模态参数。
实验测试了悬置元件的动刚度、静刚度、阻尼等参数,采用matlab进行刚体模态计算。
结果表明,怠速工况下采用悬置元件动刚度的计算结果与运行模态结果吻合,动力总成悬置系统的刚体模态参数不适宜在实验室环境下测试。
本文的方法和结论对汽车动力总成悬置元件的设计和性能测试具有重要的实用价值。
汽车动力总成液压悬置性能研究的开题报告一、研究背景与意义随着汽车工业的不断发展和进步,汽车动力总成和悬置系统的性能和可靠性要求也日益提高。
液压悬置系统已经成为当前高端汽车悬置系统的主流技术之一。
液压悬置系统通过电子控制单元(ECU)对液压缸的压力进行调节,来实现对车身高度的调整,改善车辆在高速行驶时的稳定性和舒适性,提高整车的驾驶品质和可靠性。
因此,研究汽车动力总成液压悬置性能,对于提升汽车动力总成和悬置系统的性能和可靠性具有重要意义。
二、研究内容和目标本研究以准备生产的高端汽车为研究对象,研究液压悬置系统的动力性能、安全性能和舒适性能,主要包括以下内容:1.液压悬置系统的基本原理和结构分析:主要研究液压悬置系统的工作原理、系统结构和组成部分。
2.液压悬置系统的动力性能研究:通过实验研究液压悬置系统在不同路面条件下的动态响应特性,分析其对车辆操控性和稳定性的影响。
3.液压悬置系统的安全性能研究:主要研究液压悬置系统的密封性能、防爆性能和故障排查技术,保证液压悬置系统的安全可靠性。
4.液压悬置系统的舒适性能研究:通过实验研究液压悬置系统对车辆行驶中的震动和噪音的消除效果,分析其对车内环境和驾驶人员的舒适性的影响。
研究的目标是建立高端汽车液压悬置系统的性能测试和评价体系,为大众汽车行业提供技术支持和研发理论依据。
三、研究方法与技术路线1.文献调研法:对国内外高端汽车液压悬置技术的现状和进展进行深入研究。
2.理论分析法:对液压悬置系统的基本原理和结构进行分析和研究。
3.仿真模拟法:采用虚拟样机和虚拟试验技术,完成液压悬置系统的动态响应和舒适性能分析。
4.实验研究法:通过实验研究液压悬置系统在不同路面条件下的动力性能、安全性能和舒适性能,获得实验数据并进行数据分析。
四、预期成果和意义通过本研究,预计可以获得以下成果:1.建立高端汽车液压悬置系统的性能测试和评价体系,为大众汽车行业提供技术支持和研发理论依据。
动力总成悬置系统位移控制计算方法研究动力总成悬置系统除了作为支承元件承受动力总成的质量以外,在发动机启动、汽车制动和转向等工况下,为避免动力总成产生过大的位移而与其它部件发生干涉,通常需从悬置的设计上以及结构上限制动力总成在各个方向的最大位移量。
1 动力总成的位移控制设计1.1位移控制设计的主要考虑因素通过上述的布置设计、移频设计和解耦设计,可确定每个悬置的安装位置、安装方位和悬置在其3个弹性主轴方向线性段的静刚度值和动刚度值。
其它各段的刚度值和拐点的确定主要考虑如下因素:(1)在汽车的各种行驶工况下(通用汽车公司的规定为29种工况),动力总成的姿态和动力总成位移的限值。
(2)在各种行驶工况下,希望悬置弹性主轴方向力~位移特性工作在何段。
(3)考虑工作点对悬置疲劳性能的影响。
图1-1给出了几种在不同的行驶工况下,期望悬置力~位移特性的工作点。
图1-1 不同行驶工况下,悬置力与位移曲线工作点1.2位移控制设计的要求在进行汽车动力总成的总布置时,要保证:(1)在正常行驶工况下悬置不能接触限位块;(2)非正常行驶况向下动力总成不能接触其他周围零部件,各个悬置受力相对均匀。
(3)动力总成的极限位移量要求: 前后左右位移量为±10mm ,上下方向为±15mm ,动力总成的绕3个轴转动的位移小于6o 或者更小。
(4)动力总成及其附件与车身的最小距离必须大于20mm ;(5)在各种行驶工况下,动力总成的姿态是静平衡时姿态的平行移动或者转动,希望悬置弹性主轴方向的载荷位于力一位移特性曲线上的确定位置。
2 悬置系统的静力分析动力总成静力分析是指发动机静止时系统在一定外力下广义坐标的变化情况,即外力和广义坐标的变化关系。
对悬置系统进行静力分析,便可估计汽车处于稳态和非稳态工况时,动力总成所处的位置,以及悬置的反力。
由这些结果,一方面可以对动力总成进行运动校核,以免和其他运动部件发生碰撞引起破坏;另一方面,为悬置强度校核提供依据,确保悬置块使用可靠。
合肥工业大学硕士学位论文汽车动力总成悬置系统优化设计与橡胶悬置研究姓名:王文亮申请学位级别:硕士专业:车辆工程指导教师:魏道高20100401汽车动力总成悬置系统优化设计与橡胶悬置研究摘要NVH性能是衡量汽车制造质量的一个综合性问题,它给汽车用户的感受是最直接和最表面的,如今已成国际汽车业各大整车制造企业和零部件企业关注和研究的重要问题之一。
而动力总成NVH特性研究是整车NVH特性研究的一个重要子系统,如何设计动力总成悬置系统,使动力总成传到车架上的振动得到有效隔离,是汽车研究的一个重要课题。
本文利用ADAMS对某款样车动力总成悬置系统进行了分析和优化设计,对橡胶悬置进行了有限元分析,其具体工作如下:1、研究动力总成悬置系统的发展现状、设计流程,分析并总结了动力总成悬置系统研究的理论方法,研究成果及现代设计发展趋势。
2、根据所研究的对象,测量分析出该动力总成悬置系统相关的实验数据和技术资料,为之后的仿真分析提供试验数据。
3、根据测量的数据,应用MSC.ADAMS/View模块建立了该动力总成悬置系统的空间六自由度虚拟样机模型。
通过ADAMS/Vibration模块分析出动力总成悬置系统的固有特性和能量分布情况,并分析了动力总成悬置系统在怠速工况、最大扭矩工况、紧急制动工况以及紧急转弯工况下的动态响应。
4、利用撞击中心理论和扭矩轴法验证悬置点位置的合理性,并以各支承处悬置元件的刚度为设计变量,以动力总成悬置系统六自由度解耦或部分解耦为优化目标,以系统固有频率的合理配置为约束条件,对动力总成悬置系统进行了优化,使得系统解耦程度更高,固有频率分配更加合理,振动传递率减小,此次优化取得了良好的隔振效果。
6、利用软件ABAi3US对橡胶悬置三维有限元模型的静动态弹性仿真研究,对其应力应变分析,计算出了悬置的各向静刚度,并根据仿真结果与实验结果的对比分析,验证了橡胶悬置静动态弹性特性有限元仿真方法的有效性。
轻型客车动力总成悬置系统rNVH优化与试验研究
黎程
【期刊名称】《柴油机设计与制造》
【年(卷),期】2016(022)004
【摘要】动力总成悬置系统的设计是汽车隔振和降噪的关键技术之一.本文以某轻型客车动力总成悬置系统为研究对象,对其进行NVH优化.首先,通过锤击法刚体模态试验,得到动力总成的转动惯量与惯性积及质心位置;对动力总成悬置系统进行解耦布置,确定后悬置的安装位置;建立动力总成悬置系统六自由度刚体动力学模型,对悬置刚度参数进行能量解耦优化,通过悬置系统的频率分布、振动能量分布以及位移限值的计算,验证优化效果;最后,进行整车试验验证.
【总页数】6页(P5-10)
【作者】黎程
【作者单位】同济大学,上海2000921
【正文语种】中文
【相关文献】
1.轻型客车动力总成弯曲振动控制的试验研究 [J], 张建文;吕振华
2.汽车动力总成悬置系统优化与试验研究 [J], 都朝利;卢剑伟;毛世伟
3.某商用车动力总成悬置系统NVH性能仿真与试验研究 [J], 吴静;黄勤
4.汽车动力总成全套悬置系统台架耐久模拟试验研究 [J], 徐有忠;章礼文
5.动力总成悬置系统影响车内噪声的试验研究 [J], 范让林;费振南;屈少举;邵炯炀;宋鹏俊
因版权原因,仅展示原文概要,查看原文内容请购买。
发动机悬置动静刚度试验分析Jia Chao【摘要】发动机是汽车振动的主要激振源之一,影响着汽车的乘坐舒适性,汽车发动机悬置系统合理的动静刚度等参数可以明显的衰减激振、降低噪声,汽车的乘坐舒适性能很好的提升.发动机悬置动静刚度试验分析能检测发动机悬置参数设计的合理性.【期刊名称】《汽车实用技术》【年(卷),期】2018(000)023【总页数】3页(P159-161)【关键词】发动机悬置;试验;动静刚度【作者】Jia Chao【作者单位】【正文语种】中文【中图分类】U464引言发动机悬置是汽车上连接发动机和车身的比较重要的零部件,其动静刚度性能好坏直接影响对发动机振动的衰减,乃至整车驾驶的舒适性,甚至发动机的使用寿命。
悬置系统设计解耦过程中,每个悬置元件都被赋予了不同的动静刚度参数,这些参数的合理性对实现其在整车上的功能有着很大的影响,同时又要满足其他部分的性能要求,比如悬置元件的耐久性、抗老化、拉伸强度等性能。
因此,发动机悬置动静刚度参数试验测试非常重要,日益受到重视与关注。
1 发动机悬置动静刚度参数1.1 悬置静刚度悬置静刚度(K)指力和位移曲线中力的变化量与位移变化量的比值,其计算公式为:式中,F1、F2为加载力,S1、S2为在加载力的作用下的变形量。
1.2 悬置动刚度悬置动刚度是在一定的预载荷、一定加载频率以及一定动态振幅下进行测量的,在幅值上等于动态力的峰一峰值与动态位移的峰一峰值之比,或者是扭矩的峰一峰值与角度的峰一峰值之比,其计算公式为:式中,Aload为动态力或动态力矩的峰一峰值,Adisp为动态位移或动态转角的峰一峰值。
经过相当多的试验测试、数据统计分析可知,悬置元件的动刚度一般都比静刚度要大,动刚度与静刚度比值一般在1.2—2.5倍之间。
2 静刚度试验及分析方法2.1 静刚度试验前提条件要求1)试验在零件完成一周后进行,样件不能有橡胶点、毛刺等;2)试验温度根据设计图纸要求,图纸无要求则设定为23℃±5℃;3)试验夹具的安装尽量与实际装车状态相一致。
汽车动力总成悬置系统布置研究汽车动力总成的悬置系统布置是整车设计中非常重要的一部分,直接关系到车辆的稳定性、舒适性和安全性。
该系统主要由几何形状、橡胶减震器和刚度等方面的因素组成。
正确的悬置系统布置可以减少车身的震动和扭曲,提高整车的稳定性和舒适性,并降低车辆的噪声、振动和疲劳。
首先,要考虑到悬置系统的几何形状。
通常来说,汽车动力总成的悬置系统规划应尽量避免底盘的干涉和碰撞。
在设计悬置系统时,需要根据车体结构和总成布置来确定最佳的安装位置。
对于前置发动机的车辆,前悬架的位置应该尽量靠前,并且需要满足车轮的位置和角度等技术要求。
后置发动机的车辆则需要考虑后悬架的位置,以确保车辆的稳定性和平衡性。
其次,橡胶减震器也是一个影响悬置系统性能的关键因素。
橡胶减震器可以有效地吸收路面震动和颠簸,从而减少车辆受到的冲击和振动。
因此,在选择和布置橡胶减震器时,需要考虑悬置系统的刚度和阻尼。
在高速行驶时,悬置系统应该具有较高的刚度和阻尼,以保证车辆的稳定性和控制性。
在行驶过程中,悬置系统还需要具有较好的稳定性和可靠性,以避免出现漏油等故障。
最后,悬置系统的刚度也是一个重要的方面。
汽车动力总成的刚度将直接影响车辆的刹车和加速性能,因此需要保证悬置系统的足够刚度。
在悬置系统的刚度设计中,需要综合考虑车辆的重量、驱动轮数量和轴距等要素,以保证车辆的平衡性和可控性。
综上所述,汽车动力总成悬置系统的正确布置和设计对于车辆的稳定性、舒适性和安全性具有重要意义。
在悬置系统的规划和设计中,需要综合考虑几何形状、橡胶减震器和刚度等因素,以确保车辆的性能和可靠性。
未来,随着科技的不断发展,汽车悬置系统将会进一步演进,并且更加注重可持续发展和环保,为驾驶者带来更为安全、舒适和便捷的出行体验。
动力总成悬置支架强度仿真分析规范1.概述1.1汽车悬置支架汽车悬置支架时汽车动力系统的重要组成部分,起着支撑发动机,阻隔发动机向车架传递振动的作用,是动力总成悬置系统的安全件和功能件。
悬置支架连接发动机与车架,在汽车的各种行驶工况下,传递作用在动力总成上的一切力和力矩。
悬置支架强度不足,在部分工况下会造成悬置支架断裂,严重影响安全。
1.2使用仿真分析的意义传统的发动机悬置支架刚强度计算需要通过应变片的变形测量出传动系作用在发动机悬置支架上的力,再进行计算。
但是由于在运动过程中,悬置支架上承受的力时刻变化而且不容易测得,且悬置支架刚性一般比较大,产生的变形值比较小。
,因此用实验方法计算刚度的方法误差比较大,而且周期长。
而使用有限元仿真方法,可以极大地降低试验费用及时间,同时也能提高设计精度,同时与最后的试验相验证。
1.3HyperMesh简介HyperMesh软件是美国Altair公司的产品,是世界领先的、功能强大的CAE 应用软件包,也是一个创新、开放的企业级CAE平台,它集成了设计与分析所需的各种工具,具有无与伦比的性能以及高度的开放性、灵活性和友好的用户界面。
HyperMesh是一款高效的有限元前处理软件,它可以对有限元模型进行方便灵活的清理和优化,使用网格生成工具来快速地创建有限元网格,通过调节单元密度、单元偏置梯度、单元网格划分算法等编辑功能来形成高质量的二维和三维有限元模型,从而再很大程度上提高CAE分析的效率,并保证CAE分析的精度。
1.4强度分析的目的静强度分析研究结构在常温条件下承受载荷的能力,通常简称为强度分析。
静强度除研究承载能力外,还包括结构抵抗变形的能力(刚度)和结构在载荷作用下的响应(应力分布、变形形状、屈曲模态等)特性。
静强度分析包括下面几个方面的工作。
①校核结构的承载能力是否满足强度设计的要求,其准则为:若强度过剩较多,可以减小结构承力件尺寸。
对于带裂纹的结构,由于裂纹尖端存在奇异的应力分布,常规的静强度分析方法已不再适用,已属于疲劳与断裂问题。
汽车动力总成悬置系统NVH性能优化与试验验证的开题报告一、选题背景:随着社会经济快速发展,汽车已成为人们日常生活中不可或缺的交通工具。
在汽车的动力总成中,发动机和传动系统是汽车的核心组成部分。
汽车动力总成的悬置系统是保证车辆舒适性、安全性和耐久性的重要部分,它的性能对整车性能有着重要影响。
在悬置系统中,NVH性能是指噪声、振动和冲击的影响,其中噪声是指发动机和传动系统产生的噪声;振动是指车辆的振动;冲击则是指车辆行驶过程中的颠簸和冲击。
这些因素会影响驾驶者的体验,也对车辆的安全性和耐久性造成影响。
因此,优化悬置系统的NVH性能已成为一项必要的研究方向。
二、研究目的:本课题旨在分析汽车动力总成悬置系统的NVH性能,找出影响性能的关键因素,并尝试通过优化设计和试验验证来改善系统的NVH性能,提高汽车的舒适性和安全性。
三、研究内容:1. 分析汽车动力总成悬置系统NVH性能的影响因素,包括发动机、传动系统、悬架系统等方面。
2. 根据NVH测试结果进行数据处理和分析,得出NVH性能的评价指标。
3. 通过优化设计和试验验证,改善汽车悬置系统的NVH性能。
四、研究方法:1. 进行NVH测试,记录噪声、振动和冲击的数据。
2. 分析NVH测试结果,找出关键因素,并进行优化设计。
3. 利用试验验证,测试改进方案的效果,确定对于NVH性能的改善程度。
五、研究意义:本研究可为汽车动力总成悬置系统设计和生产厂商提供技术支持,在保证汽车安全性和耐久性的情况下提高汽车的舒适性,满足消费者的需求。
同时也可为汽车NVH性能分析方法提供指导,为减少振动和噪声造成的危害做出贡献。
六、研究计划:1. 研究文献调研和相关技术现状分析(1-2周);2. 进行NVH测试和数据处理分析(2-3周);3. 寻找改进方案并进行优化设计(2-3周);4. 试验验证改进方案的效果(1-2周);5. 撰写开题报告、中期报告和结题报告(3-4周)。
汽车动力总成悬置系统隔振性能研究摘要:汽车动力总成是汽车振动的主要激振源之一,对汽车的乘坐舒适性有很大的影响,合理设计汽车动力总成悬置系统可以明显的降低汽车的振动和噪声,改善汽车的乘坐舒适性。
关键词:汽车动力总成悬置系统隔振性能设计具有良好隔振性能的动力总成悬置系统是提高汽车乘坐舒适性和操纵稳定性及提高产品的市场竞争力的重要环节。
国内生产厂商多采用仿制的方法,致使国产车的隔振性能普遍较差,车内振动噪声特性不良,乘坐舒适性较差,这已经成为国产汽车普遍存在的品质问题之一。
1.动力总成悬置系统的作用设计发动机总成悬置系统的目的是控制发动机动力总成振动向车身/车架的传递,悬置系统起到隔离振动的作用。
动力总成悬置系统是用来连接动力总成和车身的弹性连接系统。
在车辆设计开发中,合理地设计动力总成悬置系统,可以有效的降低动力总成产生的激励向车架和车身的传递。
悬置系统主要是支承、限位和隔振作用。
2.常用悬置元件的结构特点及性能2. 1橡胶悬置橡胶悬置的结构和工作原理较为简单,它一般由金属骨架以及硫化到属骨架上的橡胶组成,金属骨架的作用主要是防止橡胶悬置发生过大的变形和作为悬置的连接部分,橡胶可以提供内摩擦阻尼来衰减振动。
由于橡胶悬置结构简单,制造方便,价格低廉,并且具有相当的隔振减振性能,目前在NVH性能要求较低的车辆上仍有较为广泛的应用。
2.2液压悬置元件由于发动机的工作频带很宽,大约在10~500Hz范围内,因此要求悬置元件工作在低频大振幅时(如:发动机怠速状态)提供较大的阻尼和较大的刚度特性。
在高频低振幅振动激励下提供低的动刚度和较小的阻尼特性,以衰减高频噪声。
普通的橡胶悬置已无法满足上述要求。
因此液压悬置是为了上述要求而开发出来。
3. 动力总成悬置系统隔振原理因此由上式可知,只有当隔振系数<1时,才有隔振效果。
而且,当频率比值越大,放大因子就越小,隔振效果越好,也就是只有时,才有隔振效果。
这就需要计算发动机总成悬置系统的固有频率,使得固有频率小于激励频率。
动力总成悬置系统布置设计研究影响悬置系统布置设计的因素发动机汽缸数的影响不同缸数的发动机对动力总成的振动鼓励型式和鼓励频率不同。
对于四缸四冲程发动机,在低频区的激振成分主要是第二阶不平衡往复惯性力;对于六缸四冲程发动机,其激振成分主要是第三、六阶转矩谐量。
根据隔振理论,动力总成刚体振动模态频率应比主要激振频率的倍要小。
考虑怠速隔振的情况,当发动机的怠速转速相同时,四缸发动机动力总成的刚体振动临界频率上限需低于六缸机。
对于四缸机,应特别注意其二阶不平衡往复惯性力。
发动机布置方式的影响FF(发动机前置前轮驱动)式汽车的发动机可以横置或纵置,而横置发动机和纵置发动机的倾覆力矩对车身的低阶弯曲、扭转振动模态的相互耦合、匹配关系也完全不同。
虽然动力总成的转动惯量几一般比几要大得多(3一倍左右),但动力总成的俯仰振动模态频率一般低于侧倾振动模态频率,动力总成的俯仰振动幅值往往小于侧倾振动幅值。
在发动机怠速工况下,动力总成的侧倾振动较大,为了防止动力总成的振动引起车身的低阶弯曲、扭转模态共振,在动力总成悬置系统设计过程中需要合理匹配车身弯曲或扭转振动模态与动力总成刚体侧倾振动模态的频率,同时对动力总成悬置安装点与车身固有振型节线的相对位置关系进行合理匹配。
例如,对于横置式发动机,动力总成的前后悬置不宜跨置于车身弯曲振型节线的两侧。
动力传动系统型式的影响对于发动机前置—前轮驱动的FF式汽车动力传动系,其动力总成还包括驱动桥主减速器,使得作用在动力总成上的驱动反力矩比FR式汽车大大增加,就要求1提高悬置的静刚度。
同时,FF式汽车动力总成与FR式相比,其扭矩轴与曲轴的夹角明显增大,当其悬置系统采用V型布置方案时,往往由于布置空间和布置位置的限制,难以使得悬置组在布置到达使悬置组的弹性中心落在扭矩轴上的目标。
因此,有必要在整车总布置初期预留必要的空间。
1.4整车隔振性能要求对动力总成悬置系统设计的影响为了抑制路面激起的整车振动,可适当配置动力总成悬置系统的垂向振动模态频率,使其起到控制整车振动的动力吸振器的作用,由动力总成吸收经过悬架传递上来的振动,从而减小车身的振动。
发动机悬置研究综述摘要本文介绍了动力总成悬置系统的研究现状,阐述了动力总成悬置系统的设计方法及边界要求,传统的被动式橡胶悬置和液压悬置由于自身的特点不能满足轿车多工况减振、降噪要求,主动及半主动悬置由于其优良的减振、降噪性能必将成为新一代悬置的发展方向。
关键词汽车动力总成悬置控制0 引言乘坐舒适性是汽车尤其是轿车一项重要性能指标,随着人类社会的技术进步,乘坐舒适性作为汽车性能的一项重要指标越来越受到重视。
车辆的振动多种多样,发动机作为主要振源之一,其振动经发动机悬置传递到车架进而传递到驾驶室内。
为了提高车辆乘坐的舒适性,必须合理设计动力总成悬置系统,达到衰减振动的目的。
发动机悬置系统的最基本的两个功能是支撑发动机的重量,隔离发动机的振动。
发动机工作产生的激励力包括两个部分:其一是由发动机点火不均匀形成的缸内脉冲气压及发动机工作不平衡所致;其二是由于行驶路面不平引起的振动激励。
当振动固有频率与汽车某阶固有振动频率相等时,将引起共振,形成较大的振动和噪声。
动力总成悬置是发动机与车身的连接部件,其主要功能在于衰减发动机的低频大幅振动、抑制驾驶室内产生高频噪音。
汽车动力总成悬置设计考虑以下技术要求:(1)悬置的静刚度应较高,以保证能够支承动力总成重量和输出转矩的平稳。
为快速衰减发动机的低频大幅振动应具有大阻尼。
(2)为降低动力总成到驾驶室的振动传递率,同时有效抑制驾驶室内的高频噪音。
悬置在高频时应具有小阻尼和低的动态刚度。
动力总成悬置的发展经历了由橡胶悬置到液压悬置再到主动悬置的发展过程。
1 橡胶悬置[1 ]橡胶作为一种隔振材料由于其优良的性能广泛应用于悬置生产领域,其特点如下:优点:(1)三个方向刚度值可选,通过合理设计橡胶悬置的形状尺寸,可以优选悬置的铅垂、横向、纵向刚度值。
(2)橡胶作为一种优良的高分子材料,其硫化后产生的分子间的内摩擦比金属材料高出上千倍,可以有效衰减车辆的低频大幅振动。
(3)橡胶材料的来源广泛,生产成本低廉,广泛应用于机械隔振领域。