有关初二数学上册知识点总结
- 格式:docx
- 大小:18.87 KB
- 文档页数:5
初二数学上册知识点归纳总结一、三角形。
1. 三角形的基本概念。
- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三角形有三条边、三个内角和三个顶点。
- 三角形的表示方法:用符号“△”表示,如△ABC,其中A、B、C分别表示三角形的三个顶点。
2. 三角形的分类。
- 按角分类:- 锐角三角形:三个角都是锐角的三角形。
- 直角三角形:有一个角是直角的三角形,直角三角形可以用符号“Rt△”表示,直角所对的边叫做斜边,另外两条边叫做直角边。
- 钝角三角形:有一个角是钝角的三角形。
- 按边分类:- 不等边三角形:三边都不相等的三角形。
- 等腰三角形:有两边相等的三角形,相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
等腰三角形中,三边都相等的三角形叫做等边三角形(也叫正三角形),等边三角形是特殊的等腰三角形。
3. 三角形的三边关系。
- 三角形两边之和大于第三边,两边之差小于第三边。
例如,在△ABC中,AB + BC>AC,AB - BC。
4. 三角形的高、中线与角平分线。
- 三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
三角形有三条高,锐角三角形的三条高都在三角形内部;直角三角形的两条直角边互为高,斜边上的高在三角形内部;钝角三角形的高,钝角对边上的高在三角形内部,另外两条高在三角形外部。
- 三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
三角形的三条中线相交于一点,这点叫做三角形的重心。
三角形的中线将三角形分成面积相等的两个部分。
- 三角形的角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形的三条角平分线相交于一点。
5. 三角形的内角和与外角和。
- 三角形内角和定理:三角形三个内角的和等于180°。
可以通过作平行线等方法进行证明。
初二数学上册知识点汇总(精华15篇)初二数学上册知识点汇总1①线段有两条对称轴,是这条线段的垂直平分线和线段所在的直线。
②角有一条对称轴,是角平分线所在的直线。
③等腰三角形有一条对称轴,是顶角平分线所在的直线。
④等边三角形有三条对称轴,分别是三个顶角平分线所在的直线。
⑤矩形有两条对称轴,是相邻两边的垂直平分线。
⑥正方形有四条对称轴,是相邻两边的垂直平分线和对角线所在的直线。
⑦菱形有两条对称轴,是对角线所在的'直线。
⑧等腰梯形有一条对称轴,是两底垂直平分线。
⑨正多边形有与边数相同条的对称轴。
⑩圆有无数条对称轴,是任何一条直径所在的直线。
初二数学上册知识点汇总2①建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;②根据具体问题确定单位长度;③在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.1.平移:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移。
平移后图形的位置改变,形状、大小不变。
2.在平面直角坐标系内:如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的`新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。
3.图形平移与点的坐标变化之间的关系:(1)左、右平移:原图形上的点(x、y),向右平移a个单位(x+a,y);原图形上的点(x、y),向左平移a个单位(x-a,y);(2)上、下平移:原图形上的点(x、y),向上平移a个单位(x,y+b);原图形上的点(x、y),向下平移a个单位(x,y-b)。
初二数学上册知识点汇总31.性质:①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
2.分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的'最高次数是1的不等式叫一元一次不等式。
初二数学上册知识点总结第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c 分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。
那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。
③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数②=(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。
初二数学上册知识点总结归纳一、整数和有理数1. 整数运算:加法、减法、乘法、除法2. 整数的性质:相等性、大小关系、相反数、绝对值3. 有理数的性质:相等性、大小关系、相反数、绝对值4. 有理数的加法和减法:同号相加、异号相减5. 有理数的乘法和除法:同号得正、异号得负二、代数式与方程1. 代数式的概念:字母、数字和运算符号的组合2. 代数式的运算:加法、减法、乘法、除法3. 方程的概念:等号两边的代数式4. 方程的解:使方程成立的值5. 一元一次方程:解一次方程的方法6. 一元一次方程的应用:问题的转化和解答三、图形的认识1. 图形的分类:平面图形和立体图形2. 平面图形的名称和性质:点、线、线段、射线、角、三角形、四边形、多边形、圆3. 立体图形的名称和性质:球体、圆柱体、圆锥体、棱锥体、棱柱体四、相交线与平行线1. 相交线的性质:相互垂直、补角相等、同位角相等、对顶角相等2. 平行线的判定:相交线与平行线的性质3. 平行线的性质:对应角相等、内错角相等、同位角相等4. 直线与平面的关系:直线与平面有一个公共点,直线与平面没有公共点五、数的倍数与约数1. 数的倍数的概念:一个数除以另一个数,商是整数2. 数的倍数的性质:公倍数、最小公倍数3. 数的约数的概念:能整除给定数的数4. 数的约数的性质:公约数、最大公约数六、四则运算与算式1. 公式与算式的概念:有运算符号和等号的式子2. 算式的运算法则:先乘除后加减、先括号后计算3. 利用四则运算解决实际问题七、角与直线的关系1. 角的概念:角的三要素、角的分类2. 角的比较与度量:角的大小比较、度量角的单位3. 角的平分线和角的三等分线4. 直线的分类:与角有关的直线、与平行线有关的直线八、方形与平行四边形1. 方形的性质:四个角都是直角的四边形2. 平行四边形的性质:对边平行、对边相等、对角相等3. 平行四边形的判定:各边的长度、对角线的关系4. 平行四边形的性质应用九、单位换算与量的计算1. 常用单位的换算:长度、面积、体积、质量、时间2. 运用单位换算解决实际问题3. 人口密度、文明程度等综合计算十、比例与比例应用1. 比例的概念:比值相等的关系2. 解决比例问题的方法:分离两比值、求未知数3. 按比例象形、小学生由高到低站队、分数排数等应用4. 面积比例、速度比例、比例尺及其应用十一、数轴与大小关系1. 数轴的概念:用线段表示数及其大小2. 数轴上点的坐标:规定数轴上一个点的坐标3. 数轴上的加法和减法:根据坐标的变化进行运算4. 数轴上的倍数:根据坐标的变化进行运算十二、综合与实践1. 基本依据:理论与实际结合2. 实际问题:通过解答实际问题,理解和应用所学知识通过对初二数学上册的知识点进行总结归纳,可以加深对这些知识的理解和掌握。
初二数学上学期知识点总结优秀6篇初二数学上册知识点篇一一.知识概念1.同底数幂的乘法法则:m,n都是正数2..幂的乘方法则:m,n都是正数3.整式的乘法(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
(3)多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
4.平方差公式:5.完全平方公式:6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即a≠0,m、n都是正数,且mn.在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即,如,-2.50=1,则00无意义。
③任何不等于0的数的-p次幂p是正整数,等于这个数的p的次幂的倒数,即a≠0,p 是正整数,而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的;当a0时,a-p的值可能是正也可能是负的,如,④运算要注意运算顺序。
7.整式的除法单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加。
8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法分解因式的'步骤:1先看各项有没有公因式,若有,则先提取公因式;2再看能否使用公式法;3用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;4因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;5因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。
初二上册数学知识点总结数学是一门极其重要的学科,是创造性思维和逻辑推理的基础。
初二上册数学主要学习的内容有整数、分数、有理数、比例与均值、百分数、实数、平面图形、数轴、数据及统计等。
下面是初二上册数学知识点的详细总结。
一、整数1. 整数及其概念2. 整数的分类(正整数、负整数、零)3. 整数的比较与大小排序4. 整数的加减法运算(同号相加、异号相减)5. 整数的乘法与除法运算(正负数相乘、正负数相除)6. 整数的混合运算二、分数1. 分数及其概念2. 分数的表示方法(真分数、假分数、带分数)3. 分数的比较与大小排序4. 分数的约分与通分5. 分数的加减法运算6. 分数的乘法与除法运算7. 分数与整数、小数的相互转化8. 分数的混合运算三、有理数1. 有理数的概念2. 有理数的分类(整数、分数)3. 有理数的加减法运算4. 有理数的乘法与除法运算5. 有理数的混合运算四、比例与均值1. 比例的概念与性质2. 比例的表示与计算3. 比例的应用(比例定理、比例线段分割、相似三角形)4. 均值的概念与计算(平均数、中位数、众数)五、百分数1. 百分数的概念与计算2. 百分数与分数、小数的相互转化3. 百分数的应用(百分比、利率、折扣、提成等)六、实数1. 实数的分类(有理数、无理数)2. 无理数的概念与性质(开方、无理数的大小比较)3. 实数的运算4. 实数的应用(开平方、计算器使用)七、平面图形1. 基本概念(点、线、面、角)2. 三角形(分类、性质、判定、计算)3. 四边形(分类、性质、判定、计算)4. 圆(概念、性质、计算)5. 多边形(分类、性质)6. 空间图形(长方体、正方体、球等)八、数轴1. 数轴的概念与表示2. 正数与负数的数轴表示3. 数轴上点的坐标与距离九、数据及统计1. 数据的概念与表示方法(频数、频率、累计频数、分组频数)2. 统计图(条形图、折线图、折线图等)3. 中心倾向量(平均数、中位数、众数)4. 离散程度(极差、方差、标准差)5. 数据的整理与分析以上是初二上册数学的主要知识点总结,希望可以帮助到你。
初二数学上册知识点归纳1. 数的运算- 有理数的四则运算,包括加、减、乘、除。
- 绝对值的计算方法。
- 有理数的乘方和开方。
- 有理数大小比较的方法。
2. 代数基础- 代数式的基本概念,包括单项式、多项式、同类项等。
- 代数式的加减运算法则。
- 代数式的乘除运算法则。
- 整式的乘法公式,如平方差公式和完全平方公式。
3. 一元一次方程- 一元一次方程的概念和解法。
- 一元一次方程的应用问题,如行程问题、工程问题等。
- 一元一次方程的解的检验方法。
4. 一元一次不等式- 一元一次不等式的概念和解法。
- 一元一次不等式的解集表示方法。
- 一元一次不等式的应用问题。
5. 线段与角- 线段的性质,包括线段的和差、中点等。
- 角的概念,包括锐角、直角、钝角、平角等。
- 角度的表示方法,包括度、分、秒。
6. 三角形- 三角形的基本概念,包括三角形的边长、角度等。
- 三角形的分类,如等边三角形、等腰三角形、直角三角形等。
- 三角形的内角和定理。
- 三角形的外角定理。
7. 多边形- 多边形的基本概念,包括边数、顶点数等。
- 多边形的内角和定理。
- 多边形的外角和定理。
8. 圆- 圆的基本概念,包括圆心、半径、直径等。
- 圆的性质,如圆周角定理、圆心角定理等。
- 圆的周长和面积的计算公式。
9. 数据的收集与处理- 数据收集的方法,包括调查法、实验法等。
- 数据的整理,如制作条形图、扇形图等。
- 数据的分析,包括平均数、中位数、众数等的计算。
10. 概率初步- 概率的基本概念,包括随机事件、必然事件、不可能事件等。
- 概率的计算方法,如古典概型、几何概型等。
- 概率在实际问题中的应用。
初二数学上册知识点总结第1篇(有理数总可以用有限小数或无限循环小数表示)一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。
特别地,我们规定0的算术平方根是0。
一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。
求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。
一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。
正数的立方根是正数;0的立方根是0;负数的立方根是负数。
求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。
有理数和无理数统称为实数,即实数可以分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。
实数知识点平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的`一个点来表示。
打好基础数学基础包括基础知识和基本技能。
基础知识是指数学公式,定理,原理和概念之间的内在和外在联系。
基本技能指的是计算技巧,绘图技巧以及使用公式解决问题。
技能等等。
只要掌握了基础知识和基本技能,学生就可以灵活运用数学知识来解决各种问题。
数学知识提纲姓名初二上册初二数学(上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理(直角三角形的判定条件)如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形,且最长边所对的角是直角。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实 数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算术平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
初二数学上学期知识点总结(10篇)在平平淡淡的学习中,大家较不陌生的就是知识点吧!知识点有时候特指教科书上或考试的知识。
掌握知识点有助于大家更好的学习。
问学必有师,讲习必有友,以下是可爱的小编为家人们收集整理的初二数学上学期知识点总结(较新10篇),欢迎参考阅读,希望可以帮助到有需要的朋友。
初二数学上学期知识点总结篇一分式的加减法1、分式与分数类似,也可以通分。
根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
2、分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。
(1)同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是:(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:3、概念内涵:通分的关键是确定较简分母,其方法如下:较简公分母的系数,取各分母系数的较小公倍数;较简公分母的字母,取各分母所有字母的次幂的积,如果分母是多项式,则首先对多项式进行因式分解。
初二数学上册知识点篇二多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的`一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到初二数学上册知识点篇三平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算。
有关初二数学上册知识点总结
数学已成为许多国家及地区的教育范畴中的一部分。
它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。
这次小编给大家整理了初二数学上册知识点总结,供大家阅读参考。
初二数学上册知识点总结
一:勾股定理
1、探索勾股定理
①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2
2、一定是直角三角形吗
①如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形
3、勾股定理的应用
二:实数
1、认识无理数
①有理数:总是可以用有限小数和无限循环小数表示
②无理数:无限不循环小数
2、平方根
①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根
②特别地,我们规定:0的算数平方根是0
③平方根:一般地,如果一个数x的平方等于a,即x2=a。
那么这个数x就叫做a的平方根,也叫做二次方根
④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根
⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±
⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开
方数
3、立方根
①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根
②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。
③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数
4、估算
①估算,一般结果是相对复杂的小数,估算有精确位数
5、用计算机开平方
6、实数
①实数:有理数和无理数的统称
②实数也可以分为正实数、0、负实数
③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大
7、二次根式
①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数
②=(a≥0,b≥0),=(a≥0,b>0)
③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式
④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式
三:位置与坐标
1、确定位置
①在平面内,确定一个物体的位置一般需要两个数据
2、平面直角坐标系
①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系
②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点
③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示
④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限
⑤在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应
3、轴对称与坐标变化
①关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数四:一次函数
1、函数
①一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x 的函数其中x是自变量
②表示函数的方法一般有:列表法、关系式法和图象法
③对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值
2、一次函数与正比例函数
①若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,特别的,当b=0时,称y是x的正比例函数
3、一次函数的图像
①正比例函数y=kx的图像是一条经过原点(0,0)的直线。
因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可
以了
②在正比例函数y=kx中,当k>0时,y的值随着x值的增大而减小;当k<0时,y的值随着x的值增大而减小
③一次函数y=kx+b的图像是一条直线,因此画一次函数图像时,只要确定两个点,再过这两点画直线就可以了。
一次函数y=kx+b的图像也称为直线y=kx+b
④一次函数y=kx+b的图像经过点(0,b)。
当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小
4、一次函数的应用
①一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0
学数学的用处
第一,实际生活中数学学得好可以帮助你在工作上解决工程类或财务类的技术问题。
就大多数情况来看,不能解决技术问题的人不仅收入较差而且还要到基层去从事低等体力劳动,能解决技术问题的人就可以拿高工资在办公室当工程师或者财务人员。
第二,数学可以使你的大脑变得更加聪明,增加你思维的严谨性,另外,数学对你其它科目的学习也有很大作用。
第三,数学无处不在,工作学习中都用得着,例如日常逛街买东西都是和数学有关的,这时候才能体会到学习数学的好处。
如何学好数学
(1)制定学习计划还是非常有必要的。
虽说计划没有变化快,但是对于学习没有自律性和实践性的同学们来说制定一个适合自己学习方式的学习计划还是非常有必要的。
一个良好的学习时间表或是学习计划就是成功的基石,如果同学们自律性可以强一些,能够每天按照计划表上的时间分工利用好时间,那这个时候的学习效率是不可估量的。
(2)上课认真听讲才可能进步。
可能同学会有不服气,现在每个班级中都会有一些“极其聪明”的学生,就算是不学习每天上课都在溜号,也能在最后考试的时候取得很好的成绩,这就在一定程度上给了
很多同学一种误导那就是上课不用认真听讲也能学的很好。
这就大错特错了,只有上课听讲才能给自己最大程度的辅导和帮助,课堂就是最好的老师也是最便利的资源。
(3)敢于向老师提问。
不仅是在学习数学的时候,在学习其他课的时候也同样适用,不要害羞也不要害怕,如果实在不敢在课堂上向老师发问,那就一定要记好题目和自己不懂的点,下课时候再去问老师。
总之,提问是一个很好的习惯,不光能让自己的思路明了,也会给老师留下勤于思考善于提问的好印象。