位错源产生机理
- 格式:docx
- 大小:36.80 KB
- 文档页数:1
关于位错的理论与思考任新凯1,什么是位错位错是晶体中最为常见的缺陷之一,它对晶体材料的各种性质都有程度不同的影响,很早就被人们关注和研究,有了比较成熟的理论和大量的实验研究成果。
晶体在结晶时受到杂质、温度变化或振动产生的应力作用,或由于晶体受到打击、切削、研磨等机械应力的作用,使晶体内部质点排列变形,原子行间相互滑移,而不再符合理想晶体的有秩序的排列,由此形成的缺陷称位错。
位错是原子的一种特殊组态,是一种具有特殊结构的晶格缺陷,因为它在一个方向上尺寸较长,所以被称为线状缺陷。
位错的假说是在30年代为了解释金属的塑性变形而提出来的,50年代得到证实。
位错的存在对晶体的生长、相变、扩散、形变、断裂、以及其他许多物理化学性质都有重要影响,了解位错的结构及性质,对研究和了解金属尤为重要,对了解陶瓷等多晶体中晶界的性质和烧结机理,也是不可缺少的。
最初为解释的塑性变形而提出的一种排列缺陷模型.晶体滑移时,已滑移部分与未滑移部分在滑移面上的分界,称为"位错",又可称为差排。
它是一种"线缺陷".基本型式有两种:滑移方向与位错线垂直的称为"刃型位错";滑移方向与位错线平行的称为"螺型位错".位错的存在已经为等观察所证实.实际晶体在生长,变形等过程中都会产生位错.它对晶体的塑性变形,相变,扩散,强度等都有很大影响.刃型位错设有一简单立方结构的晶体,在切应力的作用下发生局部滑移,发生局部滑移后晶体内在垂直方向出现了一个多余的半原子面,显然在晶格内产生了缺陷,这就是位错,这种位错在晶体中有一个刀刃状的多余半原子面,所以称为刃型位错。
位错线的上部邻近范围受到压应力,而下部邻近范围受到拉应力,离位错线较远处原子排列正常。
通常称晶体上半部多出原子面的位错为正刃型位错,用符号“┴”表示,反之为负刃型位错,用“┬”表示。
当然这种规定都是相对的。
螺型位错又称螺旋位错。
一个晶体的某一部分相对于其余部分发生滑移,原子平面沿着一根轴线盘旋上升,每绕轴线一周,原子面上升一个晶面间距。
单晶硅位错-回复主题:单晶硅位错引言:单晶硅作为半导体材料的重要代表,在现代电子技术中具有广泛的应用。
单晶硅中的位错是其晶格缺陷的一种,对材料的电学性能和力学性能产生重要影响。
本文将以单晶硅位错为主题,逐步解析其产生、类型、影响和控制等方面的内容。
第一部分:位错的概念和产生机制(300字左右)位错是晶体中晶格中出现的缺陷。
在单晶硅中,位错的产生主要是由于晶格的畸变或外力的作用。
晶格畸变是指晶格中排列的原子不再完美,形成了分子间距大小的差异。
外力的作用则可以通过拉伸、压缩、扭曲等方式对晶格产生影响。
位错可以是线性位错或面内位错,线性位错是晶格错位沿一条直线形成,面内位错是晶格错位呈现平面状。
第二部分:常见的位错类型(400字左右)在单晶硅中,常见的位错类型有螺线位错、缺失位错和双晶界。
螺线位错是晶体中沿着直线发生螺旋型错位,其中包括正型位错和反型位错。
缺失位错是晶格中缺少了一个原子,使晶格形成缺陷。
双晶界是两个晶体之间的界面,其中晶格排列存在不匹配。
第三部分:位错对单晶硅性能的影响(500字左右)位错对单晶硅的电学性能和力学性能都有重要影响。
在电学性能方面,位错会导致电子的散射和损失,影响电子在材料中的迁移和输运性质。
位错还会影响材料的载流子浓度和电阻特性。
在力学性能方面,位错会导致晶体的松弛和应力集中,影响材料的机械性能,如弹性模量和硬度等。
第四部分:位错的控制和减小(400字左右)控制和减小位错对于单晶硅的应用和性能提升至关重要。
一种常见的方法是通过热处理来减少位错的生成和增长。
另外,合适的晶体生长方法和材料处理技术也可以减少位错的产生。
例如,通过选择合适的生长温度和生长速率来控制位错的密度和类型。
材料掺杂和合金化也可以影响位错的生成和行为。
结论:单晶硅位错作为晶体的缺陷,对材料的性能有重要影响。
了解位错的产生和类型,以及其对电学性能和力学性能的影响,对于单晶硅材料的研究和应用具有重要意义。
通过适当的控制和减小位错的方法,可以提高单晶硅的性能和稳定性,进一步推动电子技术的发展和应用的拓展。
位错的名词解释位错,是指晶体中原子排列发生偏移或者交换,形成错位的现象。
它是晶体结构中常见的缺陷之一,对材料的机械性能和导电性能等起到重要影响。
细致观察位错的性质及其影响,对于材料科学和工程领域具有重要意义。
一、位错的形成和分类1. 形成位错的原因位错的形成通常是由晶体生长过程中的应力、温度变化以及机械变形等因素所引起。
例如,在晶体生长过程中,由于生长速度的不均匀或晶体材料的不完美,就会出现位错。
同样地,在材料的机械变形过程中,如弯曲、拉伸或压缩等,也会导致晶体中位错的产生。
2. 位错的分类根据原子重新排列的方式和排列结构的不同,位错可以分为线性位错、平面位错和体位错。
线性位错是指位错线与晶体的某一晶面交线的直线排列,具有一维特征。
最常见的线性位错有位错线、螺旋位错和阶梯位错等。
平面位错是指位错线与晶体的某一晶面交线上有无限个交点,呈现出平面性的特点。
常见的平面位错有位错环、晶界以及孪晶等。
体位错是指位错线在晶体内没有终点,具有三维特征。
体位错通常有位错蠕变和位错多晶等。
二、位错的性质与作用1. 位错的性质位错对晶体的特性和行为有着重要影响。
它能够改变晶体的原子排列方式,导致晶体局部微结构的变化。
位错可以促进晶体的固溶体形成以及离子扩散等过程。
此外,位错还会影响晶体的力学性能,如硬度、韧性和弹性等。
因此,位错常常被用来研究晶体的性质和行为。
2. 位错的作用位错在材料科学和工程领域具有广泛的应用价值。
首先,位错可以增加晶体的强度和韧性,提高材料的抗变形能力。
这在制备金属材料和合金中起到重要作用。
此外,位错也可以影响材料的导电性能,例如半导体中的位错可以改变电子迁移的路径和速率,从而影响整个电子器件的性能。
除此之外,位错还可以用于晶体的生长和材料的表面改性等过程。
三、位错的观察和表征方法1. 传统观察方法传统的位错观察方法包括透射电镜、扫描电镜和X射线衍射等技术。
透射电镜可以通过对物质的薄片进行观察,获得高分辨率的位错图像。
金属位错理论位错的概念最早是在研究晶体滑移过程时提出来的。
当金属晶体受力发生塑性变形时,一般是通过滑移过程进行的,即晶体中相邻两部分在切应力作用下沿着一定的晶面晶向相对滑动,滑移的结果在晶体表面上出现明显的滑移痕迹——滑移线。
为了解释此现象,根据刚性相对滑动模型,对晶体的理论抗剪强度进行了理论计算,所估算出的使完整晶体产生塑性变形所需的临界切应力约等于G/30,其中G为切变模量。
但是,由实验测得的实际晶体的屈服强度要比这个理论值低3~4数量级。
为解释这个差异,1934年,Taylor,Orowan和Polanyi 几乎同时提出了晶体中位错的概念,他们认为:晶体实际滑移过程并不是滑移面两边的所有原子都同时做刚性滑动,而是通过在晶体存在着的称为位错的线缺陷来进行的,位错再较低应力的作用下就能开始移动,使滑移区逐渐扩大,直至整个滑移面上的原子都先后发生相对滑移。
按照这一模型进行理论计算,其理论屈服强度比较接近于实验值。
在此基础上,位错理论也有了很大发展,直至20世纪50年代后,随着电子显微镜分析技术的发展,位错模型才为实验所证实,位错理论也有了进一步的发展。
目前,位错理论不仅成为研究晶体力学性能的基础理论,而且还广泛地被用来研究固态相变,晶体的光、电、声、磁和热学性,以及催化和表面性质等。
一、位错的基本类型和特征位错指晶体中某处一列或若干列原子有规律的错排,是晶体原子排列的一种特殊组态。
从位错的几何结构来看,可将他们分为两种基本类型,即刃型位错和螺型位错。
1、刃型位错刃型位错的结构如图1.1所示。
设含位错的晶体为简单立方晶体,晶体在大于屈服值的切应力 作用下,以ABCD面为滑移面发生滑移。
多余的半排原子面EFGH犹如一把刀的刀刃插入晶体中,使ABCD 面上下两部分晶体之间产生了原子错排,故称“刃型位错”。
晶体已滑移部分和未滑移部分的交线EF就称作刃型位错线。
图1.1 含有刃型位错的晶体结构刃型位错结构的特点:(1)刃型位错有一个额外的半原字面。
2.2 位错的基本概念晶体中的线缺陷是各种类型的位错。
其特点是原子发生错排的范围,在一个方向上尺寸较大,而另外两个方向上尺寸较小,是一个直径为3—5个原子间距,长几百到几万个原子间距的管状原子畸变区。
虽然位错种类很多,但最简单,最基本的类型有两种:一种是刃型位错,另一种是螺型位错。
位错是一种极为重要的晶体缺陷,对金属强度、塑变、扩散、相变等影响显著。
一位错学说的产生位错:晶体中某处一列或若干列原子有规律的错排。
意义:(对材料的力学行为如塑性变形、强度、断裂等起着决定性的作用,对材料的扩散、相变过程有较大影响。
)人们很早就知道金属可以塑性变形,但对其机理不清楚。
在位错被提出之前,人们对晶体的塑性变形作了广泛的研究。
实验发现在塑性变形的晶体表面存在大量的台阶,因此,提出了塑性变形是通过晶体的滑移来实现的观点。
晶体的滑移过程如图1所示。
根据晶体塑性变形后台阶产生的方向,发现滑移总是沿着某些特定的晶面和晶体学方向进行的。
这些晶面被称为滑移面;晶体学方向被称为滑移方向。
一个滑移面和其面上的一个滑移方向组成一个滑移系。
当外界应力达到某一临界值时,滑移系才发生滑移,使晶体产生宏观的变形,将这个应力称之为临界切应力。
本世纪初到30年代,许多学者对晶体塑变做了不少实验工作。
1926年弗兰克尔利用理想晶体的模型,假定滑移时滑移面两侧晶体象刚体一样,所有原子τ=G/2π(G为切变模量),与实验结果相比相差3—4同步平移,并估算了理论切变强度mτ值也为G/30,仍与实测临个数量级,即使采用更完善一些的原子间作用力模型估算,m界切应力相差很大。
这一矛盾在很长一段时间难以解释。
1934年泰勒(G.I.Tayor),波朗依(M.Polanyi)和奥罗万(E.Orowan)三人几乎同时提出晶体中位错的概念。
泰勒把位错与晶体塑变的滑移联系起来,认为位错在切应力作用下发生运动,依靠位错的逐步传递完成了滑移过程,如图2。
与刚性滑移不同,位错的移动只需邻近原子作很小距离的弹性偏移就能实现,而晶体其他区域的原子仍处在正常位置,因此滑移所需的临界切应力大为减小。
位错源产生机理
位错是固体材料中一种晶体缺陷,其产生和运动引起了材料的塑性变形。
而位错源则是产生位错的起始点,是位错产生机理的关键。
位错源的产生有多种途径,常见的有以下几种:
1.位错移动过程中新位错的生成
当位错在材料中移动时,往往会与其他的位错相互作用,导致新的位错产生。
这类位错源通常看起来像是“V”或“L”形的形状。
这种机制下产生的位错源主要存在于晶体的宏观塑性变形区域。
2.晶体表面的缺陷形成的位错源
材料表面的缺陷位置,如晶体表面的孪晶界、原子间隙和表面轻微的划痕等,都可以成为位错的起始位置。
这类位错源的形状和特征都与表面缺陷本身的形状和特征有关。
在微观区域中存在的这类位错源常常被称为表面端点位错。
3.杂质的影响
某些杂质可以改变材料晶格结构及其密度,从而引发位错源的产生。
其中一些杂质可以在晶体结构中引入缺陷或造成位移,通过这些缺陷或位移,杂质就构成了位错源。
在实际应用中,一些冶金合金材料就是利用这种方法制造的。
4.边界位错源
在一些具有层状结构的材料中,如亚稳材料和纳米材料,材料的界面和晶界处通常会出现一些溢出的位错,这些位错沿晶体的边缘移动,从而在材料中产生位错源。
综上所述,位错源的产生方式是多种多样的,常常与材料的晶体结构及其缺陷有关。
在材料的制备和性能评估中,位错源的机理研究对于解释材料塑性变形及其变形规律,设计高性能材料具有重要的实际意义。