高中数学竞赛教案讲义(12)立体几何
- 格式:doc
- 大小:114.50 KB
- 文档页数:8
第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
数学高中立体几何初步教案
教学目标:
1.了解立体几何的基本概念和性质
2.掌握立体几何的基本公式和计算方法
3.培养学生分析和解决问题的能力
教学内容:
1. 立体几何的基本概念
2. 空间的点、直线、面
3. 空间几何体的投影
4. 空间几何体的旋转体
教学过程:
1.导入:通过展示几何体模型或图片引发学生对立体几何的兴趣
2.讲解立体几何的基本概念和性质,如点、直线、面等的定义和特点
3.讲解空间几何体的投影和旋转体的概念,引导学生理解其形成及应用
4.指导学生完成相关练习和作业,巩固所学知识
5.进行课堂讨论和展示,总结重点知识和难点
教学方法:
1.讲授法:通过教师讲解和示范引导学生理解概念和性质
2.讨论法:通过小组讨论和互动,促进学生思考和交流
3.实践法:通过实际练习和应用, 提高学生解决问题的能力
评价与反思:
1.对学生掌握情况进行诊断性评价,及时调整教学步骤和方法
2.反思教学过程中的不足和改进方案,提高教学效果和学生学习质量拓展与应用:
1.鼓励学生积极参与校内外竞赛或活动,提高立体几何能力
2.激发学生对数学的兴趣, 培养其数学建模和解决实际问题的能力教学反馈:
1.及时对学生的学习情况进行反馈,并提供个性化指导和帮助
2.鼓励学生在学习立体几何中发现问题,并主动探索解决方案
教师签名:_________ 日期:_________。
高中立体几何教案5篇第一篇:高中立体几何教案高中立体几何教案第一章直线和平面两个平面平行的性质教案教学目标1.使学生掌握两个平面平行的性质定理及应用;2.引导学生自己探索与研究两个平面平行的性质定理,培养和发展学生发现问题解决问题的能力.教学重点和难点重点:两个平面平行的性质定理;难点:两个平面平行的性质定理的证明及应用.教学过程一、复习提问教师简述上节课研究的主要内容(即两个平面的位置关系,平面与平面平行的定义及两个平面平行的判定定理),并让学生回答:(1)两个平面平行的意义是什么?(2)平面与平面的判定定理是怎样的?并用命题的形式写出来?(教师板书平面与平面平行的定义及用命题形式书写平面与平面平行的判定定理)(目的:(1)通过学生回答,来检查学生能否正确叙述学过的知识,正确理解平面与平面平行的判定定理.(2)板书定义及定理内容,是为学生猜测并发现平面与平面平行的性质定理作准备)二、引出命题(教师在对上述问题讲评之后,点出本节课主题并板书,平面与平面平行的性质)师:从课题中,可以看出,我们这节课研究的主要对象是什么?生:两个平面平行能推导出哪些正确的结论.师:下面我们猜测一下,已知两平面平行,能得出些什么结论.(学生议论)师:猜测是发现数学问题常用的方法.“没有大胆的猜想,就作不出伟大的发现.”但猜想不是盲目的,有一些常用的方法,比如可以对已有的命题增加条件,或是交换已有命题的条件和结论.也可通过类比法即通过两个对象类似之处的比较而由已经获得的知识去引出新的猜想等来得到新的命题.(不仅要引导学生猜想,同时又给学生具体的猜想方法)师:前面,复习了平面与平面平行的判定定理,判定定理的结论是两平面平行,这对我们猜想有何启发?生:由平面与平面平行的定义,我猜想:两个平面平行,其中一个平面内的直线必平行于另一个面.师:很好,把它写成命题形式.(教师板书并作图,同时指出,先作猜想、再一起证明)猜想一:已知:平面α∥β,直线a 求证:a∥β.生:由判定定理“垂直于同一条直线的两个平面平行”.我猜想:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.[教师板书]α,猜想二:已知:平面α∥β,直线l⊥α.求证:l⊥β.师:这一猜想的已知条件不仅是“α∥β”,还加上了“直线l⊥α”.下面请同学们看课本上关于判定定理“垂直于同一直线的两平面平行”的证明.在证明过程中,“平面γ∩α=a,平面γ∩β=a′”.a与a′是什么关系?生:a∥a′.师:若改为γ不是过AA′的平面,而是任意一个与α,β都相交的平面γ.同学们考虑一下是否可以得到一个猜想呢?(学生讨论)生:如果一个平面与两个平行平面中的一个相交,也必与另一个平面相交.” [教师板书] 猜想三:已知:平面α∥β,平面γ∩α=a,求证:γ与β一定相交.师:怎么作这样的猜想呢?生:我想起平面几何中的一个结论:“一条直线与两条平行线中的一条相交,也必与另一条相交.”师:很好,这里实质用的是类比法来猜想.就是把原来的直线类似看作平面.两平行直线类似看作两个平行平面,从而得出这一猜想.大家再考虑,猜想三中,一个平面与两个平行平面相交,得到的交线有什么位置关系?生:平行师:请同学们表达出这个命题.生:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. [教师板书]猜想四:已知:平面α∥β,平面γ∩α=a,γ∩β=b.求证:a∥b.[通过复习定理的证明方法,既发现了猜想三,猜想四,同时又复习了定理的证明方法,也为猜想四的证明,作了铺垫] 师:在得到猜想三时,我们用到了类比法,实际上,在立体几何的研究中,将所要解决的问题与平面几何中的有关问题作类比,常常能给我们以启示,发现立体几何中的新问题.比如:在平面几何中,我们有这样一条定理:“夹在两条平行线间的平行线段相等”,请同学们用类比的方法,看能否得出一个立体几何中的猜想?生:把两条平行线看作两个平行平面,可得猜想:夹在两个平行平面间的平行线段相等. [教师板书] 猜想五:已知:平面α∥β,AA′∥BB′,且A,B∈α,B,B′∈β.求证:AA′=BB′.[该命题,在教材中是一道练习题,但也是平面与平面平行的性质定理,为了完整体现平面与平面平行的性质定理,故尔把它放在课堂上进行分析]三、证明猜想师:通过分析,我们得到了五个猜想,猜想的结论往往并不完全可靠.得到猜想,并不意谓着我们已经得到了两个平面平行的性质定理,下面主要来论证我们得到的猜想是否正确.[师生相互交流,共同完成猜想的论证] 师:猜想一是由平面与平面平行的定义得到的,因此在证明过程中要注意应用定义.[猜想一证明] 证明:因为α∥β,所以α与β无公共点.又因为a α,所以 a与β无公共点.故a∥β.师:利用平面与平面平行的定义及线面平行的定义,论证了猜想一的正确性.这便是平面与平面平行的性质定理一.简言之,“面面平行,则线面平行.”[教师擦掉“猜想一”,板书“性质定理一”] [论证完猜想一之后,教师与学生共同研究了“猜想二”,发现,若论证了“猜想四”的正确性质,“猜想二”就容易证了,因而首先讨论“猜想三,猜想四”] 师:“猜想三”是类比平面几何中的结论得到的,还记得初中时,是怎么证明的?[学生回答:反证法] 师:那么,大家可否类比初中的证明方法来证明“猜想三”呢?生:用反证法:假设γ与β不相交,则γ∥β.这样过直线a有两个平面α和γ与β平行.与“过平面外一点有且只有一个平面与已知平面平行”矛盾.故γ与β相交.师:很好.由此可知:不只是发现问题时可用类比法,就是证明方法也可用类比方法.不过猜想三,虽已证明为正确的命题,但教材中并把它作为平面与平面平行的性质定理,大家在今后应用中要注意.[猜想四的证明] 师:猜想四要证明的是直线a∥b,显然a,b共面于平面γ,只需推导出a与b无公共点即可.生:(证法一)因为a∥β,所以 a与β无公共点.又因为a α,b β.所以 a与b无公共点.又因为a γ,b 所以a∥b.师:我们来探讨其它的证明方法.要证线线平行,可以转化为线面平行.生:(证法二)因为a α,又因为α∥β,所以a∥β.又因为a γ,且γ∩β=b,所以a∥b.师:用两种不同证法得出了“猜想四”是正确的.这是平面和平面平行的性质定理二.[教师擦掉“猜想四”,板书“性质定理二”] 师:平面与平面平行的性质定理二给出了在两个平行平面内找一对平行线的方法.即:“作一平面,交两面,得交线,则线线平行.”同时也给我们证明两条直线平行的又一方法.简言之,“面面平行,则线线平行”.[猜想二的证明] 师:猜想二要证明的是直线l⊥β,根据线面垂直的判定定理,就要证明l和平面β内的两条相交直线垂直.那么如何在平面β内作两条相交直线呢?[引导学生回忆:“垂直于同一直线的两个平面平行”的定理的证明] γ,生:(证法一)设l∩α=A,l∩β=B.过AB作平面γ∩α=a,γ∩β=a′.因为α∥β,所以a∥a′.再过AB作平面δ∩α=b,δ∩β=b′.同理b∥b′.又因为l⊥α,所以l⊥a,l⊥b,所以l⊥a′,l⊥b′,又a′∩b′=β,故l⊥β.师:要证明l⊥β,根据线面垂直的定义,就是要证明l和平面β内任何一条直线垂直.生:(证法二)在β内任取一条直线b,经过b作一平面γ,使γ∩α=a,因为α∥β,所以a∥b,因此l⊥α,a α,故l⊥a,所以l⊥b.又因为b为β内任意一条直线,所以l⊥β.[教师擦掉“猜想二”,板书“性质定理三”] [猜想五的证明] 证明:因为AA′∥BB′,所以过AA′,BB′有一个平面γ,且γ∩α=AB,γ∩β=A′B′.因为α∥β,所以AB∥A′B′,因此AA′ B′B为平行四边形.故AA′=BB′.[教师擦掉“猜想五”,板书“性质定理四”] 师:性质定理四,是类比两条平行线的性质得到的.平行线的性质有许多,大家还能类比得出哪些有关平行平面的猜想呢?你能证明吗?请大家课下思考.[因类比法是重要的方法,但平行性质定理已得出,故留作课下思考]四、定理应用师:以上我们通过探索一猜想一论证,得出了平面与平面平行的四个性质定理,下面来作简单的应用.例已知平面α∥β,AB,CD为夹在α,β间的异面线段,E、F分别为AB,CD的中点.求证:EF∥α,EF∥β.师:要证EF∥β,根据直线与平面平行的判定定理,就是要在β内找一条直线与EF平行.证法一:连接AF并延长交β于G.因为AG∩CD=F,所以 AG,CD确定平面γ,且γ∩α=AC,γ∩β=DG.因为α∥β,所以AC∥DG,所以∠ACF=∠GDF,又∠AFC=∠DFG,CF=DF,所以△ACF≌△DFG.所以AF=FG.又 AE=BE,所以EF∥BG,BG 故EF∥β.同理:EF∥α.师:要证明EF∥β,只须过EF作一平面,使该平面与β平行,则根据平面与平面平行性质定理即可证.证法二:因为AB与CD为异面直线,所以A CD.β.在A,CD确定的平面内过A作AG∥CD,交β于G,取AG中点H,连结AC,HF.因为α∥β,所以AC∥DG∥EF.因为DG β,所以HF∥β.又因为 E为AB的中点,因此EH∥BG,所以EH∥β.又EH∩FH=H,因此平面EFH∥β,EF 所以EF∥β.同理,EF∥α.平面EFH,师:从以上两种证明方法可以看出,虽然是解决立体几何问题,但都是通过转化为平面几何的问题来解决的.这是解决立体几何问题的一种技能,只是依据的不同,转化的方式也不同.五、平行平面间的距离师:和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线,它夹在这两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面有几条公垂线?这些公垂线的位置关系是什么?生:两个平行平面有无数条公垂线,它们都是平行直线.师:夹在两平行平面之间的公垂线段有什么数量关系?根据是什么?生:相等,根据“夹在两个平行平面间的平行线段相等.”师:可见夹在两个平行平面的公垂线段长度是唯一的.而且是夹在两个平行平面间的所有线段中最短的.因此我们把这公垂线段的长度叫做两个平行平面的距离.显然两个平行平面的距离等于其中一个平面上的任一点到另一个平面的垂线段的长度.六、小结1.由学生用文字语言和符号语言来叙述两个平面平行的性质定理.教师总结本节课是由发现与论证两个过程组成的.简单的说就是:由具体问题具体素材用类比等方法猜想命题,并由转化等方法论证猜想的正确性,得到结论.2.在应用定理解决立体几何问题时,要注意转化为平面图形的问题来处理.大家在今后学习中一定要注意掌握这一基本技能.3.线线平行、线面平行与面面平行的判定定理和性质定理构成一套完整的定理体系.在学习中应发现其内在的科学规律:低一级位置关系判定着高一级位置关系;高一级位置关系一定能推导低一级位置关系.下面以三种位置关系为纲应用转化的思想整理如下:七、布置作业课本:p.38,习题五5,6,7,8.课堂教学设计说明1.本节课的中心是两个平行平面的性质定理.定理较多,若采取平铺直叙,直接地给出命题,那样就绕开了发现、探索问题的过程,虽然比较省事,但对发展学生的思维能力是不利的.在设计本教案时,充分考虑到教学研究活动是由发现与论证这样两个过程组成的.因而把“如何引出命题”和“如何猜想”作为本节课的重要活动内容.在教师的启发下,让学生利用具体问题;运用具体素材,通过类比等具体方法,发现命题,完成猜想.然后在教师的引导下,让学生一一完成对猜想的证明,得到两个平面平行的性质定理.也就在这一“探索”、“发现”、“论证”的过程中,培养了学生发现问题,解决问题的能力.在实施过程中,让学生处在主体地位,教师始终处于引导者的位置.特别是在用类比法发现猜想时,学生根据两条平行线的性质类比得出许多猜想.比如:根据“平行于同一条直线的两条直线平行”得到“平行于同一个平面的两个平面平行.”根据“两条直线平行,同位角相等”等,得到“与两个平行平面都相交的直线与两个平面所成的角相等”等等,当然在这些猜想中,有的是正确的,有的是错误的,这里不一一叙述.这就要求教师在教学过程中,注意变化,作适当处理.学生在整节课中,思维活跃,沉浸在“探索、发现”的思维乐趣中,也正是在这种乐趣中,提高了学生的思维能力.2.在对定理的证明过程中,课上不仅要求证出来,而且还考虑多种证法.对于定理的证明,是解决问题的一些常用方法,也可以说是常规方法,是要学生认真掌握的.因此教师要把定理的证明方法,作为教学的重点内容进行必要的讲解,培养学生解决问题的能力.3.转化是重要的数学思想及数学思维方法.它在立体几何中处处体现.实质上处理空间图形问题的基本思想方法就是把它转化为平面图形的问题,化繁为简.特别是在线线平行,线面平行,面面平行三种平行的关系上转化的思想也有较充分的体现,因而在小结中列出三个平行关系相互转让的关系图,一方面便于学生理解,记忆,同时通过此表,能马上发现三者相互推导的关系,能打开思路,发现线索,得到最佳的解题方案.第二篇:高中立体几何高中立体几何的学习高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。
高中数学《立体几何》教案设计1一、教学目标1. 学生能够理解立体几何的基本概念,如点、线、面、体等。
2. 掌握空间图形的性质及求解方法,例如空间中直线与平面的位置关系、平面与平面的位置关系等。
3. 培养学生的空间想象能力,使其能够在脑海中构建出各种立体图形。
4. 提升学生的逻辑思维能力,学会运用逻辑推理解决立体几何问题。
二、教学重点与难点1. 教学重点- 立体几何的基本概念和空间图形的性质。
- 空间中直线与平面、平面与平面的位置关系的判断方法。
- 求解空间图形的表面积和体积。
2. 教学难点- 培养学生的空间想象能力。
- 运用逻辑推理解决复杂的立体几何问题。
三、教学方法1. 直观教学法:通过模型展示、多媒体课件等直观手段,帮助学生理解抽象的立体几何概念。
2. 探究式教学法:引导学生分组搭建常见的立体几何模型,自主探究空间图形的性质。
3. 案例教学法:结合生活实例,让学生体会立体几何在实际生活中的应用。
四、教学过程1. 导入(5 分钟)- 教师提问:“同学们,在我们的日常生活中,有很多物体都具有立体的形状。
大家能不能举一些例子呢?”学生们纷纷回答,如足球是球体、魔方是正方体等。
- 教师总结:“同学们说得非常好!这些物体都属于立体几何的研究范畴。
今天,我们就一起来学习立体几何。
”2. 背景介绍(5 分钟)- 教师讲解:“立体几何是数学的一个重要分支,它主要研究空间中的点、线、面、体等几何元素的性质和关系。
早在古代,人们就开始对立体几何进行研究了。
比如,古埃及人在建造金字塔的时候,就运用了立体几何的知识。
”3. 作者介绍(可省略)4. 课本讲解(30 分钟)- 课本原文内容:立体几何的基本概念包括点、线、面、体。
点是空间中的一个位置,没有大小;线是由无数个点组成的,有长度但没有宽度和厚度;面是由线组成的,有长度和宽度但没有厚度;体是由面组成的,有长度、宽度和厚度。
- 分析:- 知识点:让学生理解点、线、面、体的定义和相互关系。
立体几何全部教案(人教A版高中数学必修②教案)第一章:空间几何体的结构特征1.1 教学目标了解柱体、锥体、球体的定义及性质。
掌握空间几何体的结构特征,如表面积、体积等。
1.2 教学内容柱体、锥体、球体的定义及性质。
空间几何体的结构特征的计算方法。
1.3 教学步骤1. 引入新课,讲解柱体、锥体、球体的定义及性质。
3. 讲解空间几何体的结构特征的计算方法,如表面积、体积等。
1.4 课堂练习完成课本练习题,巩固所学知识。
1.5 课后作业完成课后作业,加深对空间几何体的结构特征的理解。
第二章:点、线、面的位置关系2.1 教学目标了解点、线、面的位置关系,如平行、垂直等。
掌握点、线、面的位置关系的判定方法。
2.2 教学内容点、线、面的位置关系的定义及判定方法。
2.3 教学步骤1. 引入新课,讲解点、线、面的位置关系的定义及判定方法。
2.4 课堂练习完成课本练习题,巩固所学知识。
2.5 课后作业完成课后作业,加深对点、线、面的位置关系的理解。
第三章:空间角的计算3.1 教学目标了解空间角的定义及性质。
掌握空间角的计算方法。
3.2 教学内容空间角的定义及性质。
空间角的计算方法。
3.3 教学步骤1. 引入新课,讲解空间角的定义及性质。
3.4 课堂练习完成课本练习题,巩固所学知识。
3.5 课后作业完成课后作业,加深对空间角的计算的理解。
第四章:空间向量的应用4.1 教学目标了解空间向量的定义及性质。
掌握空间向量的应用方法。
空间向量的定义及性质。
空间向量的应用方法。
4.3 教学步骤1. 引入新课,讲解空间向量的定义及性质。
4.4 课堂练习完成课本练习题,巩固所学知识。
4.5 课后作业完成课后作业,加深对空间向量的应用的理解。
第五章:立体几何中的综合问题5.1 教学目标培养学生解决立体几何综合问题的能力。
5.2 教学内容立体几何中的综合问题的解题策略。
5.3 教学步骤1. 引入新课,讲解立体几何中的综合问题的解题策略。
课题:9.7直线与平面所成的角和二面角(三)教学目的:1.两个平面垂直的定义、画法. 2.两个平面垂直的判定定理.3.两个平面垂直的性质定理.理解面面垂直问题可能化为线面垂直的问题 教学重点:两个平面垂直的判定和性质 教学难点:两个平面垂直的判定及应用 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程: 一、复习引入:1.直线和平面所成角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0︒角直线和平面所成角范围:[0,2π] (2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角2.公式:已知平面α的斜线a 与α内一直线b 相交成θ角,且a 与α相交成ϕ1角,a 在α上的射影c 与b 相交成ϕ2角,则有θϕϕcos cos cos 21=3二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为l ,两个面分别为,αβ的二面角记为l αβ--;二面角的图形表示: 第一种是卧式法,也称为平卧式:A B CDFGHIKLϕ2ϕ1cbaθPαO ABED CBAβα第二种是立式法,也称为直立式:l B'O'A'B O A βα4.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角说明:(1)二面角的平面角范围是[0,180];(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 二、讲解新课:1两个平面垂直的定义:两个相交成直二面角的两个平面互相垂直;相交成直二面角的两个平面叫做互相垂直的平面2.两平面垂直的判定定理: 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直已知:直线AB ⊂平面α,AB ⊥平面β,垂足为B , 求证:αβ⊥.(线面垂直⇒面面垂直) 证明:如图所示,令CD αβ=,则B CD ∈,在β内过B 作BE CD ⊥,∵,AB CD ββ⊥⊂,∴AB CD ⊥, ∴ABE ∠是二面角CD αβ--的平面角, 又∵AB BE ⊥,∴ABE ∠是直角,NMPCBA aγβαPOABC所以,α与β所成的二面角是直角,即αβ⊥.实例:建筑工地在砌墙时,常用铅垂的线来检查所砌的墙是否和水平面垂直 3.两平面垂直的性质定理: 若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面已知:,,,CD AB AB CD αβαβα⊥=⊂⊥于点B ,求证:AB β⊥.(面面垂直⇒线面垂直)证明:在β内过B 作BE CD ⊥,则由题意得ABE ∠是CD αβ--的平面角, ∵αβ⊥知AB BE ⊥,又∵AB CD ⊥,∴AB β⊥.三、讲解范例:例1如图,已知AB 是圆O 的直径,PA 垂直于O 所在的平面,C 是圆周上不同于,A B 的任一点,求证:平面PAC ⊥平面PBC . 分析:根据“面面垂直”的判定定理,要证明两平面互相垂直,只要在其中一个平面中寻找一条与另一平面垂直的直线即可解:∵AB 是圆O 的直径,∴AC BC ⊥,又∵PA 垂直于O 所在的平面,∴PA BC ⊥,∴BC ⊥平面PAC ,又BC 在平面PBC 中, 所以,平面PAC ⊥平面PBC .说明:由于平面PAC 与平面PBC 相交于PC ,所以如果平面PAC ⊥平面PBC ,则在平面PBC 中,垂直于PC 的直线一定垂直于平面PAC ,这是寻找两个平面的垂线的常用方法例2.已知,,a αβαγβγ=⊥⊥,求证:a γ⊥. 证明:设,AB AC αγβγ==,在γ内取点P ,过P 作PM AB ⊥于M ,PN AC ⊥于点N , ∵αγ⊥,∴PM α⊥, 又∵a αβ=,∴PM a ⊥,同理可得PN a ⊥,αHDCBADCBA∴a γ⊥.例3.已知在一个60的二面角的棱长有两点,A B ,,AC BD 分别是在这个二面角的两个平面内,且垂直于线段AB ,又知4,6,8AB cm AC cm BD cm ===,求CD 的长解:由已知,,,18060120CA AB AB BD CA BD ⊥⊥<>=-=,∴22||()CD CA AB BD =++222||||||268cos120CA AB BD =+++⨯⨯⨯22216482682=++-⨯⨯⨯68=, ||217()CD cm =四、课堂练习:1.直角ABC ∆的斜边AB 在平面α内,,AC BC 与α所成角分别为30,45,CD 是斜边AB 上的高线,求CD 与平面α所成角的正弦值解:过点C 作CH α⊥于点H ,连接,,AH BH OH ,则30CAH ∠=,45CBH ∠=,CDH ∠为所求CD 与α所成角,记为θ, 令CH a=,则2,AC a BC ==,则在Rt ABC ∆中,有AC BC CD AB ⋅== 在Rt CDH ∆中,sin CH CD θ==∴CD与平面α所成角的正弦值2.βαlP C B图1AE D'B'C'A'ODACB2.如果二面角l αβ--的平面角是锐角,点P 到,,l αβ的距离分别为,求二面角的大小分析:点P 可能在二面角l αβ--内部,也可能在外部,应区别处理解:如图1是点P 在二面角l αβ--的内部时,图2是点P 在二面角l αβ--外部时,∵PA α⊥∴PA l ⊥ ∵AC l ⊥∴面PAC l ⊥ 同理,面PBC l ⊥而面PAC 面PBC PC = ∴面PAC 与面PBC 应重合 即,,,A C P B 在同一平面内,则ACB ∠是二面角l αβ--的平面角在Rt APC ∆中,1sin 2PA ACP PB ∠===∴30ACP ∠=在Rt BPC ∆中,sin 2PB BCP PC ∠===∴45BCP ∠= 故304575ACB ∠=+=(图1)或453015ACB ∠=-=(图2) 即二面角l αβ--的大小为75或15说明:作一个垂直于棱的平面,此平面与两个半平面的交线所成的角就是二面角的平面角3.如图,正方体的棱长为1,'B C BC O '=,求:(1)AO 与A C ''所成角;(2)AO 与平面ABCD 所成角的正切值; (3)平面AOB 与平面AOC 所成角 解:(1)∵//A C AC ''∴AO 与A C ''所成角就是OAC ∠ βαlPCB图2A∵,OC OB AB ⊥⊥平面BC '∴OC OA ⊥(三垂线定理)在Rt AOC ∆中,2OC AC ==30OAC ∠= (2)作OE BC ⊥,平面BC '⊥平面ABCD∴OE ⊥平面ABCD ,OAE ∠为OA 与平面ABCD 所成角在Rt OAE ∆中,1,2OE AE ===tan OE OAE AE ∠==(3)∵,OC OA OC OB ⊥⊥∴OC ⊥平面AOB 又∵OC ⊂平面AOC ∴平面AOB ⊥平面AOC即平面AOB 与平面AOC 所成角为90说明:本题包含了线线角,线面角和面面角三类问题,求角度问题主要是求两条异面直线所成角(0,]2π,直线和平面所成角[0,]2π,二面角[0,]π三种;求角度问题解题的一般步骤是:(1)找出这个角;(2)证明该角符合题意;(3)作出这个角所在的三角形,解三角形,求出角;求角度问题不论哪种情况都归结到两条直线所成角问题,即在线线成角中找到答案五、小结:1.两个平面垂直的定义、画法2.两个平面垂直的判定方法(判定方法有两种,一是利用定义,二是利用判定定理.) 3.应用两个平面垂直的判定定理的关键是将面面垂直的问题转化为线面垂直的问题;4.两个平面垂直的性质. 六、课后作业:七、板书设计(略)八、课后记:。
平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画(打出投影片)课本P41 图 2.1-4 说明平面内有无数个点,平面可以看成点的集合。
点A 在平面α内,记作:A ∈α点B 在平面α外,记作:B α2.1-43、平面的基本性质教师引导学生思考教材P41的思考题,让学生充分发表自己的见解。
师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出以下公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(教师引导学生阅读教材P42前几行相关内容,并加以解析)符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等……引导学生归纳出公理2公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
教师用正(长)方形模型,让学生理解两个平面的交线的含义。
引导学生阅读P42的思考题,从而归纳出公理3α β αβ ·B α ·AL A · α ·B C ·B · A · α§2.1.2 空间中直线与直线之间的位置关系一、教学目标:1、知识与技能(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。
2、过程与方法(1)师生的共同讨论与讲授法相结合;(2)让学生在学习过程不断归纳整理所学知识。
课 题: 2.1 空间点、直线、平面之间的位置关系一、内容讲解知识点1 平面的概念: 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 常见的桌面,黑板面都是平面的局部形象 指出: 平面的两个特征:①_薄厚一致___ ②_无限延伸_。
平面的表示:__1.在每个顶点处写大写字母____2.小写的希腊字母,,αβχ______________。
点的表示:大写字母 点A 点B线的表示:小写英文字母 线l,线a 线b平面的画法:在立体几何中,通常画成水平放置的平行四边形来表示平面;锐角画成45ο, 2倍长。
两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画。
图形 符号语言 文字语言(读法)A a A ∈a 点A 在直线a 上A aA ∉a 点A 在直线a 外 Aα A ∈α 点A 在平面α上(内) A αA ∉α 点A 在平面α外 b a A a b A =I直线a,b 交于点A a αa α⊂线a 在面α内 aα a α⊄ 线a 在面α外a Aα a A α=I 直线a 交α于点Al αβ=I平面α交β于线l与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言。
知识点2 公理1 :如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内指出:(1)符号语言:____________________________________.(2)应用:这条公理是判定直线是否在平面内的依据,也可用于验证一个面是否是平面。
知识点3 公理2 :如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线指出:(1)符号语言:____________________________________(2)应用:确定两相交平面的交线位置;判定点在直线上 知识点4 公理3 :经过不在同一条直线上的三点,有且只有一个平面 指出:(1)符号语言:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合推论1 经过一条直线和直线外的一点有且只有一个平面.指出:推论1的符号语言:_____________________________-推论2 经过两条相交直线有且只有一个平面指出:推论2的符号语言:____________________________________推论3 经过两条平行直线有且只有一个平面指出:推论3的符号语言:________________________________三、典例解析例1 用符号语言表示下列图形中点、直线、平面之间的位置关系.例2 正方体ABCD-A 1B 1C 1D 1中,对角线A 1C∩平面BDC 1=O ,AC 、BC 交于点M ,求证:点C 1、O 、M 共线.五、备选习题1. 画图表示下列由集合符号给出的关系:(1) A ∈α,B ∉α,A ∈l ,B ∈l ; (2) a ⊂α,b ⊂β,a ∥c ,b ∩c =P ,α∩β=c .2. 根据下列条件,画出图形.(1)平面α∩平面β=l ,直线AB ⊂α,AB ∥l ,E ∈AB ,直线EF∩β=F ,F ∉l ;(2)平面α∩平面β=a ,△ABC 的三个顶点满足条件:A ∈a ,B ∈α,B ∉a ,C ∈β,C ∉a .3. 画一个正方体ABCD —A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由.4. 正方体ABCD —A 1B 1C 1D 1的棱长为8 cm ,M 、N 、P 分别是AB 、A 1D 1、BB 1的中点,(1) 画出过M 、N 、P 三点的平面与平面A 1B 1C 1D 1的交线,以及与平面BB 1C 1C 的交线.(2) 设过M 、N 、P 三点的平面与B 1C 1交于点Q ,求PQ 的长.5.已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线.6. 点A ∉平面BCD ,,,,E F G H 分别是,,,AB BC CD DA 上的点,若EH 与FG 交于P (这样的四边形ABCD 就叫做空间四边形)求证:P 在直线BD 上G H AC D E P空间点、线、面位置关系练习题1、下列命题:其中正确的个数为( )①若直线l 平行于平面α内的无数条直线,则l ∥α;②若直线a 在平面α外,则a ∥α; ③若a ∥b ,α⊂b ,那么直线a 平行于平面α内的无数条直线;A .1B .2C .3D .02、若两个平面互相平行,则分别在这两个平行平面内的直线( )A .平行B .异面C .相交D .平行或异面3、如图,在正方体ABCD —A 1B 1C 1D 1中判断下列位置关系:(1)AD 1所在直线与平面BCC 1的位置关系是 ;(2)平面A 1BC 1与平面ABCD 的位置关系是 ;4、如果直线l 在平面α外,那么直线l 与平面α( )A .没有公共点B .至多有一个公共点C .至少有一个公共点D .有且只有一个公共点5、以下四个命题:其中正确的是( ) A .①② B .②③ C .③④ D .①③ ①三个平面最多可以把空间分成八部分;②若直线⊂a 平面α,直线⊂b 平面β,则“a 与b 相交”等价于“α与β相交”;③若l =⋂βα,直线⊂a 平面α,直线⊂b 平面β,且P b a =⋂,则l P ∈;④若n 条直线中任意两条共面,则它们共面,6、若一条直线上有两点到一个平面的距离相等,那么这条直线和这个平面的位置关系是( )A .在平面内B .相交C .平行D .以上均有可能7、若直线m 不平行于平面α,且α⊄m ,则下列结论中正确的是( )A .α内的所有直线与m 异面B .α内不存在与m 平行的直线C .α内存在唯一一条直线与m 平行D .α内的直线与m 都相交8、在长方体ABCD —A 1B 1C 1D 1的六个表面与六个对角面(面AA 1C 1C ,面BB 1D 1D ,面ABC 1D 1,面ADC 1B 1,面A 1BCD 1及面A 1B 1CD )所在平面中,与棱AA 1平行的平面共有( )A .2个B .3个C .4个D .5个9、两条直线都与一个平面平行,则这两条直线的位置关系是( )A .平行B .相交C .异面D .以上均有可能10、下列命题:其中正确的个数是( )A .0 B .1 C .2 D .3①如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行;②如果一条直线与一个平面相交,那么这条直线与平面内的无数条直线异面;③过平面外一点有且只有一条直线与平面平行;④一条直线上有两点到一个平面的距离相等,则这条直线平行于这个平面,11、下列命题中正确的个数是( )A .1 B .2 C .3 D .4①四边相等的四边形是菱形;②若四边形有两个对角都是直角,则这个四边形是圆内接四边形; ③“直线不在平面内”的等价说法是“直线上至多有一个点在平面内”;④若两平面有一条公共直线,则这两个平面的所有公共点都在这条公共直线上;12、若P 是两条异面直线l 、m 外的任意一点,则( )A .过点P 有且仅有一条直线与l 、m 都平行B .过点P 有且仅有一条直线与l 、m 都垂直C .过点P 有且仅有一条直线与l 、m 都相交D .过点P 有且仅有一条直线与l 、m 都异面13、与两个相交平面的交线平行的直线和这两个平面的位置关系是14、经过平面外两点可作这个平面的平行平面的个数是15、设有不同的直线a ,b 和不同的平面γβα,,,给出下列三个命题:其中正确命题的序号是 ①若a ∥α,b ∥α,则a ∥b ;②若a ∥α,a ∥β,则α∥β;③若α∥β,β∥γ,则α∥γ。
一、基础知识公理1 一条直线。
上如果有两个不同的点在平面。
内.则这条直线在这个平面内,记作:a⊂a.公理2 两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。
公理3 过不在同一条直线上的三个点有且只有一个平面。
即不共线的三点确定一个平面.推论l 直线与直线外一点确定一个平面.推论2 两条相交直线确定一个平面.推论3 两条平行直线确定一个平面.公理4 在空间内,平行于同一直线的两条直线平行.定义1 异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离.定义2 直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.定义3 直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直.定理1 如果一条直线与平面内的两条相交直线都垂直,则直线与平面垂直.定理2 两条直线垂直于同一个平面,则这两条直线平行.定理3 若两条平行线中的一条与一个平面垂直,则另一条也和这个平面垂直.定理4 平面外一点到平面的垂线段的长度叫做点到平面的距离,若一条直线与平面平行,则直线上每一点到平面的距离都相等,这个距离叫做直线与平面的距离.定义 5 一条直线与平面相交但不垂直的直线叫做平面的斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上的射影.所有这样的射影在一条直线上,这条直线叫做斜线在平面内的射影.斜线与它的射影所成的锐角叫做斜线与平面所成的角.结论1 斜线与平面成角是斜线与平面内所有直线成角中最小的角.定理4 (三垂线定理)若d为平面。
的一条斜线,b为它在平面a内的射影,c为平面a内的一条直线,若c⊥b,则c⊥a.逆定理:若c⊥a,则c⊥b.定理5 直线d是平面a外一条直线,若它与平面内一条直线b平行,则它与平面a平行定理6 若直线。
与平面α平行,平面β经过直线a且与平面a交于直线6,则a//b.结论2 若直线。
与平面α和平面β都平行,且平面α与平面β相交于b,则a//b.定理7 (等角定理)如果一个角的两边和另一个角的两边分别平行且方向相同,则两个角相等.定义6 平面与平面的位置关系有两种:平行或相交.没有公共点即平行,否则即相交.定理8 平面a内有两条相交直线a,b都与平面β平行,则α//β.定理9 平面α与平面β平行,平面γ∩α=a,γ∩β=b,则a//b.定义7 (二面角),经过同一条直线m的两个半平面α,β(包括直线m,称为二面角的棱)所组成的图形叫二面角,记作α—m—β,也可记为A—m一B,α—AB—β等.过棱上任意一点P在两个半平面内分别作棱的垂线AP,BP,则∠APB(≤900)叫做二面角的平面角.它的取值范围是[0,π].特别地,若∠APB=900,则称为直二面角,此时平面与平面的位置关系称为垂直,即α β. 定理10 如果一个平面经过另一个平面的垂线,则这两个平面垂直.定理11 如果两个平面垂直,过第一个平面内的一点作另一个平面的垂线在第一个平面内.定理12 如果两个平面垂直,过第一个子面内的一点作交线的垂线与另一个平面垂直.定义8 有两个面互相平行而其余的面都是平行四边形,并且每相邻两个平行四边形的公共边(称为侧棱)都互相平行,由这些面所围成的几何体叫做棱柱.两个互相平行的面叫做底面.如果底面是平行四边形则叫做平行六面体;侧棱与底面垂直的棱柱叫直棱柱;底面是正多边形的直棱柱叫做正棱柱.底面是矩形的直棱柱叫做长方体.棱长都相等的正四棱柱叫正方体.定义9 有一个面是多边形(这个面称为底面),其余各面是一个有公共顶点的三角形的多面体叫棱锥.底面是正多边形,顶点在底面的射影是底面的中心的棱锥叫正棱锥.定理13 (凸多面体的欧拉定理)设多面体的顶点数为V,棱数为E,面数为F,则V+F-E=2.定义10 空间中到一个定点的距离等于定长的点的轨迹是一个球面.球面所围成的几何体叫做球.定长叫做球的半径,定点叫做球心.定理14 如果球心到平面的距离d小于半径R,那么平面与球相交所得的截面是圆面,圆心与球心的连线与截面垂直.设截面半径为r,则d2+r2=R2.过球心的截面圆周叫做球大圆.经过球面两点的球大圆夹在两点间劣弧的长度叫两点间球面距离.定义11 (经度和纬度)用平行于赤道平面的平面去截地球所得到的截面四周叫做纬线.纬线上任意一点与球心的连线与赤道平面所成的角叫做这点的纬度.用经过南极和北极的平面去截地球所得到的截面半圆周(以两极为端点)叫做经线,经线所在的平面与本初子午线所在的半平面所成的二面角叫做经度,根据位置不同又分东经和西经.定理15 (祖 原理)夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.定理16 (三面角定理)从空间一点出发的不在同一个平面内的三条射线共组成三个角.其中任意两个角之和大于另一个,三个角之和小于3600.定理17 (面积公式)若一个球的半径为R ,则它的表面积为S 球面=4πR 2。
若一个圆锥的母线长为l ,底面半径为r ,则它的侧面积S 侧=πrl.定理18 (体积公式)半径为R 的球的体积为V 球=334R π;若棱柱(或圆柱)的底面积为s ,高h ,则它的体积为V=sh ;若棱锥(或圆锥)的底面积为s ,高为h ,则它的体积为V=.31sh 定理19 四面体ABCD 中,记∠BDC=α,∠ADC=β,∠ADB=γ,∠BAC=A ,∠ABC=B ,∠ACB=C 。
DH ⊥平面ABC 于H 。
(1)射影定理:S ΔABD •cos Ф=S ΔABH ,其中二面角D —AB —H 为Ф。
(2)正弦定理:.sin sin sin sin sin sin CB A γβα== (3)余弦定理:cos α=cos βcos γ+sin βsin γcosA.cosA=-cosBcosC+sinBsinCcos α.(4)四面体的体积公式31=V DH •S ΔABC =γβαγβαcos cos cos 2cos cos cos 161222+---abc ϕsin 611d aa =(其中d 是a 1, a 之间的距离,ϕ是它们的夹角) a32=S ΔABD •S ΔACD •sin θ(其中θ为二面角B —AD —C 的平面角)。
二、方法与例题1.公理的应用。
例1 直线a,b,c 都与直线d 相交,且a//b,c//b ,求证:a,b,c,d 共面。
例2 长方体有一个截面是正六边形是它为正方体的什么条件?2 异面直线的相关问题。
例3 正方体的12条棱互为异面直线的有多少对?例4 正方体,ABCD —A 1B 1C 1D 1棱长为1,求面对角线A 1C 1与AB 1所成的角。
3.平行与垂直的论证。
例5 A ,B ,C ,D 是空间四点,且四边形ABCD 四个角都是直角,求证:四边形ABCD 是矩形。
例6 一个四面体有两个底面上的高线相交。
证明:它的另两条高线也相交。
例7 在矩形ABCD中,AD=2AB,E是AD中点,沿BE将ΔABE折起,并使AC=AD,求证:平面ABE⊥平面BCDE。
4.直线与平面成角问题。
例8 正方形ABCD中,E,F分别是AB,CD的中点,G为BF的中点,将正方形沿EF折成1200的二面角,求AG和平面EBCF所成的角。
例9 OA是平面α的一条斜角,AB⊥α于B,C在α内,且AC⊥OC,∠AOC=α,∠AOB=β,∠BOC=γ。
证明:cosα=cosβ•cosγ.5.二面角问题。
例10设S为平面ABC外一点,∠ASB=450,∠CSB=600,二面角A—SB—C为直角二面角,求∠ASC的余弦值。
例11 已知直角ΔABC的两条直角边AC=2,BC=3,P为斜边AB上一点,沿CP将此三角形折成直二面角A—CP—B,当AB=7时,求二面角P—AC—B的大小。
6.距离问题。
例12 正方体ABCD—A1B1C1D1的棱长为a,求对角线AC与BC1的距离。
4的正三角形,棱SC的长为2,且垂直于底面,例13在三棱维S—ABC中,底面是边长为2E,D分别是BC,AB的中点,求CD与SE间的距离。
[分析] 取BD中点F,则EF//CD,从而CD//平面SEF,要求CD与SE间的距离就转化为求点C到平面SEF间的距离。
7.凸多面体的欧拉公式。
例14 一个凸多面体有32个面,每个面或是三角形或是五边形,对于V个顶点每个顶点均有T个三角形面和P个五边形面相交,求100P+10T+V。
8.与球有关的问题。
例15 圆柱直径为4R,高为22R,问圆柱内最多能装半径为R的球多少个?9.四面体中的问题。
例16 已知三棱锥S—ABC的底面是正三角形,A点在侧面SBC上的射影H是ΔSBC的垂心,2。
求三棱锥S—ABC的体积。
二面角H—AB—C的平面角等于300,SA=3例17 设d是任意四面体的相对棱间距离的最小值,h是四面体的最小高的长,求证:2d>h. 注:在前面例题中除用到教材中的公理、定理外,还用到了向量法、体积法、射影法,请读者在解题中认真总结。
三、基础训练题1.正三角形ABC 的边长为4,到A ,B ,C 的距离都是1的平面有__________个.2.空间中有四个点E ,F ,G ,H ,命题甲:E ,F ,G ,H 不共面;命题乙:直线EF 和GH 不相交,则甲是乙的__________条件。
3.动点P 从棱长为a 的正方体的一个顶点出发,沿棱运动,每条棱至多经过一次,则点P 运动的最大距离为__________。
4.正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是面ADD 1A 1、面ABCD 的中心,G 为棱CC 1中点,直线C 1E ,GF 与AB 所成的角分别是α,β。
则α+β=__________。
5.若a,b 为两条异面直线,过空间一点O 与a,b 都平行的平面有__________个。
6.CD 是直角ΔABC 斜边AB 上的高,BD=2AD ,将ΔACD 绕CD 旋转使二面角A —CD —B 为600,则异面直线AC 与BD 所成的角为__________。
7.已知PA ⊥平面ABC ,AB 是⊙O 的直径,C 是圆周上一点且AC=21AB ,则二面角A —PC —B 的大小为__________。
8.平面α上有一个ΔABC ,∠ABC=1050,AC=)26(2+,平面α两侧各有一点S ,T ,使得SA=SB=SC=41,TA=TB=TC=5,则ST=_____________.9.在三棱锥S —ABC 中,SA ⊥底面ABC ,二面角A —SB —C 为直二面角,若∠BSC=450,SB=a ,则经过A ,B ,C ,S 的球的半径为_____________.10.空间某点到棱长为1的正四面体顶点距离之和的最小值为_____________.11.异面直线a,b 满足a//α,b//β,b//α,a//β,求证:α//β。