七年级数学基本平面图形典型例题与强化训练(含答案)
- 格式:pdf
- 大小:196.46 KB
- 文档页数:6
初一基本平面图形一、单选题1.如图,在直角坐标系xOy 中,点P 的坐标为(4,3),PQ ⊥x 轴于Q ,M ,N 分别为OQ ,OP 上的动点,则QN +MN 的最小值为( )A .7225B .245C .125D .9625 2.已知,点C 在直线 AB 上, AC =a , BC =b ,且 a ≠b ,点 M 是线段 AB 的中点,则线段 MC 的长为( )A .2a b +B .2a b -C .2a b +或2a b -D .+2a b 或||2a b - 3.如图,C 、D 是线段AB 上两点,M 、N 分别是线段AD 、BC 的中点,下列结论:①若AD=BM ,则AB=3BD ;②若AC=BD ,则AM=BN ;③AC-BD=2(MC-DN );④2MN=AB-CD .其中正确的结论是( )A .①②③B .③④C .①②④D .①②③④ 4.把 8.32°用度、分、秒表示正确的是( )A .8°3′2″B .8°30′20″C .8°18′12″D .8°19′12″ 5.经过平面上的四个点,可以画出来的直线条数为( )A .1B .4C .6D .前三项都有可能6.如图,点M 在线段AN 的延长线上,且线段MN=20,第一次操作:分别取线段AM 和AN 的中点11M N ,;第二次操作:分别取线段1AM 和1AN 的中点22,M N ;第三次操作:分别取线段2AM 和2AN 的中点33,M N ;……连续这样操作10次,则每次的两个中点所形成的所有线段之和11221010M N M N M N +++=L ( )A .910202-B .910202+C .1010202-D .1010202+ 7.已知线段AC 和BC 在同一直线上,AC =8cm ,BC =3cm ,则线段AC 的中点和BC 中点之间的距离是( )A .5.5cmB .2.5cmC .4cmD .5.5cm 或2.5cm8.如图,将一副三角板的直角顶点重合摆放在在桌面上,下列各组角一定能互补的是( )A .∠BCD 和∠ACFB .∠ACD 和∠ACFC .∠ACB 和∠DCBD .∠BCF 和∠ACF9.如图,在公路 MN 两侧分别有 A 1, A 2......A 7,七个工厂,各工厂与公路 MN(图中粗线)之间有小公路连接.现在需要在公路 MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( ).①车站的位置设在 C 点好于 B 点;②车站的位置设在 B 点与 C 点之问公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A .①B .②C .①③D .②③ 10.如图,某公司有三个住宅区,A ,B ,C 各区分别住有职工10人,15人,45人,且这三个区在一条大道上(A ,B ,C 三点共线),已知AB =150m ,BC =90m .为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A .点AB .点BC .点A ,B 之间D .点C 11.观察下列图形,并阅读图形下面的相关文字,如图所示:两条直线相交,三条直线相交,四条直线相交,最多有一个交点,最多有三个交点;最多有6个交点,像这样,10条直线相交,最多交点的个数是( )A.40个B.45个C.50个D.55个二、填空题12.已知点A,B,C都在直线l上,点P是线段AC的中点.设AB a=,PB b,则线段BC的长为________(用含a,b的代数式表示)13.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,则AC=_____.14.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+2|+(b﹣1)2=0,A、B 之间的距离记作|AB|,定义:|AB|=|a﹣b|.①线段AB的长|AB|=3;②设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,x=0.5;③若点P在A的左侧,M、N分别是PA、PB的中点,当P在A的左侧移动时|PM|+|PN|的值不变;④在③的条件下,|PN|﹣|PM|的值不变.以上①②③④结论中正确的是_______(填上所有正确结论的序号)15.已知∠AOB=90°,射线OC在∠AOB内部,且∠AOC=20°,∠COD=50°,射线OE、OF分别平分∠BOC、∠COD,则∠EOF的度数是_____.16.把一根绳子对折成一条线段AB,在线段AB取一点P,使AP=13PB,从P处把绳子剪断,若剪断后的三段..绳子中最长的一段为30cm,则绳子的原长为______cm.17.钟表4点30分时,时针与分针所成的角的度数是___________ 。
七年级数学下册第13章平面图形的认识综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的内角和是()A.360°B.900°C.1440°D.1800°2、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为()A.8 B.7 C.6 D.53、如图,CM是ABC的中线,4cmAM ,则BM的长为()A.3cm B.4cm C.5cm D.6cm4、如图,在△ABC中,D,E,F分别是BC,AD,CE的中点,S△ABC=8cm2,则阴影部分△BEF的面积等于()cm2D.1cm2A.4cm2B.2cm2C.125、下列说法正确的是()A.2-的相反数是2B.各边都相等的多边形叫正多边形C.了解一沓钞票中有没有假钞,应采用普查的形式=,则点B是线段AC的中点D.若线段AB BC6、若长度分别为2,5,a的三条线段组成一个三角形,则整数a的值为()A.2 B.3 C.4 D.77、下列长度的三条线段能组成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,78、利用直角三角板,作ABC的高,下列作法正确的是()A.B.C .D .9、若n 边形每个内角都为156°,那么n 等于( )A .8B .12C .15D .1610、一个多边形的每个内角均为120︒,则这个多边形是( )A .七边形B .六边形C .五边形D .四边形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将一副三角板按如图所示叠放在一起,则图中a ∠的度数为______.2、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.3、若过某多边形一个顶点的所有对角线将这个多边形分成3个三角形,则这个多边形是________边形.4、在ABC 中,39AB AC ==,,则BC 的取值范围是_______.5、已知三角形三边长分别为1,3,x ,若x 为奇数,则x 值为 _______.三、解答题(5小题,每小题10分,共计50分)1、已知一个正多边形一个内角等于一个外角的32倍,求这个正多边形的边数. 2、一个多边形沿一条对角线剪去一个内角后,得到一个内角和为1080︒的新多边形,求原多边形的边数.3、如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520°的新多边形,求原多边形的边数.4、如图,BD=OD,∠AOC=114°,求∠AOD的度数.5、如图,一辆小汽车从P市出发,先到B市,再到C市,再到A市,最后返回P市,这辆小汽车共转了多少度角?-参考答案-一、单选题1、C【解析】【分析】设每一个外角都为x,则相邻的内角为4x,然后根据“邻补角和为180°”列方程求得外角的大小,然后再根据多边形外角和定理求得多边形边数,最后运用多边形内角和公式求解即可.【详解】解:设每一个外角都为x,则相邻的内角为4x,由题意得,4x+x=180°,解得:x=36°,多边形的外角和为360°,360°÷36°=10,所以这个多边形的边数为10,则该多边形的内角和是:(10﹣8)×180=1440°.故选:C.【点睛】本题主要考查了多边形内角和相邻外角的关系、多边形的外角和、多边形内角和等知识点,掌握多边形的外角和为360°是解答本题的关键.2、C【解析】【分析】根据三角形的中线将三角形的面积分成相等的两部分即可求解.【详解】解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,∴△ABC的面积=3×2=6.故选:C.【点睛】考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.3、B【解析】【分析】直接根据三角形中线定义解答即可.【详解】解:∵CM是ABC的中线,4cmAM=,∴BM= 4cmAM=,故选:B.【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.4、B【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形,即可得出结果.【详解】解:∵E是AD的中点,S△ABC=8cm2,∴S△ABE=12S△ABD,S△ACE=12S△ACD,∴S△ABE+S△ACE=12S△ABD+12S△ACD=12(S△ABD+S△ACD)=12S△ABC=12×8=4(cm2),∴S△CBE=12S△ABC=4(cm2),∵F是CE的中点,∴S△FBE=12S△EBC=12×4=2(cm2).故选:B【点睛】本题主要考查了有关三角形中线的问题,理解并掌握三角形的中线把三角形分成两个面积相等的三角形是解题的关键.5、C【解析】【分析】根据相反数、正多边形、抽样调查、中点的相关定义逐项判断即可.【详解】解:A. 2-的相反数是-2,原选项不正确,不符合题意;B. 各边都相等,各角都相等的多边形叫正多边形,原选项不正确,不符合题意;C. 了解一沓钞票中有没有假钞,应采用普查的形式,原选项正确,符合题意;D. A、B、C三点共线时,若线段AB BC=,则点B是线段AC的中点,Am、B、C三点不共线时,则说法不成立,原选项不正确,不符合题意;故选:C.【点睛】本题考查了相反数、正多边形、全面调查和线段的中点,解题关键是熟记相关知识,准确进行判断.6、C【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边得到a的范围,然后再根据a是整数即可求解.解:由三角形两边之和大于第三边,两边之差小于第三边可知:3<a<7,又a为整数,∴a可以取4、5、6,故选:C.【点睛】本题考查组成三角形的条件,熟练掌握“三角形两边之和大于第三边,两边之差小于第三边”的性质是解题的关键.7、C【解析】【分析】根据组成三角形的三边关系依次判断即可.【详解】A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.故选:C.【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.8、D【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A、B、C均不是高线.故选:D.【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.9、C【解析】【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【详解】解:由题意可知:n边形每个外角的度数是:180°-156°=24°,则n=360°÷24°=15.故选:C.【点睛】本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.10、B【解析】【分析】根据多边形的内角与外角的关系,先求出这个多边形的每一个外角的度数,再用360°除以一个外角的度数即可得到边数.【详解】解:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=60°,∴边数n=360°÷60°=6.故选B..【点睛】此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.即先求出这个多边形的每一个外角的度数,再用360°除即可得到边数.二、填空题1、15°##15度【解析】【分析】根据三角板各内角的度数和三角形外角的性质求解即可.【详解】解:由一副三角板按如图所示叠放在一起可知,∠2=45°,∠1=30°,∴∠3=∠2-∠1=15°,∴315∠=∠=︒;a故答案为:15°.【点睛】本题考查了三角形外角的性质,解题关键是明确三角板各内角的度数,熟练运用外角的性质解题.2、144°##144度【解析】【分析】先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案.【详解】解:∵四边形的四个外角的度数之比为1:2:3:4,∴四个外角的度数分别为:360°×136 1234=︒+++;360°×272 1234=︒+++;360°×3108 1234=︒+++;360°×4144 1234=︒+++;∴它最大的内角度数为:18036144︒-︒=︒.故答案为:144°.【点睛】本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360°,从而进行计算.3、五【解析】【分析】根据过多边形的一个顶点的所有对角线,将这个多边形分成(n -2)个三角形,计算可求解.【详解】解:设这是个n 边形,由题意得n -2=3,∴n =5,故答案为:五.【点睛】本题主要考查多边形的对角线,掌握多边形对角线的性质是解题的关键.4、612BC <<【解析】【分析】由构成三角形的条件计算即可.【详解】∵ABC 中39AB AC ==,∴AC AB BC AC AB -<<+∴612BC <<.故答案为:612BC <<.【点睛】本题考查了由构成三角形的条件判断第三条边的取值范围,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.5、3【解析】【分析】根据三角形的三边关系“三角形两边之和大于第三边,三角形两边之差小于第三边”和x 是奇数,即可得.【详解】解:∵三角形三边长为1,,3,x ,∴24x <<,∵x 是奇数,∴3x =故答案为:3.【点睛】本题考查了三角形的三边关系,解题的关键是熟记三角形的三边关系.三、解答题1、5【解析】【分析】多边形的内角和可以表示成(n -2)•180°,外角和是固定的360°,从而可根据一个正多边形的一个内角等于一个外角的32列方程求解可得.【详解】解:设此正多边形为正n 边形. ∵正多边形的一个内角等于一个外角的32, ∴此正多边形的内角和等于其外角和的32, ∴32×360°=(n -2)•180°, 解得n =5.答:正多边形的边数为5.【点睛】本题考查正多边形的内角和与外角和.关键是记住内角和的公式与外角和的特征.2、9【解析】【分析】根据多边形沿一条对角线剪去一个内角后,可知新多边形比原多边形少1条边,根据多边形内角和公式180°×(n ﹣2),可得答案.【详解】解:设原来多边形的边数为x ,则剪去一个内角后,边数为x -1,由条件可得:()121801080x --︒=⋅︒,解得:9x =,原来多边形的边数为9.【点睛】此题主要考查了多边形的内角和定理的应用,要熟练掌握,解答此题的关键是先求出新多边形的边数,再根据多边形内角和公式计算即可.3、15【解析】【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.【详解】设新多边形是n 边形,由多边形内角和公式得:180(2)2520n ︒⨯-=︒,解得:16n =,则原多边形的边数是:16115-=.∴原多边形的边数是15.【点睛】本题主要考查了多边形内角与外角,解决本题的关键是要熟练掌握多边形的内角和公式. 4、28°.【解析】【分析】设∠B =x ,根据等腰三角形的性质,由BD =OD 得∠DOB =∠B =x ,再根据三角形外角性质得∠ADO =2x ,则∠A =∠ADO =2x ,然后根据三角形外角性质得2x +x =114°,解得x =38°,最后利用三角形内角和定理计算∠AOD 的度数.【详解】解:设∠B =x ,∵BD =OD ,∴∠DOB =∠B =x ,∴∠ADO =∠DOB +∠B =2x ,∵OA =OD ,∴∠A =∠ADO =2x ,∵∠AOC =∠A +∠B ,∴2x +x =114°,解得x =38°,∴∠AOD =180°﹣∠OAD ﹣∠ADO =180°﹣4x =180°﹣4×38°=28°.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.5、360°【解析】【分析】分别记,,B C A ∠∠∠的外角为,,αβγ,用αβγ++即可得出答案.【详解】如图,当小汽车从P 出发行驶到B 市,由B 市向C 市行驶时转的角是α,由C 市向A 市行驶时转的角是β,由A 市向P 市行驶时转的角是γ.∴小汽车从P 市出发,经B 市、C 市、A 市,又回到P 市,共转360αβγ++=︒.【点睛】本题考查外角和定理的应用,掌握多边形的外角和为360 是解题的关键.。
七年级数学平面图形及其位置关系同步练习题及答案以下是xx为您推荐的七年级数学平面图形及其位置关系同步练习题及答案,希望本篇文章对您学习有所帮助。
七年级数学平面图形及其位置关系同步练习题及答案1.田径运动中百米比赛的跑道是线段,起点与终点是它的两个端点.线段有两个端点.2.太阳的光线近似看成从一点出发的无数条射线.射线有一个端点.3.我们在晴朗的夜空中,有时能发现流星,它的运行轨迹可以近似看成直线.直线没有端点.做一做1.下图中哪个是线段,哪个是射线,哪个是直线?2.你还能发现可近似看作射线、线段、直线的实例吗?一.填空题1.填写下表:名称图例端点数延伸方向有无长度线段射线直线2.工人师傅在用方地砖铺地时,常常打两个木桩然后沿着拉紧的线铺地,这样地砖就铺得整齐,这是根据什么道理.3.如图,点A在直线m上,也可以说直线m经过点A.点B、C在直线外,也可以说____________.二.选择题4.下列各直线的表示法中,正确的是()A直线AB.直线ABC直线abD.直线Ab5.下列说法不正确的是().A.直线AB与直线BA是同一条直线B.射线AB与射线BA是同一条射线C.线段AB与线段BA是同一条线段D.线段有两个端点,射线有一个端点,直线没有端点6.下列说法正确的是()A.射线比直线短B.两点确定一条直线C.经过三点只能作一条直线D.两条射线的长度的和等于直线的长度7.如图所示,A、B、C、D四个图形中各有一条射线和一条线段,它们能相交的是()三.解答题8.(1)如图,用绿色笔画出直线AB,再用棕色笔画出线段BA,最后用红笔画出线段AB想一想:线段BA与线段AB是同一条线段吗?(2)如图,点A、B、C、D在一条直线上.用绿色笔画出射线AB,再用棕色笔画出射线BA,最后分别用蓝笔和红笔画出射线BC和射线DC.理解射线AB与射线BA为什么不是同一射线,而射线BA与射线BC却是同一条射线.想一想:射线BC与射线DC是同一条射线吗?9.读句画图:如图所示,已知平面上四个点(1)画直线AB;(2)画线段AC;(3)画射线AD、DC、CB;(4)如图,指出图中有_____条线段,有___条射线并写出其中能用图中字母表示的线段和射线.10、请你做裁判:过三点中的两点作直线,小明说有一条,小林说有三条,小红说不是一条就是三条,你认为他们三人谁的说法正确?为什么?4.1答案情景再现:做一做:图(1)是线段,图(2)是射线,图(3)是直线.1.略2.经过两点有且只有一条直线3.直线m不经过点B、点C4.B5.B6.B7.C8.略9.略10.小红说的正确,若三点共线则可作一条直线,若不共线则可作三条直线.相关推荐:2021年人教版七年级数学下册期末测验试题七年级数学上册第一章丰富的图形世界检测题更多初一数学试题,请关注xx。
一、选择题1.如图,B 为线段AC 上一点,H 为AC 的中点,M 为AB 的中点,N 为BC 的中点,则下列说法:①MN HC =;②1()2MH AH HB =-;③1()2MN AC HB =+;④1()2HN HC HB =+,其中正确的是( )A .①②B .①②③C .①②③④D .①②④ 2.下列说法正确的是( ).A .两点之间,直线最短B .连接两点间的线段,叫做这两点的距离C .两条射线组成的图形叫做角D .经过两点有一条直线,并且只有一条直线 3.如图,点Q 在线段AP 上,其中10PQ =,第一次分别取线段AP 和AQ 的中点1P ,1Q 得到线段11PQ ;再分别取线段1AP 和1AQ 的中点2P ,2Q 得到线段22P Q ;第三次分别取线段2AP 和2AQ 的中点3P ,3Q 得到线段33PQ ;连续这样操作11次,则每次的两个中点所形成的所有线段之和1122331111PQ P Q PQ P Q ++++=( )A .1010102-B .1110102-C .1010102+D .1110102+ 4.已知线段AB =6cm ,在直线AB 上取一点C ,使BC =2cm ,则线段AB 的中点M 与AC 的中点N 的距离为( )A .1cmB .3cmC .2cm 或3cmD .1cm 或3cm 5.下列说法中,错误的是( ) A .两点之间直线最短B .两点确定一条直线C .一个锐角的补角一定比它的余角大90°D .等角的补角相等 6.如图,点C 为线段AB 上一点且AC BC >,点D 、E 分别为线段AB 、CB 的中点,若7AC =,则DE =( )A .3.5B .4C .4.5D .无法确定 7.下列四个图中,能用1∠、O ∠、MON ∠三种方法表示同一个角的是( ) A . B . C .D .8.永定河,“北京的母亲河”.近年来,我区政府在永定河治理过程中,有时会将弯曲的河道改直,图中A ,B 两地间的河道改直后大大缩短了河道的长度.这一做法的主要依据是( )A .两点确定一条直线B .垂线段最短C .过一点有且只有一条直线与已知直线垂直D .两点之间,线段最短9.B 是线段AD 上一动点,沿A 至D 的方向以2cm/s 的速度运动.C 是线段BD 的中点.10cm AD =.在运动过程中,若线段AB 的中点为E .则EC 的长是( ) A .2cm B .5cm C .2cm 或5cm D .不能确定 10.点A ,B ,C 在同一条直线上,6cm AB =,2cm BC =,M 为AB 中点,N 为BC 中点,则MN 的长度为( )A .2cmB .4cmC .2cm 或4cmD .不能确定 11.下列命题中,正确的有( )①两点之间线段最短;②连接两点的线段,叫做两点间的距离;③角的大小与角的两边的长短无关;④射线是直线的一部分,所以射线比直线短.A .1个B .2个C .3个D .4个12.如图,∠PQR 等于138°,SQ ⊥QR ,QT ⊥PQ .则∠SQT 等于( )A .42°B .64°C .48°D .24°二、填空题13.如图,已知两点A 、B .(1)画出符合要求的图形.①画线段AB ;②延长线段AB 到点C ,使BC =AB ;③反向延长线段AB 到点D ,使DA =2AB .(2)请问点A ,点B 分别是哪两条线段的中点?并说明理由;(3)若已知线段AB 的长是2cm ,求线段CD 的长.14.数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休”.数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来从而实现优化解题途径的目的.请你利用“数形结合”的思想解决以下的问题:(1)如图1:射线OC 是AOB ∠的平分线,这时有数量关系:AOB ∠=______. (2)如图2:AOB ∠被射线OP 分成了两部分,这时有数量关系:AOB ∠=______. (3)如图3:直线AB 上有一点M ,射线MN 从射线MA 开始绕着点M 顺时针旋转,直到与射线MB 重合才停止.①请直接回答AMN ∠与BMN ∠是如何变化的?②AMN ∠与BMN ∠之间有什么关系?请说明理由.15.如图,O 为直线AB 上一点,∠AOC 与∠AOD 互补,OM 、ON 分别是∠AOC 、∠AOD 的平分线.(1)根据题意,补全下列说理过程:因为∠AOC 与∠AOD 互补,所以∠AOC+∠AOD =180°.又因为∠AOC+∠ =180°,根据 ,所以∠ =∠ .(2)若∠MOC =72°,求∠AON 的度数.16.已知线段AB ,请用尺规按下列要求作图,保留作图痕迹,不写作法:(1)延长线段BA 到C ,使3AC AB =;(2)延长线段AB 到D ,使3AD AB =;(3)在上述作图条件下,若8cm CB =,求BD 的长度.17.如图所示.(1)写出以D 为端点的所有线段;(2)已知7AB =,3BC =,点D 为线段AC 的中点,求线段DB 的长度.18.计算(1)58°32′36″+36.22°(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷519.如图,线段AB 的中点为M ,C 点将线段MB 分成MC ,CB 两段,且:1:3MC CB =,若20AC =,求AB 的长.20.已知:如图,O 是直线AB 上一点,90MON ∠=︒,作射线OC .(1)如图,若ON 平分BOC ∠,60BON ∠=︒,则COM ∠=______°(直接写出答案);(2)如图,若OC 平分AOM ∠,BON ∠比COM ∠大36°,求COM ∠的度数;(3)如图,若OC 平分AON ∠,当2BON COM ∠=∠时,能否求出COM ∠的度数?若可以,求出度数;若不可以,请说明理由.三、解答题21.(1)计算:1517(36)61218⎫⎛+-⨯-⎪⎝⎭ (2)计算:2020211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦ (3)计算:18050243'-⨯22.如图,已知156,48AOD DON ∠=︒∠=︒,射线,,OB OM ON 在AOD ∠内部,OM 平分,AOB ON ∠平分BOD ∠.(1)求MON ∠的度数;(2)若射线OC 在AOD ∠内部,23NOC ∠=︒,求COM ∠的度数.23.已知:90AOB ∠=︒,做射线OC ,OD 是AOC ∠的角平分线,OE 是BOC ∠的角平分线.(1)如图①,当70BOC ∠=︒时,求DOE ∠的度数;①(2)如图②,若射线OC 在AOB ∠内部绕O 点旋转,当BOC a ∠=时,求DOE ∠的度数;②(3)若射线OC 在AOB ∠外绕O 点旋转且AOC ∠为钝角时,求DOE ∠的度数.24.已知3AOB BOC ∠=∠,OD 、OE 分别为AOB ∠和BOC ∠的平分线.(1)如图1,当OC 在AOB ∠的内部时,若20BOC ∠=︒,求DOE ∠的度数. (2)如图2,当OC 在AOB ∠的外部时,若22DOE ∠=︒,求AOC ∠的度数. (3)若DOE n ∠=︒,求AOC ∠的度数.25.如图,线段AB 的中点为M ,C 点将线段MB 分成MC ,CB 两段,且:1:3MC CB =,若20AC =,求AB 的长.26.如图1所示,将一副三角尺的直角顶点重合在点O 处.(1)①指出∠AOD 和∠BOC 的数量关系.②∠AOC 和∠BOD 在数量上有何关系?说明理由;(2)若将等腰直角三角尺绕点O 旋转到如图2的位置.①∠AOD 和∠BOC 相等吗?说明理由;②指出∠AOC 和∠BOD 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据线段中点的性质、结合图形、线段和差倍分计算即可判断.【详解】解:∵H 为AC 的中点,M 为AB 的中点,N 为BC 的中点,∴AH=CH=12AC ,AM=BM=12AB ,BN=CN=12BC ,∴MN=MB+BN=12(AB+BC)=12AC,∴MN=HC,①正确;1 2(AH﹣HB)=12(AB﹣BH﹣BH)=MB﹣HB=MH,②正确;MN=12AC<1()2AC HB,③错误;1 2(HC+HB)=12(BC+HB+HB)=BN+HB=HN,④正确,故选择:D.【点睛】本题考查线段的中点定义,线段和差倍分的概念,掌握线段的中点定义,线段和差倍分的概念.2.D解析:D【分析】根据两点之间线段最短性质,可判断选项A;根据两点之间距离的性质,可判断选项B;根据角的定义分析,可判断选项C;根据直线的性质分析,可判断选项D,即可得到答案.【详解】两点之间,线段最短,故选项A错误;连接两点间的线段长度,叫做这两点的距离,故选项B错误;具有公共端点的两条射线组成的图形叫做角,故选项C错误;经过两点有一条直线,并且只有一条直线,故选项D正确;故选:D.【点睛】本题考查了线段、直线、角的知识;解题的关键是熟练掌握线段、直线、角的性质,从而完成求解.3.B解析:B【分析】根据线段中点定义先求出P1Q1的长度,再由P1Q1的长度求出P2Q2的长度,从而找到P n Q n 的规律,即可求出结果.【详解】解:∵线段PQ=10,线段AP和AQ的中点P1,Q1,∴P1Q1=AP1-AQ1=12AP-12AQ=12(AP-AQ)=12PQ =12×10 =5.∵线段AP 1和AQ 1的中点P 2,Q 2;∴P 2Q 2=AP 2-AQ 2 =12AP 1-12AQ 1 =12(AP 1-AQ 1) =12P 1 Q 1 =12×12×10 =212×10 =52. 发现规律:P n Q n =12n ×10 ∴P 1Q 1+P 2Q 2+…+P 11Q 11 =12×10+212×10+312×10+…+1112×10 =10(12+212+312+…+1112) =10(1111212) =10(1-1112) =10-11102故选:B .【点睛】本题考查了线段规律性问题,准确根据题意找出规律是解决本题的关键,比较有难度. 4.A解析:A【分析】分情况讨论,点C 在线段AB 上,或点C 在直线AB 上,根据线段中点的性质求出线段长.【详解】解:①如图,点C 在线段AB 上,∵6AB cm =,2BC cm =,∴624AC AB BC cm =-=-=,∵M 是AB 的中点, ∴132AM AB cm ==, ∵N 是AC 的中点, ∴122AN AC cm ==, ∴321MN AM AN cm =-=-=;②如图,点C 在直线AB 上,∵6AB cm =,2BC cm =,∴628AC AB BC cm =+=+=,∵M 是AB 的中点,∴132AM AB cm ==, ∵N 是AC 的中点, ∴142AN AC cm ==, ∴431MN AN AM cm =-=-=.故选:A .【点睛】 本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.5.A解析:A【分析】根据基本平面图的性质判断即可;【详解】A 两点之间线段最短,故错误;B 两点确定一条直线,故正确;C 一个锐角的补角一定比它的余角大90°,故正确;D 等角的补角相等,故正确;故答案选A .【点睛】本题主要考查了基本平面图形的性质应用,准确分析判断是解题的关键.6.A解析:A【分析】 根据线段的中点的意义可得12DB AB =,12BE BC =,再根据12DE DB EB AC =-=即可得到结论.【详解】解:∵点D 、E 分别为线段AB 、CB 的中点, ∴12AD DB AB ==,12CE BE BC == 又1111()2222DE DB EB AB BC AB BC AC =-=-=-= ∵7AC =∴ 3.5DE =故选:A .【点睛】本题考查的是两点间的距离,关键是通过中点确定所求线段和整体线段的数量关系,进而求解.7.C解析:C【分析】根据角的表示方法和图形选出即可.【详解】A 、图中的∠MON 不能用∠O 表示,故本选项错误;B 、图中的∠1和∠O 不是表示同一个角,故本选项错误;C 、图中的1∠、O ∠、MON ∠表示同一个角,故本选项正确;D 、图中∠1、∠MON 、∠O 不表示同一个角,故本选项错误;故选:C .【点睛】本题考查了角的表示方法的应用,主要考查学生的理解能力和观察图形的能力. 8.D解析:D【分析】根据线段的性质分析得出答案.【详解】由题意中改直后A ,B 两地间的河道改直后大大缩短了河道的长度,其注意依据是:两点之间,线段最短,故选:D .【点睛】此题考查线段的性质:两点之间线段最短,掌握题中的改直的结果是大大缩短了河道的长度的含义是解题的关键.9.B解析:B【分析】根据线段中点的性质,做出线段AD ,按要求标出各点大致位置,列出EB ,BC 的表达式,即可求出线段EC .【详解】设运动时间为t ,则AB=2t ,BD=10-2t ,∵C 是线段BD 的中点,E 为线段AB 的中点,∴EB=2AB =t ,BC=2BD =5-t , ∴EC=EB+BC=t+5-t=5cm ,故选:B .【点睛】 此题考查对线段中点的的理解和运用,涉及到关于动点的线段的表示方法,难度一般,理解题意是关键. 10.C解析:C【分析】分点C 在直线AB 上和直线AB 的延长线上两种情况,分别利用线段中点的定义和线段的和差解答即可.【详解】解:①当点C 在直线AB 上时∵M 为AB 中点,N 为BC 中点∴AM=BM=12AB=3,BN=CN=12BC=1, ∴MN=BM-BN=3-1=2;②当点C 在直线AB 延长上时∵M 为AB 中点,N 为BC 中点∴AM=CM=12AB=3,BN=CN=12BC=1, ∴MN=BM+BN=3+1=4综上,MN的长度为2cm或4cm.故答案为C.【点睛】本题主要考查了线段中点的定义以及线段的和差运算,掌握分类讨论思想成为解答本题的关键.11.B解析:B【分析】根据直线的性质,两点间的距离的定义,线段的性质进行分析.【详解】解:①两点之间线段最短,正确;②连接两点的线段的长度,叫做两点间的距离,故原说法错误;③角的大小与角的两边的长短无关,正确;④直线无限长,射线无限长,射线是直线的一部分,所以射线比直线短的说法是错误的.故选:B【点睛】本题考查了直线、射线、线段,关键是熟悉它们的定义.属于基础题.12.A解析:A【分析】利用垂直的概念和互余的性质计算.【详解】解:∵∠PQR=138°,QT⊥PQ,∴∠PQS=138°﹣90°=48°,又∵SQ⊥QR,∴∠PQT=90°,∴∠SQT=42°.故选A.【点睛】本题是对有公共部分的两个直角的求角度的考查,注意直角的定义和度数.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.(1)见解析;(2)A是线段DC的中点B是线段AC的中点理由见解析;(3)8cm 【分析】(1)根据要求画图即可(2)利用线线段的关系可得出A 是线段DC 的中点B 是线段AC 的中点(3)利用CD=4AB 求解析:(1)见解析;(2)A 是线段DC 的中点,B 是线段AC 的中点,理由见解析;(3)8cm【分析】(1)根据要求画图即可,(2)利用线线段的关系可得出A 是线段DC 的中点,B 是线段AC 的中点,(3)利用CD=4AB 求解即可.【详解】解:(1)如图,(2)A 是线段DC 的中点,B 是线段AC 的中点,∵BC=AB ,∴B 是线段AC 的中点,∴AC=2AB ,又∵DA=2AB ,∴A 是线段DC 的中点;(3)∵AB 的长度是2cm ,∴CD=4AB=4×2=8cm .【点睛】本题主要考查了线段及中点,距离的运算,解题的关键是明确线段之间的关系. 14.(1)(答案不唯一);(2);(3)①逐渐增大逐渐减小;②见解析【分析】(1)根据角平分线定义容易得出结论;(2)根据图形解答;(3)①由射线从射线开始绕着点顺时针旋转可知逐渐增大逐渐减小;②由∠A 解析:(1)2AOC ∠(答案不唯一);(2)AOP BOP ∠+∠;(3)①AMN ∠逐渐增大,BMN ∠逐渐减小;②180AMN BMN ∠+∠=︒,见解析.【分析】(1)根据角平分线定义容易得出结论;(2)根据图形解答;(3)①由射线MN 从射线MA 开始绕着点M 顺时针旋转可知AMN ∠逐渐增大,BMN ∠逐渐减小;②由∠AMB 是平角即可得出结论.【详解】解:(1)∵射线OC 是AOB ∠的平分线,∴22AOB AOC COB ∠=∠=∠,故答案为:2AOC ∠(或2COB ∠);(2)由图可知,AOB AOP BOP ∠=∠+∠,故答案为:AOP BOP ∠+∠;(3)①AMN ∠逐渐增大,BMN ∠逐渐减小;②180AMN BMN ∠+∠=︒.证明:∵180AMB ∠=︒,AMN BMN AMB ∠+∠=∠,∴180AMN BMN ∠+∠=︒.【点睛】本题考查了角平分线定义,角的有关计算,注意利用数形结合的思想.15.(1)BOC ;同角的补角相等;AOD ;BOC ;(2)∠AON=18°【分析】(1)由题意可得∠AOC+∠AOD =180°∠AOC+∠COB =180°可以根据同角的补角相等得到∠AOD =∠COB ;(2解析:(1)BOC ;同角的补角相等;AOD ;BOC ;(2)∠AON=18°【分析】(1)由题意可得∠AOC+∠AOD =180°,∠AOC+∠COB =180°,可以根据同角的补角相等得到∠AOD =∠COB ;(2)首先根据角平分线的性质可得∠AOC =2∠COM ,∠AON =12∠AOD ,然后计算出∠AOC =144°,进而得到∠AON =18°.【详解】解:(1)因为∠AOC 与∠AOD 互补,所以∠AOC+∠AOD =180°.又因为∠AOC+∠BOC =180°,根据同角的补角相等,所以∠AOD =∠BOC ,故答案为:BOC ;同角的补角相等;AOD ;BOC ;(2)∵OM 是∠AOC 的平分线.∴∠AOC =2∠MOC =2×72°=144°,∵∠AOC 与∠AOD 互补,∴∠AOD =180°﹣144°=36°,∵ON 是∠AOD 的平分线.∴∠AON =12∠AOD =18°. 【点睛】本题考查了补角的定义和角平分线的定义,解题关键是熟练运用相关知识建立角之间的联系. 16.(1)见解析;(2)见解析;(3)【分析】(1)根据画出图形即可;(2)根据画出图形即可;(3)根据线段等分的性质可得AB 的长根据线段的和差可得BD 的长【详解】解:(1)点C 如图所示;(2)点D 如图解析:(1)见解析;(2)见解析;(3)4cm BD =【分析】(1)根据3AC AB =,画出图形即可;(2)根据3AD AB =,画出图形即可;(3)根据线段等分的性质,可得AB 的长,根据线段的和差,可得BD 的长.【详解】解:(1)点C 如图所示;(2)点D 如图所示;(3)由题意可得,3AC AB =,则4CB AB =.∵8cm CB =,∴2cm AB =.∵3AD AB =,∴24cm BD AB ==.【点睛】本题考查作图-复杂作图,线段和差定义等知识,解题的关键是理解题意,属于常考题型. 17.(1)DADBDC ;(2)2【分析】(1)根据线段的定义即可求解;(2)根据线段的和差可得AC 的长根据线段中点的性质可得AD 的长再根据线段的和差可得答案【详解】解:(1)以D 为端点的所有线段有:DA解析:(1)DA ,DB ,DC ;(2)2.【分析】(1)根据线段的定义即可求解;(2)根据线段的和差,可得AC 的长,根据线段中点的性质,可得AD 的长,再根据线段的和差,可得答案.【详解】解:(1)以D 为端点的所有线段有:DA ,DB ,DC ;(2)由线段的和差得AC=AB+BC=7+3=10.由D 为线段AC 的中点得AD=12AC=12×10=5. 由线段的和差得DB=AB-AD=7-5=2,故线段DB 的长度为2.【点睛】本题考查了两点间的距离,利用线段中点的性质得出AD 长是解题关键.18.(1)94°45′48″;(2)17【分析】(1)根据度分秒的加法相同的单位相加满60时向上以单位进1可得答案;(2)原式先计算乘方再计算乘除最后进行加减运算即可【详解】解:(1)58°32′36″解析:(1) 94°45′48″;(2)17【分析】(1)根据度分秒的加法,相同的单位相加,满60时向上以单位进1,可得答案; (2)原式先计算乘方,再计算乘除,最后进行加减运算即可.【详解】解:(1)58°32′36″+36.22°=58°32′36″+36°13′12″=94°45′48″;(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷5=-9×(-2)+16÷(-8)÷10-4÷5=18-0.2-0.8=17.【点睛】本题考查了度分秒的换算,度分秒的加减,同一单位向加减,度分秒的乘法,从小单位算起,满60时向上以单位进1.同时还考查了含有乘方的有理数的混合运算.19.32【分析】本题需先设根据已知条件C 点将线段MB 分成的两段求出MB=4x 利用M 为AB 的中点列方程求出x 的长即可求出AB 的长;【详解】解:∵设则∴∴解得∵M 为AB 的中点∴【点睛】本题主要考查了两点间的 解析:32【分析】本题需先设MC x =,根据已知条件C 点将线段MB 分成:1:3MC CB =的两段,求出MB=4x ,利用M 为AB 的中点,列方程求出x 的长,即可求出AB 的长;【详解】解:∵ :1:3MC CB =,设MC x =,则3CB x =,∴4AM MB MC CB x ==+=,∴4520AC AM MC x x x =+=+==,解得4x =.∵M 为AB 的中点∴832AB x ==.【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,求出线段的长是解本题的关键;20.(1)30;(2)18°;(3)不能求出的度数理由见解析【分析】(1)根据若平分可得到∠CON=60°然后计算∠COM 即可;(2)可设然后得到再利用角平分线性质得到然后利用平角定义列方程即可;(3)解析:(1)30;(2)18°;(3)不能求出COM ∠的度数,理由见解析【分析】(1)根据若ON 平分BOC ∠,60BON ∠=︒可得到∠CON =60°,然后计算∠COM 即可; (2)可设COM x ∠=︒,然后得到(36)BON x ∠=+︒,再利用角平分线性质得到AOC x ∠=︒,然后利用平角定义列方程即可;(3)思路和(2)相同,设出∠COM ,然后根据题意列出方程判断即可.【详解】解:(1)∵ON 平分BOC ∠∴BON CON ∠=∠=60°∵∠MON =90°∴∠COM =∠MON -∠CON =30°故答案为:30;(2)设COM x ∠=︒,则(36)BON x ∠=+︒,∵OC 平分AOM ∠,∴AOC x ∠=︒,∴ 9036180x x x ++++=,∴18x =,即18COM ∠=︒;(3)不能求出COM ∠的度数,理由如下:设COM x ∠=︒,2BON x ∠=︒,∵OC 平分AON ∠,∴21802AON CON x ∠=∠=︒-︒,∴90CON x ∠=︒-︒,∵90MON ∠=︒,∴9090x x +-=,方程恒成立,故不论COM ∠等于多少度,只能得出BON ∠始终COM ∠的2倍,所以求不出COM ∠的度数.【点睛】本题主要考查角的简单计算和角平分线的简单性质,解题的关键是能够梳理角关系,利用直角和平角是解题的关键.三、解答题21.(1)13;(2)16;(3)2848'. 【分析】(1)利用乘法分配律,进行计算即可;(2)根据有理数混合运算的计算方法进行计算即可;(3)根据度分秒的换算方法计算即可.【详解】 (1) 1517()(36)61218+-⨯- ()()()151736363661218=⨯-+⨯--⨯- 6(15)(34)=-+---61534=--+13= (2)2020211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦111(29)23=--⨯⨯- 11(7)6=--⨯- 16= (3)18050243'-⨯1796015072''=-2848'=.【点睛】本题考查乘法分配律,有理数的混合运算,度分秒的换算,掌握有理数的混合运算的法则以及度分秒的换算方法是得出正确答案的前提.22.(1)∠MON=78°;(2)∠COM=101°或55°【分析】(1)由题意易得11,22BON BOD BOM AOB ∠=∠∠=∠,由∠BOD+∠AOB=∠AOD ,进而问题可求解;(2)由题意可分当射线OC 在∠MON 的外部时和当射线OC 在∠MON 的内部时,然后分类求解即可.【详解】解:(1)∵OM 平分∠AOB ,ON 平分∠BOD , ∴11,22BON BOD BOM AOB ∠=∠∠=∠, ∵∠AOD=∠BOD+∠AOB=156°, ∴()111567822MON BON BOM BOD AOB ∠=∠+∠=∠+∠=⨯︒=︒; (2)由题意得:①当射线OC 在∠MON 的外部时,如图所示:由(1)得∠MON=78°,∵∠CON=23°,∴∠COM=∠CON+∠MON=101°;②当射线OC 在∠MON 的内部时,如图所示:∴∠COM=∠MON-∠NOC=55°;综上所述:∠COM=101°或55°.【点睛】本题主要考查角平分线的定义及角的和差关系,熟练掌握角平分线的定义及角的和差关系是解题的关键.23.(1)45°;(2)45°;(3)45°或135°【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE =∠COD +∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】解:(1)∵90AOB ∠=︒,70BOC ∠=︒∴9020AOC BOC ∠=︒-∠=︒,∵OD 、OE 分别平分AOC ∠和BOC ∠, ∴1102COD AOC ∠=∠=︒,1352COE BOC ∠=∠=︒, ∴45DOE COD COE ∠=∠+∠=︒;(2)DOE ∠的大小不变,理由是:∵90AOB ∠=︒,BOC α∠=∴90AOD α∠=︒-又∵OE ,OD 分别是BOC ∠与AOC ∠的平分线 ∴12EOC α∠=,()1902COD α∠=︒- ∴DOE EOC COD ∠=∠+∠()11904522αα=+︒-=︒. (3)DOE ∠的大小发生变化情况为,如图3,则DOE ∠为45°;如图4,则DOE ∠为135°,分两种情况:如图3所示,∵OD 、OE 分别平分AOC ∠和BOC ∠, ∴12COD AOC ∠=∠,12COE BOC ∠=∠, ∴()1452DOE COD COE AOC BOC ∠=∠-∠=∠-∠=︒; 如图4所示,∵OE ,OD 分别是BOC ∠与AOC ∠的平分线∴EOC BOE ∠=∠,COD AOD ∠=∠又∵90AOB ∠=︒∴270AOD DOC COE EOB ∠+∠+∠+∠=︒∴22270DOC COE ∠+∠=︒∴135DOC COE ∠+∠=︒∴135DOE ∠=︒.【点睛】此题考查了角的计算,熟练掌握角平分线定义是解本题的关键.容易出错的地方是解(3)小题漏掉其中的一种情况.24.(1)20DOE ∠=︒;(2)44AOC ∠=︒;(3)2AOC n ∠=︒或(3602)n -︒【分析】(1)由3AOB BOC ∠=∠得60AOB ∠=︒,根据角平分线定义得出1=302BOD AOB =︒∠∠,1=102BOE BOC ∠=︒∠,∠BOD-∠BOE ,即可得出答案; (2)根据角平分线定义,设=AOD BOD x =∠∠,BOE COE y ==∠∠,=2AOB x ∠,2BOC y ∠=,即可得出222AOC x y DOE =+=∠∠;(3)根据角平分线定义,设=AOD BOD x =∠∠,BOE COE y ==∠∠,分OC 在AOB ∠的内部和OC 在AOB ∠的外部两种情况求解,即可得出答案.【详解】解:(1)∵3AOB BOC ∠=∠,∴20360AOB ∠=︒⨯=︒,∵OD ,OE 分别为AOB ∠和BOC ∠的角平分线,∴1=302BOD AOB =︒∠∠,1=102BOE BOC ∠=︒∠, ∴301020DOE BOD BOE =-=︒-︒=︒∠∠∠;(2)由题意得:设=AOD BOD x =∠∠;BOE COE y ==∠∠,∵22DOE ∠=︒,∴=22DOE x y +=︒∠,∵OD ,OE 分别为AOB ∠和BOC ∠的角平分线,∴=2AOB x ∠,2BOC y ∠=,∴22244AOC x y DOE =+==︒∠∠;(3)设DOA DOB x ∠=∠=,EOB EOC y ∠=∠=①当OC 在AOB ∠的外部时,DOE x y n ∠=+=︒∴当090n <≤时,2222AOC x y DOE n ∠=+=∠=︒,当90120n <≤时,360(22)3602(3602)AOC x y DOE n ∠=-+=-∠=-︒.②当OC 在AOB ∠的内部时,DOE x y n ∠=-=︒,2222AOC x y DOE n ∴∠=-=∠=︒,综上,2AOC n ∠=︒或()3602n -︒.【点睛】本题考查了角的有关计算和角平分线定义,熟记角的特点与角平分线的定义是解决此题的关键.25.32【分析】本题需先设MC x =,根据已知条件C 点将线段MB 分成:1:3MC CB =的两段,求出MB=4x ,利用M 为AB 的中点,列方程求出x 的长,即可求出AB 的长;【详解】解:∵ :1:3MC CB =,设MC x =,则3CB x =,∴4AM MB MC CB x ==+=,∴4520AC AM MC x x x =+=+==,解得4x =.∵M 为AB 的中点∴832AB x ==.【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,求出线段的长是解本题的关键;26.(1)①AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒;(2)①相等,理由见解析;②180AOC BOD ∠+∠=︒【分析】(1)①由90AOB COD ∠=∠=︒,再同时加上BOD ∠也相等,即可证明AOD BOC ∠=∠;②由360AOB COD BOD AOC ∠+∠+∠+∠=︒,即可证明180BOD AOC ∠+∠=︒; (2)①由90AOB COD ∠=∠=︒,再同时减去BOD ∠也相等,即可证明AOD BOC ∠=∠;②由AOC AOB COD BOD ∠=∠+∠-∠,即可证明180AOC BOD ∠+∠=︒.【详解】解:(1)①AOD BOC ∠=∠,∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠+∠=∠+∠,即AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒,∵90AOB COD ∠=∠=︒,360AOB COD BOD AOC ∠+∠+∠+∠=︒,∴3609090180BOD AOC ∠+∠=︒-︒-︒=︒;(2)①AOD BOC ∠=∠,理由:∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠-∠=∠-∠,即AOD BOC ∠=∠;②180AOC BOD ∠+∠=︒,∵90AOB COD ∠=∠=︒,AOC AOB COD BOD ∠=∠+∠-∠,∴180AOC BOD ∠=︒-∠,即180AOC BOD ∠+∠=︒.【点睛】本题考查角度关系求解,解题的关键是掌握三角板的角度.。
第四章基本平面图形一、线段、射线、直线1.如图,将甲、乙两个尺子拼在一起,两端重合.如果甲尺确定是直的,那么乙尺一定不是直的.这个结论的数学依据是两点确定一条直线.2.如图,图中以B为一个端点的线段共有()A.2条B.3条C.4条D.5条3.下列说法正确的是()A.射线PA和射线AP是同一条射线B.射线OA的长度是12 cmC.直线ab,cd相交于点MD.两点确定一条直线4.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点.正确的有①③④(填序号).5.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段6.如图,已知线段AB,点C在AB上,点P在AB外.(1)根据要求画出图形:画直线PA,画射线PB,线段PC;(2)在(1)问的基础上,写出图中的所有线段.7.(1)如图①,当线段AB上标出1个点时(A,B除外),图中共有3条不同的线段.(2)如图②,当线段AB上标出2个点时(A,B除外),图中共有6条不同的线段.(3)如图③,当线段AB上标出3个点时(A,B除外),图中共有10条不同的线段.(4)当线段AB上标出n个点时(A,B除外),线段AB上共有多少条不同的线段(用含有n的代数式表示)?二、线段的中点及相关计算1.如图,已知线段AB=10 cm,M是AB的中点,点N在AB上,NB=2 cm,那么线段MN的长为()A.5 cmB.4 cmC.3 cmD.2 cm2.(2023·茂名化州市期末)如图,点M是AB的中点,点N是BD的中点,AB=12 cm,BC=20 cm,CD=16 cm,则MN的长为()A.24 cmB.22 cmC.26 cmD.20 cm3.如图,B,C两点把线段MN分成三部分,其比为MB∶BC∶CN=2∶3∶4,点P是MN的中点.若MN=36 cm,则PC的长为()A.1 cmB.2 cmC.2.5 cmD.3 cm4.如图,线段AB=8,点M是线段AB的中点,C为线段AB上一点,N是线段AC的中点,且AC=3.2,求M,N两点间的距离.5.如图,已知点C是线段AB上的一点,且AC=2CB,点D是AB的中点,且AD=6.(1)求CD的长;(2)若点F是线段AB上的一点,且CF=1CD,求AF的长.26.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12 cm,则线段BD的长为()A.10 cmB.8 cmC.10 cm或8 cmD.2 cm或4 cm三、角的比较与运算1.计算:(1)25.75°=25°45';(2)72.125°=72°7'30″.2.如图,钟表上10点整时,时针与分针所成的角是()A.30°B.60°C.90°D.120°3.如图,若射线OA的方向是北偏东40°,∠AOB=90°,则射线OB的方向是()A.南偏东50°B.南偏东40°C.东偏南50°D.南偏西50°4.如图,O为直线AB上的一点,∠COB=28°34',则∠1等于()A.151°26'B.161°26'C.151°34'D.161°34'5.当分针指向12,时针恰好与分针成30°的角,此时是()A.8点B.9点C.11点或1点D.2点或10点6.(2023·惠州一中期末)已知∠1=4°18',∠2=4.4°,则∠1<∠2(填“>”“<”或“=”).7.如图,关于图中四条射线的方向说法错误的是()A.OC的方向是南偏西25°B.OB的方向是北偏西15°C.OA的方向是北偏东35°D.OD的方向是东南方向8.下午5:30时,钟表表面的时针与分针的夹角是()A.10°B.15°C.20°D.25°9.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40',则∠2的度数是()A.27°40'B.62°20'C.57°40'D.58°20'四、多边形和圆的初步认识1.(2023·佛山禅城区期末)从六边形的一个顶点出发,可连出的对角线条数为()A.3B.4C.5D.62.七边形一共有14条对角线.3.(2022·广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为π.π(结果保留π).4.如图,把一个圆分成三个扇形,其中面积最大的扇形的圆心角度数为162°;若圆的半径为2,则最大扇形的面积为955.若经过n边形的一个顶点的所有对角线可以将该n边形分成6个三角形,则n边形的对角线的条数为()A.20B.19C.18D.176.如图,在一个多边形内任意取一点,分别连接这一点与各顶点.(1)数一数,每一个多边形各被分成了多少个三角形?(2)总结一下,三角形的个数与多边形的边数有怎样的关系?7.将一个圆分割成三个扇形,它们的圆心角的度数之比为1∶2∶3.(1)求这三个扇形的圆心角的度数;(2)若这个圆的半径为6,求这三个扇形的面积(结果保留π).8.如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°.(1)求∠AOB的度数;(2)若OE=1,求扇形EOF的面积.9.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形。
一、选择题1.如图,B 为线段AC 上一点,H 为AC 的中点,M 为AB 的中点,N 为BC 的中点,则下列说法:①MN HC =;②1()2MH AH HB =-;③1()2MN AC HB =+;④1()2HN HC HB =+,其中正确的是( )A .①②B .①②③C .①②③④D .①②④ 2.有下列说法:①由许多条线段连接而成的图形叫做多边形;②从一个多边形(边数为n )的同一个顶点出发,分别连接这个顶点与其余与之不相邻的各顶点,可以把这个多边形分割成()2n -个三角形;③角的边越长,角越大;④一条射线就是一个周角.其中正确的结论有( )A .1个B .2个C .3个D .0个3.下列说法中,正确的是( ).A .a -的相反数是正数B .两点之间线的长度叫两点之间的距离C .两条射线组成的图形叫做角D .两点确定一条直线4.已知:线段a ,b ,求作:线段AB ,使得AB =2a +b ,小明给出了四个步骤(如图):①作-条射线AE ;②则线段AB = 2a +b ;③在射线AE 上作线段AC =a ,再在射线CE 上作线段CD =a ;④在射线DE 上作线段DB =b ;你认为顺序正确的是( )A .②①③④B .①③④②C .①④③②D .④①⑧② 5.下列说法正确的是( )A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条 6.如图,点C 为线段AB 上一点且AC BC >,点D 、E 分别为线段AB 、CB 的中点,若7AC =,则DE =( )A .3.5B .4C .4.5D .无法确定 7.如图,直线,AB CD 交于点O ,已知EO AB ⊥于点,O OF 平分BOC ∠,若35DOE EOF ︒∠=∠+,则AOD ∠的度数是( )A .71°B .72°C .73°D .74°8.已知线段AB =8cm ,在直线AB 上画线BC ,使BC=12AB ,则线段AC 等于( ) A .12cm B .4cm C .12cm 或4cmD .8cm 或12cm 9.下列图形中,表示南偏东60°的射线是( )A .B .C .D . 10.小飞家房屋装修时,选中了一种漂亮的正八边形地砖,建材店老板告诉她,只用一种八边形地砖是不能铺满地面的,但可以与另外一种形状的地砖混合使用,你认为要使地面铺满,小飞应选择另一种形状的地砖是( )A .B .C .D . 11.如果用边长相同的正三角形和正六边形两种图形铺满平面,那么一个顶点处需要( )A .三个正三角形、两个正六边形B .四个正三角形、两个正六边形C .两个正三角形、两个正六边形D .三个正三角形、一个正六边形 12.下列正多边形中,能够铺满地面的是( )A .正方形B .正五边形C .正七边形D .正八边形 二、填空题13.如图,已知C ,D 两点将线段AB 分成三部分,且这三部分的长度之比为2:3:4,点M 为线段AB 的中点,BD=8cm ,求线段DM 的长.14.如图,已知OE 是AOC ∠的角平分线,OD 是BOC ∠的角平分线.(1)若70AOE ∠=︒,20COD ∠=︒,求AOB ∠的度数;(2)若45DOE ∠=︒,且180AOC BOC ∠+∠=︒,求COD ∠的度数.15.如图,已知点M 是线段AB 的中点,点E 将AB 分成:3:4AE EB =的两段,若2cm EM =,求线段AB 的长度.16.如图,已知正方形网格中的三点A ,B ,C ,按下列要求完成画图和解答: (1)画线段AB ,画射线AC ,画直线BC ;(2)取AB 的中点D ,并连接CD ;(3)根据图形可以看出:∠________与∠________互为补角.17.如图,AOB ∠是一个钝角,OC 平分AOB ∠,射线OD 在BOC ∠内,OE 平分BOD ∠.(1)若AOB ∠=120°,COD ∠=20°,求DOE ∠的度数.(2)若BOD α∠=,AOB COE β∠+∠=,求COE ∠的度数(用含α,β的代数式表示).(3)请写出AOD ∠与COE ∠度数之间的等量关系,并说明理由.18.把下列解答过程补充完整:如图,已知线段16cm AB =,点C 为线段AB 上的一个动点,点M ,N 分别是AC 和BC 的中点.(1)若点C 恰为AB 的中点,求MN 的长;(2)若6cm AC =,求MN 的长;(3)试猜想:不论AC 取何值(不超过16cm ),MN 的长总等于_______________. 19.如图,已知AOC ∠和BOD ∠都是直角,(1)填空:①与BOC ∠互余的角有__________;②AOD ∠和BOC ∠的关系是_____________.(2)若313AOB AOD ∠=∠,求BOC ∠的度数. 20.如图,不在同一条直线上的四个点A ,B ,C ,D ,请按下列要求画图.(不写画法)(1)连接AC ,BD 相交于点O ;(2)连接CB ,DA ,延长线段CB 交DA 延长线交于点P ;(3)连接BA ,并延长,在射线BA 上用圆规截取线段BE BD =.三、解答题21.已知直角三角板ABC 和直角三角板DEF ,∠ACB =∠EDF =90°,∠ABC =45°,∠DEF =60°.(1)如图1,将顶点C 和顶点D 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转,当CF 平分∠ACB 时,求∠BCE 的度数;(2)在(1)的条件下,继续旋转三角板DEF ,猜想∠ACF 与∠BCE 有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C 和顶点E 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转当CA 落在∠DCF 内部时,直接写出∠ACD 与∠BCF 的数量关系.22.如图,已知120AOB ∠=︒,30BOC ∠=︒,OD 是AOC ∠的角平分线,求BOD ∠的度数.23.如图,已知两点A 、B .(1)画出符合要求的图形.①画线段AB ;②延长线段AB 到点C ,使BC =AB ;③反向延长线段AB 到点D ,使DA =2AB .(2)请问点A ,点B 分别是哪两条线段的中点?并说明理由;(3)若已知线段AB 的长是2cm ,求线段CD 的长.24.已知AOB ∠内部有三条射线,其中,OE 平分BOC ∠,OF 平分AOC ∠.(1)如图1,若90AOB ∠=︒,30AOC ∠=︒,求EOF ∠的度数;(2)如图2,若AOB α∠=,求EOF ∠的度数(用含α的式子表示);(3)若将题中的“平分”条件改为“3EOB COB ∠∠=,32COF COA ∠∠=”,且AOB α∠=,用含α的式子表示EOF ∠的度数为 .25.(1)已知||7x =,||5y =,且0x y +<,求x y -的值?(2)推理填空:如图所示,点O 是直线AB 上一点,130BOC ∠=︒,OD 平分AOC ∠.求:COD ∠的度数.解:O 是直线AB 上一点,AOB ∴∠= .130BOC ∠=︒,AOC AOB BOC ∴∠=∠-∠= .OD 平分AOC ∠,COD AOD ∴∠=∠.理由是COD ∴∠= .26.如图,已知OE 是AOC ∠的角平分线,OD 是BOC ∠的角平分线.(1)若70AOE ∠=︒,20COD ∠=︒,求AOB ∠的度数;(2)若45DOE ∠=︒,且180AOC BOC ∠+∠=︒,求COD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据线段中点的性质、结合图形、线段和差倍分计算即可判断.【详解】解:∵H 为AC 的中点,M 为AB 的中点,N 为BC 的中点,∴AH=CH=12AC ,AM=BM=12AB ,BN=CN=12BC ,∴MN=MB+BN=12(AB+BC)=12AC,∴MN=HC,①正确;1 2(AH﹣HB)=12(AB﹣BH﹣BH)=MB﹣HB=MH,②正确;MN=12AC<1()2AC HB+,③错误;1 2(HC+HB)=12(BC+HB+HB)=BN+HB=HN,④正确,故选择:D.【点睛】本题考查线段的中点定义,线段和差倍分的概念,掌握线段的中点定义,线段和差倍分的概念.2.A解析:A【分析】根据多边形的定义,多边形对角线,角的大小,周角等知识逐项判断即可求解.【详解】解:①由许多条线段连接而成的图形叫做多边形,判断错误;②从一个多边形(边数为n)的同一个顶点出发,分别连接这个顶点与其余与之不相邻的各顶点,可以把这个多边形分割成()2n-个三角形,判断正确;③角的边越长,角越大,判断错误;④一条射线就是一个周角,判断错误.故选:A【点睛】本题考查了多边形、角等知识,理解多边形、多边形对角线、角、周角的概念是解题关键.3.D解析:D【分析】依据角的概念、直线的性质、相反数的定义以及两点之间的距离的定义进行判断即可;【详解】A、-a的相反数不一定是正数,故错误;B、两点之间的线段的长度叫两点之间的距离,故错误;C、有公共顶点两条射线组成的图形叫做角,故错误;D、两点确定一条直线,故正确;故选:D.【点睛】本题主要考查了直线的性质、角的概念、两点之间的距离的定义,掌握相关概念和性质是解题的关键.4.B解析:B【分析】先作射线AE ,然后在射线AE 上作线段AC=a ,再在射线CE 上作线段CD=a ,最后在射线DE 上作线段DB=b ,则线段AB= 2a+b .【详解】解:由题意知,正确的画图步骤为:①作一条射线AE ;③在射线AE 上作线段AC =a ,再在射线CE 上作线段CD =a ;④在射线DE 上作线段DB =b ;②则线段AB = 2a +b ; 故选:B .【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.5.D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A 、射线AB 和射线BA 是不同的射线,故本选项不符合题意;B 、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C 、两点之间,线段最短,故本选项不符合题意;D 、七边形的对角线一共有7(73)142条,正确 故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键. 6.A解析:A【分析】 根据线段的中点的意义可得12DB AB =,12BE BC =,再根据12DE DB EB AC =-=即可得到结论.【详解】解:∵点D 、E 分别为线段AB 、CB 的中点, ∴12AD DB AB ==,12CE BE BC ==又1111()2222 DE DB EB AB BC AB BC AC =-=-=-=∵7AC=∴ 3.5DE=故选:A.【点睛】本题考查的是两点间的距离,关键是通过中点确定所求线段和整体线段的数量关系,进而求解.7.D解析:D【分析】根据垂直的定义得∠AOE=∠BOE=90°,由角平分线的定义和对顶角的性质可得∠AOD=∠BOC=2∠COF.把∠DOE=∠AOD+90°,∠EOF=90°-∠BOF=90°-∠COF代入∠DOE=3∠EOF+5°可求出∠COF,进而可求出∠AOD的值.【详解】解:∵EO AB⊥,∴∠AOE=∠BOE=90°.∵OF平分BOC∠,∴∠AOD=∠BOC=2∠COF.∵∠DOE=∠AOD+90°,∠EOF=90°-∠BOF=90°-∠COF,35DOE EOF︒∠=∠+,∴∠AOD+90°=3(90°-∠COF)+5°,∴2∠COF+90°=270°-3∠COF+5°,∴∠COF=37°,∴∠AOD=2×37°=74°.故选D.【点睛】本题考查了角的和差,以及角平分线的定义,正确识图是解答本题的关键.8.C解析:C【分析】分两种情形:①当点C在线段AB上时,②当点C在线段AB的延长线上时,再根据线段的和差即可得出答案【详解】解:∵BC=12AB,AB=8cm,∴BC=4cm①当点C在线段AB上时,如图1,∵AC=AB-BC,又∵AB=8cm,BC=4cm,∴AC=8-4=4cm;②当点C在线段AB的延长线上时,如图2,∵AC=AB+BC,又∵AB=8cm,BC=4cm,∴AC=8+4=12cm.综上可得:AC=4cm或12cm.故选:C.【点睛】本题考查的是两点间的距离,在画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.C解析:C【分析】根据方位角的概念,由南向东旋转60度即可.【详解】解:根据方位角的概念,结合题意要求和选项,故选:C.【点睛】考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南)10.B解析:B【分析】正八边形的一个内角为135°,从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.【详解】正八边形的每个内角为()821808-⨯︒=135°,A、正八边形、正三角形内角分别为135°、60°,显然不能构成360°的周角,故不能铺满;B、正方形、八边形内角分别为90°、135°,由于135×2+90=360,故能铺满;C、正六边形、正八边形内角分别为120°、135°,显然不能构成360°的周角,故不能铺满;D、正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满.故选:B.【点睛】本题主要考查了平面镶嵌(密铺),解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.11.C解析:C【分析】根据平面镶嵌的概念逐一判断即可得.【详解】正三角形的每个内角为60°,正六边形的每个内角为120°,A.由3×60°+2×120°=420°≠360°知三个正三角形、两个正六边形不符合题意;B.由4×60°+2×120°=480°≠360°知四个正三角形、两个正六边形不符合题意;C.由2×60°+2×120°=360°知两个正三角形、两个正六边形符合题意;D.由3×60°+120°=300°≠360°知三个正三角形、一个正六边形不符合题意;故选:C.【点睛】本题主要考查了平面镶嵌(密铺),判断一种或几种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360°,则说明能够进行平面镶嵌,反之则不能.12.A解析:A【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可作出判断.【详解】A、正方形的每个内角是90°,4个能密铺,符合题意;B、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺,不符合题意;C、正七边形每个内角是180°-360°÷7=9007,不能整除360°,不能密铺,不符合题意;D、正八边形每个内角是180°-360°÷8=135°,不能整除360°,不能密铺,不符合题意.故选:A.【点睛】本题考查了一种多边形的镶嵌问题,考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.二、填空题13.【分析】根据按比例分配的意义线段中点的意义及线段的和差运算解答【详解】解:由图可知:AC:CD:DB=2:3:4∴∵BD=8cm∴cm∵点M为线段AB的中点∴BM=18cm∴DM=BM-BD=9-8解析:=1cm DM【分析】根据按比例分配的意义、线段中点的意义及线段的和差运算解答.【详解】解:由图可知:AC:CD:DB=2:3:4, ∴49DB AB =, ∵BD=8cm , ∴98184AB =⨯=cm , ∵点M 为线段AB 的中点,∴BM=18192⨯=cm , ∴DM=BM-BD=9-8=1cm .【点睛】本题考查线段的应用,熟练掌握按比例分配的意义、线段中点的意义及线段的和差运算是解题关键.14.(1)100°;(2)225°【分析】(1)由角平分线的定义可知∠BOC=2∠COD ∠AOC=2∠AOE 根据∠AOB=∠AOC-∠BOC 易得结果;(2)由角平分线定义设∠COD=∠BOD=x 得∠BO解析:(1)100°;(2)22.5°【分析】(1)由角平分线的定义可知∠BOC=2∠COD ,∠AOC=2∠AOE ,根据∠AOB=∠AOC-∠BOC 易得结果;(2)由角平分线定义,设∠COD=∠BOD=x .得∠BOE=45°−x ,∠COE=45°+x .∠AOE=∠COE=45°+x 再根据题意∠AOC+∠BOC=180°,列方程,求出x ,即可得.【详解】解:(1)因为OD 是BOC ∠的角平分线,20COD ∠=︒,所以240BOC COD ∠=∠=︒.因为OE 是AOC ∠的角平分线,所以2140AOC AOE ∠=∠=︒.所以14040100AOB AOC BOC ∠=∠-∠=-︒=︒.(2)因为OD 是BOC ∠的角平分线,所以设COD BOD x ∠=∠=.因为45DOE ∠=︒,所以45BOE x ∠=︒-,45COE x ∠=︒+.因为OE 是AOC ∠的角平分线,所以45AOE COE x ∠=∠=︒+因为180AOC BOC ∠+∠=︒,所以()2452180x x ︒++=︒,所以22.5x =︒,即22.5COD ∠=︒.【点睛】本题考查了角平分线知识,关键是根据题意,由角平分线得定义得出角之间的等量关系,从而根据等量关系求出角的度数.15.线段AB 的长为28cm 【分析】由点E 将AB 分成的两段设AE=3kBE=4k 可用k 表示AB=7k 由点M 是线段AB 的中点AM=由EM=AM-AE==2cm 求出k=4cm 即可【详解】解:∵点E 将AB 分成的解析:线段AB 的长为28cm .【分析】由点E 将AB 分成:3:4AE EB =的两段,设AE=3k ,BE=4k ,可用k 表示AB=7k ,由点M 是线段AB 的中点,AM=17AB=22k ,由EM=AM-AE=71322k k k -==2cm ,求出k=4cm 即可.【详解】解:∵点E 将AB 分成:3:4AE EB =的两段,设AE=3k ,BE=4k ,∴AB=AE+BE=3k+4k=7k ,∵点M 是线段AB 的中点,∴AM=17AB=22k , ∴EM=AM-AE=71322k k k -==2cm , ∴k=4cm ,∴AB=7k=7×4=28cm .∴线段AB 的长为28cm .【点睛】本题考查线段比例,线段中点,掌握线段的比例问题解题法法,线段中点,会利用线段差构造等式解决问题是解题关键.16.(1)见解析;(2)见解析;(3)∠ADC 与∠BDC 互为补角【分析】(1)根据直线射线线段的定义画出图形即可;(2)根据中点的定义找到点D 再连接CD 即可;(3)根据补角的性质即可得出答案【详解】解:解析:(1)见解析;(2)见解析;(3)∠ADC 与∠BDC 互为补角【分析】(1)根据直线,射线,线段的定义画出图形即可;(2)根据中点的定义找到点D 再连接CD 即可;(3)根据补角的性质即可得出答案.【详解】解:(1)如下图所示;(2)如下图所示;(3)根据图形可以看出:∠ADC 与∠BDC 互为补角.【点睛】本题考查了作图-应用与设计,解题的关键时熟练掌握基本知识,灵活运用所学知识解决问题.17.(1)=20°;(2);(3)见解析【分析】(1)根据角平分线的定义以及角的和差关系计算即可;(2)根据角平分线的定义可得===利用角的和差关系及等量关系可得出等式即由此用含有的代数式表示出即可得出解析:(1)DOE ∠=20°;(2)3COE βα-∠=;(3)2AOD COE ∠=∠,见解析 【分析】(1)根据角平分线的定义以及角的和差关系计算即可;(2)根据角平分线的定义可得AOC ∠=BOC ∠,DOE ∠=∠BOE =2α,利用角的和差关系及等量关系可得出等式()()2BOD COD COD DOE β∠+∠+∠+∠=,即()22COD COD ααβ⎛⎫+∠+∠+= ⎪⎝⎭,由此用含有α,β的代数式表示出1532COD βα⎛⎫∠=- ⎪⎝⎭,即可得出结论; (3)根据角平分线的定义以及角的和差关系可得12COE COD DOE COD BOD ∠=∠+∠=∠+∠,2BOD COD COD COD BOD AOD =∠+∠+∠=∠+∠∠,即可得出2AOD COE ∠=∠.【详解】解:(1)∵AOB ∠=120°,OC 平分AOB ∠,∴AOC ∠=BOC ∠=60°,∵COD ∠=20°,∴ 602040BOD BOC COD ∠=∠-∠=︒-︒=︒,∵OE 平分BOD ∠,∴DOE ∠=12BOD ∠=12×40°=20°; (2)∵OC 平分AOB ∠,∴AOC ∠=BOC ∠, ∵BOD α∠=,OE 平分BOD ∠,∴DOE ∠=∠BOE =2α,∵AOB COE β∠+∠=,∴2BOC COE β∠+∠=,∴()()2BOD COD COD DOE β∠+∠+∠+∠=,即()22COD COD ααβ⎛⎫+∠+∠+= ⎪⎝⎭, ∴532COD αβ+∠=, ∴1532COD βα⎛⎫∠=- ⎪⎝⎭, ∴3COE COD DOE βα-∠=∠+∠=;(3)2AOD COE ∠=∠,理由是: ∵12COE COD DOE COD BOD ∠=∠+∠=∠+∠, COD AO CO OC D A CO D B ∠=∠∠+∠∠=+,∴2BOD COD COD COD BOD AOD =∠+∠+∠=∠+∠∠, 即12()2CO AO D OD D B =∠+∠∠, ∴2AOD COE ∠=∠.【点睛】本题考查了角的计算,熟练掌握角平分线的定义是解答此题的关键.18.(1)8;(2)8;(3)【分析】(1)根据中点的性质求出ACBC 的长根据线段中点的定义计算即可;(2)根据线段的和差求出ACBC 的长根据线段中点的定义计算即可;(3)根据中点的性质求出ACBC 的长解析:(1)8;(2)8;(3)8cm【分析】(1)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可;(2)根据线段的和差求出AC 、BC 的长,根据线段中点的定义计算即可;(3)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可说明结论.【详解】解:(1)∵点C 恰为AB 的中点,16cm AB =, ∴18cm 2AC BC AB ===, ∴点M ,N 分别是AC 和BC 的中点, ∴114cm,4cm 22CM AC CN BC ====, ∴8cm MN MC CN =+=;(2)∵16cm AB =,6cm AC =,∴10cm BC =,∵点M ,N 分别是AC 和BC 的中点 ∴113cm,5cm 22MC AC CN CB ====, ∴8cm MN MC CN =+=;(3)猜想:不论AC 取何值(不超过16cm ),MN 的长总等于8cm .∵点M 、N 分别是AC 和BC 的中点,∴MC=12AC ,CN=12BC , ∴MN=12(AC+BC )=12AB=12×16=8cm , ∴不论AC 取何值(不超过16cm ),MN 的长不变【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.19.(1)∠AOB ∠COD ;(2)互补;(3)63°【分析】(1)根据∠AOB+∠BOC=∠COD+∠BOC=90°解答即可;(2)求出∠AOD+∠BOC=∠AOC+∠BOD 代入求出即可;(3)设∠AO解析:(1)∠AOB 、∠COD ;(2)互补;(3)63°.【分析】(1)根据∠AOB+∠BOC=∠COD+∠BOC=90°,解答即可;(2)求出∠AOD+∠BOC=∠AOC+∠BOD ,代入求出即可;(3)设∠AOB=3x ,∠AOD=13x ,根据∠AOD-∠AOB=90°得出方程13x-3x=90°,求出即可.【详解】解:(1)因为∠AOC 和∠BOD 都是直角,所以∠AOB+∠BOC=∠COD+∠BOC=90°,所以∠BOC 与∠AOB 互余,∠BOC 与∠COD 互余,故答案为:∠AOB 、∠COD ;(2)∠AOD 与∠BOC 互补,理由如下:因为∠AOC 和∠BOD 都是直角,所以∠AOB+∠BOC=∠COD+∠BOC=90°,又因为∠AOD=∠AOB+∠BOC+∠COD,所以∠AOD+∠BOC=∠AOB+∠BOC+∠COD+∠BOC=180°,所以∠AOD与∠BOC互补;故答案为:互补;(3)设∠AOB=3x°、则∠AOD=13x°,所以∠BOD=∠AOD-∠AOB=13x-3x=10x=90,即x=9,所以∠AOD=13x=117°,由(2)可知∠AOD与∠BOC互补,所以∠BOC=180°-117°=63°.【点睛】本题考查了角的有关计算.解题的关键是明确角的有关计算方法,以及能够根据图形进行计算.20.(1)见解析;(2)见解析;(3)见解析【分析】(1)分别连结AC和BD并把ACBD的交点标记为O即可;(2)连接CB和DA并分别延长并把它们延长线的交点标记为P即可;(3)以B为端点作一条射线经过解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)分别连结A、C和B、D,并把AC、BD的交点标记为O即可;(2)连接CB和DA并分别延长,并把它们延长线的交点标记为P即可;(3)以B为端点,作一条射线经过A,然后以B为圆心、BD长为半径画弧交射线BA于点E即可.【详解】解:(1)如图,AC,BD相交于点O.(2)如图,CB,DA相交于点P.(3)如答图,BE为所求.【点睛】本题考查与线段有关的尺规作图,熟练掌握用尺规作线段及其延长线以及在射线上截取线段等于已知线段的方法和步骤是解题关键.三、解答题21.(1)45°;(2)∠ACF=∠BCE,理由见解析;(3)∠ACD=∠BCF﹣30°(1)利用角平分线的性质求出,然后利用余角的性质求解.(2)依据同角的余角相等即可求解.(3)分别用∠ACD 与∠BCF 表示出∠ACF ,即可求解.【详解】解:(1)∵CF 是∠ACB 的平分线,∠ACB =90°∴∠BCF =90°÷2=45°又∵∠FCE =90°,∴∠BCE =∠FCE ﹣∠BCF =90°﹣45°=45°;(2)∵∠BCF +∠ACF =90°,∠BCE +∠BCF =90°,∴∠ACF =∠BCE ;(3)∵∠FCA =∠FCD ﹣∠ACD =60°﹣∠ACD ,∠FCA =∠ACB ﹣∠BCF =90°﹣∠BCF ,∴60°﹣∠ACD =90°﹣∠BCF ,∠ACD =∠BCF ﹣30°.【点睛】本题考查了角平分线的性质,角与角之间的关系,同角的余角相等的性质.要善于观察顶点相同的角之间关系.22.75°【分析】根据角的和差性质计算,得∠AOC ;根据角平分线的性质计算,得COD ∠;再根据角的和差性质计算,即可得到答案.【详解】∵∠AOB =120°,∠BOC =30°∴∠AOC =∠AOB -∠BOC =90°又∵OD 是∠AOC 的角平分线, ∴1452COD AOC ∠=∠=︒ ∴∠BOD =∠COD+∠BOC =45°+30°=75°.【点睛】本题考查了角的和差和角平分线的知识;解题的关键是熟练掌握角的和差和角平分线的性质,从而完成求解.23.(1)见解析;(2)A 是线段DC 的中点,B 是线段AC 的中点,理由见解析;(3)8cm【分析】(1)根据要求画图即可,(2)利用线线段的关系可得出A 是线段DC 的中点,B 是线段AC 的中点,(3)利用CD=4AB 求解即可.解:(1)如图,(2)A是线段DC的中点,B是线段AC的中点,∵BC=AB,∴B是线段AC的中点,∴AC=2AB,又∵DA=2AB,∴A是线段DC的中点;(3)∵AB的长度是2cm,∴CD=4AB=4×2=8cm.【点睛】本题主要考查了线段及中点,距离的运算,解题的关键是明确线段之间的关系.24.(1)∠EOF=45°,(2)∠EOF=12α,(3)∠EOF=23α .【分析】(1) 首先求得∠BOC的度数,然后根据角的平分线的定义和角的和差可得:∠EOF=∠EOC+∠COF即可求解;(2) 根据角的平分线的定义和角的和差可得∠EOF=∠EOC+∠COF= 12∠BOC+12∠AOC=12(∠BOC+∠AOC),即可求解;(3) 根据角的等分线的定义可得:∠EOF=∠EOC+∠COF= 23∠BOC+ 23∠AOC=2 3(∠BOC+∠AOC) =23∠AOB,即可求解 .【详解】解:(1)∠BOC=∠AOB﹣∠AOC=90°﹣30°=60°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=12×60°=30°,∠COF=12∠AOC=12×30°=15°,∴∠EOF=∠EOC+∠COF=30°+15°=45°;(2)∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC,∠COF=12∠AOC,∴∠EOF=∠EOC+∠COF= 12∠BOC+ 12∠AOC= 12(∠BOC+∠AOC)=12∠AOB= 12α;(3)3∠EOB=∠COB ,3∠COF=2∠COA即∠EOB=13∠BOC ,∠COF=23∠AOC , ∴∠EOC=23∠BOC ∴∠EOF=∠EOC+∠COF=23∠BOC+23∠AOC= 23(∠BOC+∠AOC )=23∠AOB= 23α. 【点睛】本题主要考查角的计算及角平分线的定义,角的等分线的定义,注意运算的准确性. 25.(1)2-或12-;(2)180︒,50︒,角平分线定义,25︒【分析】(1)根据绝对值的定义可得7=±x ,5y =±,由题意中0x y +<,可得7x =-,5y =±,即可求解;(2)根据平角的定义、角平分线的定义即可求解.【详解】解:(1)∵||7x =,||5y =,∴7=±x ,5y =±,∵0x y +<,∴7x =-,5y =±,∴2x y -=-或12-;(2)O 是直线AB 上一点,AOB ∴∠=180°.130BOC ∠=︒,AOC AOB BOC ∴∠=∠-∠=50°. OD 平分AOC ∠,COD AOD ∴∠=∠.理由是角平分线定义,COD ∴∠=25°.【点睛】本题考查绝对值的定义、有理数加法的符号、角平分线的定义,掌握上述知识内容是解题的关键.26.(1)100°;(2)22.5°【分析】(1)由角平分线的定义可知∠BOC=2∠COD ,∠AOC=2∠AOE ,根据∠AOB=∠AOC-∠BOC 易得结果;(2)由角平分线定义,设∠COD=∠BOD=x .得∠BOE=45°−x ,∠COE=45°+x .∠AOE=∠COE=45°+x 再根据题意∠AOC+∠BOC=180°,列方程,求出x ,即可得.【详解】解:(1)因为OD 是BOC ∠的角平分线,20COD ∠=︒,所以240BOC COD ∠=∠=︒.因为OE 是AOC ∠的角平分线,所以2140AOC AOE ∠=∠=︒.所以14040100AOB AOC BOC ∠=∠-∠=-︒=︒.(2)因为OD 是BOC ∠的角平分线,所以设COD BOD x ∠=∠=.因为45DOE ∠=︒,所以45BOE x ∠=︒-,45COE x ∠=︒+.因为OE 是AOC ∠的角平分线,所以45AOE COE x ∠=∠=︒+因为180AOC BOC ∠+∠=︒,所以()2452180x x ︒++=︒,所以22.5x =︒,即22.5COD ∠=︒.【点睛】本题考查了角平分线知识,关键是根据题意,由角平分线得定义得出角之间的等量关系,从而根据等量关系求出角的度数.。
一、选择题1.如图,∠AOB =∠COD =90°,若∠BOD =150°,则∠BOC 的度数为( )A .150°B .120°C .90°D .60°2.下列说法中,正确的个数为( )①单项式223x y π-的系数是23-;②0是最小的有理数;③2t 不是整式;④33x y -的次数是4;⑤4ab 与4xy 是同类项;⑥1y是单项式;⑦连接两点的线段叫两点间的距离;⑧若点C 是线段AB 的中点,则AC BC =. A .2个 B .3个C .4个D .5个 3.下列说法中,正确的是( ).A .a -的相反数是正数B .两点之间线的长度叫两点之间的距离C .两条射线组成的图形叫做角D .两点确定一条直线 4.已知点O 在直线AB 上,且线段4OA =,6OB =,点E ,F 分别是OA ,OB 的中点,则线段EF 的长为( )A .1B .5C .3或5D .1或5 5.如图,线段CD 在线段AB 上,且2CD =,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A .28B .29C .30D .316.下列四个图中,能用1∠、O ∠、MON ∠三种方法表示同一个角的是( ) A . B . C .D .7.下列图形中,表示南偏东60°的射线是( )A.B.C.D.8.钟表上12时15分时,时针和分针的夹角是()A.120°B.90°C.82.5°D.60°9.如图,OA是表示北偏东55︒方向的一条射线,则OA的反向延长线OB表示的是()A.北偏西55︒方向上的一条射线B.北偏西35︒方向上的一条射线C.南偏西35︒方向上的一条射线D.南偏西55︒方向上的一条射线10.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是()A.B.C.D.11.已知:如图,C是线段AB的中点,D是线段BC的中点,AB=20 cm,那么线段AD等于()A.15 cm B.16 cm C.10 cm D.5 cm12.如图,∠PQR等于138°,SQ⊥QR,QT⊥PQ.则∠SQT等于()A.42°B.64°C.48°D.24°二、填空题13.如图,已知C,D两点将线段AB分成三部分,且这三部分的长度之比为2:3:4,点M为线段AB的中点,BD=8cm,求线段DM的长.14.如图,B、C是线段AD上的任意两点,M是AB的中点,N是CD的中点,如果MN=3cm,BC=1.5cm,求AD的长.15.如图,已如A ,B 两点.(1)画线段AB ;(2)延长线段AB 到点C ,使BC AB =;(3)反向延长线段AB 到点D ,使DA AB =;(4)点A ,B 分别是哪条线段的中点?若3cm AB =,请求出线段CD 的长.16.如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且14AB =,动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (0)t >秒:(1)写出数轴上点B 表示的数为______,点P 表示的数为______ (用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长. 17.如图,已知线段DA 与B 、C 两点,用圆规和无刻度的直尺按下列要求画图并计算:(不写作法但要保留作图痕迹)⑴ 画线段AC 、直线AB 、射线DC ,且直线AB 与射线DC 相交于点O ;延长线段DA 至点E ,使AE=AC ;⑵ 若AC=2cm ,AD=3cm ,点F 为线段AD 的中点,求线段EF 的长.18.已知线段AC 和线段BC 在同一直线上,若12cm AC =,8cm BC =,线段AC 的中点为M ,线段BC 的中点为N ,试求M 、N 两点之间的距离.19.如图,已知点C 在线段AB 上,点D 、E 分别在线段AC 、BC 上,(1)观察发现:若D 、E 分别是线段AC 、BC 的中点,且12AB =,则DE =_______; (2)拓展探究;若2AD DC =,2BE CE =,且10AB =,求线段DE 的长;(3)数学思考:若AD kDC =,BE kCE =(k 为正数),则线段DE 与AB 的数量关系是________.20.(1)计算:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭(2)如图,OD 平分AOC ∠,75BOC ∠=︒,15BOD ∠=︒.求AOB ∠的度数.三、解答题21.用直尺和圆规作图,不写作法,但要保留作图痕迹. 如图,已知线段a 、b ,求作:线段AB ,使2AB a b =+.22.如图,已知O 是直线AC 上一点,OC 平分BOD ∠,160AOB ∠=︒,OE AC ⊥,求DOE ∠的度数.23.如图,点O 在直线AB 上,OE 、OF 分别平分AOC ∠、BOD ∠.(1)当144BOC ∠=︒时,COE ∠=(2)当40AOC ∠=︒,60BOD ∠=︒时,求EOF ∠的度数;(3)当40COD ∠=︒时,求EOF ∠的度数;(4)当COD x ∠=︒时,直接写出EOF ∠的度数(用含x 的式子表示).24.计算:(1)2113623⎛⎫-+⨯-⎪⎝⎭ (2)48396735''︒+︒ 25.如图1所示,将一副三角尺的直角顶点重合在点O 处.(1)①指出∠AOD和∠BOC的数量关系.②∠AOC和∠BOD在数量上有何关系?说明理由;(2)若将等腰直角三角尺绕点O旋转到如图2的位置.①∠AOD和∠BOC相等吗?说明理由;②指出∠AOC和∠BOD的数量关系.26.已知,∠AOD=120°,若B是∠AOD内任意一点,连接OB.(1) 如图①,若OM平分∠AOB,ON平分∠BOD,求∠MON的度数.(2) 如图②,OC是∠BOD内的射线,且∠BOC=20°,若OM平分∠AOC,ON平分∠BOD,求∠MON的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】把∠BOD和∠COD的度数代入∠BOC=360°﹣∠BOD﹣∠COD,即可求出答案.【详解】解:∵∠BOD=150°,∠DOC=90°,∴∠BOC=360°﹣∠BOD﹣∠COD=360°﹣150°﹣90°=120°,故选:B.【点睛】本题考查了周角,角的有关计算的应用,主要考查学生观察图形的能力和计算能力,注意:1周角=360°.2.A解析:A由单项式的系数的概念判断①,由有理数与绝对值的含义判断②,由整式的概念判断③,由单项式的次数的概念判断④。
初一基本平面图形一、单选题1.如图,在直角坐标系xOy 中,点P 的坐标为(4,3),PQ ⊥x 轴于Q ,M ,N 分别为OQ ,OP 上的动点,则QN +MN 的最小值为( )A .7225B .245C .125D .9625 2.已知,点C 在直线 AB 上, AC =a , BC =b ,且 a ≠b ,点 M 是线段 AB 的中点,则线段 MC 的长为( )A .2a b +B .2a b -C .2a b +或2a b -D .+2a b 或||2a b - 3.如图,C 、D 是线段AB 上两点,M 、N 分别是线段AD 、BC 的中点,下列结论:①若AD=BM ,则AB=3BD ;②若AC=BD ,则AM=BN ;③AC-BD=2(MC-DN );④2MN=AB-CD .其中正确的结论是( )A .①②③B .③④C .①②④D .①②③④ 4.把 8.32°用度、分、秒表示正确的是( )A .8°3′2″B .8°30′20″C .8°18′12″D .8°19′12″ 5.经过平面上的四个点,可以画出来的直线条数为( )A .1B .4C .6D .前三项都有可能6.如图,点M 在线段AN 的延长线上,且线段MN=20,第一次操作:分别取线段AM 和AN 的中点11M N ,;第二次操作:分别取线段1AM 和1AN 的中点22,M N ;第三次操作:分别取线段2AM 和2AN 的中点33,M N ;……连续这样操作10次,则每次的两个中点所形成的所有线段之和11221010M N M N M N +++=L ( )A .910202-B .910202+C .1010202-D .1010202+ 7.已知线段AC 和BC 在同一直线上,AC =8cm ,BC =3cm ,则线段AC 的中点和BC 中点之间的距离是( )A .5.5cmB .2.5cmC .4cmD .5.5cm 或2.5cm8.如图,将一副三角板的直角顶点重合摆放在在桌面上,下列各组角一定能互补的是( )A .∠BCD 和∠ACFB .∠ACD 和∠ACFC .∠ACB 和∠DCBD .∠BCF 和∠ACF9.如图,在公路 MN 两侧分别有 A 1, A 2......A 7,七个工厂,各工厂与公路 MN(图中粗线)之间有小公路连接.现在需要在公路 MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( ).①车站的位置设在 C 点好于 B 点;②车站的位置设在 B 点与 C 点之问公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A .①B .②C .①③D .②③ 10.如图,某公司有三个住宅区,A ,B ,C 各区分别住有职工10人,15人,45人,且这三个区在一条大道上(A ,B ,C 三点共线),已知AB =150m ,BC =90m .为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A .点AB .点BC .点A ,B 之间D .点C 11.观察下列图形,并阅读图形下面的相关文字,如图所示:两条直线相交,三条直线相交,四条直线相交,最多有一个交点,最多有三个交点;最多有6个交点,像这样,10条直线相交,最多交点的个数是( )A.40个B.45个C.50个D.55个二、填空题12.已知点A,B,C都在直线l上,点P是线段AC的中点.设AB a=,PB b,则线段BC的长为________(用含a,b的代数式表示)13.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,则AC=_____.14.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+2|+(b﹣1)2=0,A、B 之间的距离记作|AB|,定义:|AB|=|a﹣b|.①线段AB的长|AB|=3;②设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,x=0.5;③若点P在A的左侧,M、N分别是PA、PB的中点,当P在A的左侧移动时|PM|+|PN|的值不变;④在③的条件下,|PN|﹣|PM|的值不变.以上①②③④结论中正确的是_______(填上所有正确结论的序号)15.已知∠AOB=90°,射线OC在∠AOB内部,且∠AOC=20°,∠COD=50°,射线OE、OF分别平分∠BOC、∠COD,则∠EOF的度数是_____.16.把一根绳子对折成一条线段AB,在线段AB取一点P,使AP=13PB,从P处把绳子剪断,若剪断后的三段..绳子中最长的一段为30cm,则绳子的原长为______cm.17.钟表4点30分时,时针与分针所成的角的度数是___________ 。
七年级数学基本平面图形典型例题与强化训练典型例题:例1、已知线段AB ,延长线段AB 到C ,使BC=23 AB ,反向延长线段AB 至D ,使AD=12 AB ,P 为线段CD 的中点,已知BP=15cm ,求线段AB 、CD 的长。
例2、如图,C ,D ,E 将线段AB 分成2:3:4:5四部分,M ,P ,Q ,N 分别是AC ,CD ,DE ,EB 的中点,且MN=21,求线段PQ 的长度.例3、已知线段AB=14cm ,在直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,求线段AM 的长.例4、如图所示,∠AOB=90°, ∠BOC=30°,OE 平分∠AOC ,OD 平分∠BOC,求∠DOE 的度数。
(1)若∠AOB=α,其他条件不变,∠DOE 等于多少? (2)若∠BOC=β,其他条件不变,∠DOE 等于多少?(3)若∠AOB=α,∠BOC=β,其他条件不变,∠DOE 等于多少?例5、如图,直线AB 、CD 相交于点O ,且∠BOC=80°,OE 平分∠BOC .OF 为OE 的反向延长线.求∠2和∠3的度数,并说明OF 是否为∠AOD 的平分线.例6、如图,由点O 引出六条射线OA 、OB 、OC 、OD 、OE 、OF ,且∠AOB=90°,OF 平分∠BOC ,OE 平分∠AOD 。
若∠EOF=170°,求∠COD 的度数。
ADEBFC练习:1.下列说法中,错误的是()A .经过一点可以作无数条直线B .经过两点只能作一条直线C .一条直线只能用一个字母表示D .线段CD 和线段DC 是同一条线段 2.下列说法中,正确的是( )A .射线AB 和射线BA 是同一条射线 B .延长射线MN 到CC .延长线段MN 到P 使NP =2MND .连结两点的线段叫做两点间的距离 3.平面上的三条直线最多可将平面分成( )部分。
一、选择题1.若线段AB =12cm ,点C 是线段AB 的中点,点D 是线段AC 的三等分点,则线段BD 的长为( ) A .2cm 或4cmB .8cmC .10cmD .8cm 或10cm2.如图,点Q 在线段AP 上,其中10PQ =,第一次分别取线段AP 和AQ 的中点1P ,1Q 得到线段11PQ ;再分别取线段1AP 和1AQ 的中点2P ,2Q 得到线段22P Q ;第三次分别取线段2AP 和2AQ 的中点3P ,3Q 得到线段33PQ ;连续这样操作11次,则每次的两个中点所形成的所有线段之和1122331111PQ P Q PQ P Q ++++=( )A .1010102-B .1110102-C .1010102+D .1110102+3.如图,上午8:20,钟表的时针与分针所成的角是( )A .120°B .125°C .130°D .135°4.有如下说法:①直线是一个平角;②如果线段AM MC =,则M 是线段AC 的中点;③在同一平面内,60AOB ∠=︒,30BOC ∠=︒,30AOC ∠=︒;④两点之间,线段最短.其中正确的有( ) A .1个B .2个C .3个D .4个5.如图,甲从点A 出发向北偏东65°方向走到点B ,乙从点A 出发向南偏西20°方向走到点C ,则BAC ∠的度数是( )A .85°B .135°C .105°D .150°6.下列四个图中,能用1∠、O ∠、MON ∠三种方法表示同一个角的是( )A .B .C .D .7.已知线段AB =8cm ,在直线AB 上画线BC ,使BC=12AB ,则线段AC 等于( ) A .12cmB .4cmC .12cm 或4cmD .8cm 或12cm8.在直线l 上有四个点A ,B ,C ,D ,已知10AB =,6AC =,点D 是BC 的中点,则线段AD 的长是( ) A .2B .8C .4或8D .2或89.小飞家房屋装修时,选中了一种漂亮的正八边形地砖,建材店老板告诉她,只用一种八边形地砖是不能铺满地面的,但可以与另外一种形状的地砖混合使用,你认为要使地面铺满,小飞应选择另一种形状的地砖是( )A .B .C .D .10.已知30AOB ∠=︒,自AOB ∠顶点O 引射线OC ,若:4:3AOC AOB ∠∠=,那么BOC ∠的度数是( )A .10°B .40°C .70°D .10°或70°11.已知线段AB C ,是直线AB 上的一点,8,4AB BC ==,点M 是线段AC 的中点,则线段AM 的长为( ) A .2B .4C .4或6D .2或612.如图,A 点在B 点的北偏东40°方向,C 点在B 点的北偏东75°方向,A 点在C 点的北偏西50°方向,则∠BAC 的度数是( )A .85°B .80°C .90°D .95°二、填空题13.已知:90AOB ∠=︒,做射线OC ,OD 是AOC ∠的角平分线,OE 是BOC ∠的角平分线.(1)如图①,当70BOC ∠=︒时,求DOE ∠的度数;①(2)如图②,若射线OC 在AOB ∠内部绕O 点旋转,当BOC a ∠=时,求DOE ∠的度数;②(3)若射线OC 在AOB ∠外绕O 点旋转且AOC ∠为钝角时,求DOE ∠的度数.14.已知射线AB 上有一点C ,10AB cm =,4BC cm =,点M 是AC 的中点,点N 是BC 的中点.(1)如图①,若点C 在AB 之间时,求MN 的长; (2)如图②,若点C 在B 点右边时,求MN 的长.15.如图,点O 在直线AB 上,OE 、OF 分别平分AOC ∠、BOD ∠. (1)当144BOC ∠=︒时,COE ∠=(2)当40AOC ∠=︒,60BOD ∠=︒时,求EOF ∠的度数; (3)当40COD ∠=︒时,求EOF ∠的度数;(4)当COD x ∠=︒时,直接写出EOF ∠的度数(用含x 的式子表示).16.数学课上,张老师出示了如下题目:将一副三角板按如图1所示方式摆放,分别作出,AOC BOD ∠∠的平分线,,OM ON 求MON ∠的度数.李明与同桌王丽讨论后进行了如下解答:特殊情况,探索思路将三角形分别按图2,图3所示的方式摆放,OM 和ON 仍然是AOC ∠和BOD ∠的平分线,其中,按图2方式摆放时可以看成是,,ON OD OB 在同一条直线上,按图3方式摆放时AOC BOD ∠∠、相等.(1)请你直接写出计算结果,图2中MON ∠的度数为_ _,图3中MON ∠的度数为___;特例启发,解答题目(2)请你完成张老师出示的题目的解答过程; 拓展结论,设计新颖(3)若将张老师出示的题目中条件“分别作出AOC BOD ∠∠、的平分线,OM ON ”改为“分别作出射线OM ON 、,使21,33AOM AOC DON BOD ∠=∠∠=∠”,求MON ∠的度数.17.根据下列要求画图(不写作法,保留作图痕迹) (1)连接线段OB ; (2)画射线AO ,射线AB ;(3)用圆规在射线AB 上截取AC ,使得AC OB =,画直线OC .18.(1)如图1,∠AOC :∠COD :∠BOD =4:2:1,若∠AOB =140°,求∠BOC 的度数;(2)如图2,∠AOC :∠COD :∠BOD =4:2:1,OP 平分∠AOB ,若∠AOB =β,求∠COP 的度数(用含β的的代数式表示);(3)如图3,∠AOC =80°,∠BOD =20°,OE 平分∠AOD ,OF 平分∠BOC ,求∠EOF 的度数.19.新定义问题如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠、BOC ∠、AOB ∠.若这三个角中有一个角是另外一个角的2倍,则称射线OC 为AOB∠的“幸运线”.(本题中所研究的角都是大于0︒而小于180︒的角.)(阅读理解)(1)角的平分线_________这个角的“幸运线”;(填“是”或“不是”) (初步应用)(2)如图①,45AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,则AOC ∠的度数为_______; (解决问题)(3)如图②,已知60AOB ∠=︒,射线OM 从OA 出发,以每秒20︒的速度绕O 点逆时针旋转,同时,射线ON 从OB 出发,以每秒15︒的速度绕O 点逆时针旋转,设运动的时间为t 秒(09t <<).若OM 、ON 、OA 三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t 值.20.如图,已知60cm AB =,点C 为线段AB 的中点,点D 是线段AB 上的点,且AD 与DB 的长度之比2:1. (1)求BD 的长. (2)求CD 的长.三、解答题21.如图所示,OB 平分AOC ∠,OD 平分COE ∠.(1)若18AOB ∠=︒,35∠=︒DOE ,求AOE ∠的度数; (2)若110AOE ∠=︒,:1:4BOC BOE ∠∠=,求COD ∠的度数. 22.综合与探究 问题背景数学活动课上,老师将一副三角尺按图1所示位置摆放,三角尺ABC 中,∠BAC=90°,∠B=∠C=45°;三角尺ADE 中,∠D=90°,∠DAE=60°,∠E=30°.分别作出∠BAD 、∠CAE 的平分线AM 、AN .然后提出问题:求出∠MAN 的度数.特例探究“智慧小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,AM 和AN 仍然是∠BAD 和∠CAE 的平分线. 其中,按图2方式摆放时,AB 和AE 在同一直线上.按图3方式摆放时, AB 、AD 、AM 在同一直线上.(1)计算:图2中∠MAN 的度数为 °,图3中∠MAN 的度数为 °(直接写出答案,不写过程). 发现感悟(2)探究完图2,图3所示的特殊位置问题后,请你猜想图1中∠MAN 的度数为 °; “智慧小组”的同学认为图2,图3中∠BAD 、∠CAE 的度数都已知或能求出具体的度数,图1中,∠MAN=∠MAB+∠BAE+∠EAN ,这些角比较一般化,求不出具体的度数,所以想到了用字母表示数,如果设∠BAE 为x°,则可以用含x 的式子表示∠BAD 和∠CAE ,进而可以表示∠MAB 和∠EAN ,这样就能求出∠MAN 的度数; 请你根据智慧小组的思路,求出图1中∠MAN 的度数. 类比拓展(3)受到“智慧小组”的启发,“创新小组”将三角尺按图4所示方式摆放,分别作出∠BAD 、∠CAE 的平分线AM 、AN .他们认为也能求出∠MAN 的度数.请你求出∠MAN 的度数.23.已知AOB ∠与COD ∠互补,射线OE 平分COD ∠,设AOC α∠=,BOD β∠=. (1)如图1,COD ∠在AOB ∠的内部, ①当45COD ∠=︒时,求αβ+的值. ②当3αβ=时,求∠BOE 的度数.(2)如图2,COD ∠在AOB ∠的外部,45BOE ∠=︒,求α与β满足的等量关系.24.计算(1)58°32′36″+36.22°(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷525.如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且14AB =,动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (0)t >秒:(1)写出数轴上点B 表示的数为______,点P 表示的数为______ (用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长. 26.已知射线OC 在AOB ∠的内部,射线OE 平分AOC ∠,射线OF 平分COB ∠. (1)如图1,若100AOB ∠=︒,30AOC ∠=︒,则EOF ∠=__________度; (2)如图2,若AOB α∠=,AOC β∠=,若射线OC 在AOB ∠的内部绕点O 旋转,求EOF ∠ 的大小;(3)在(2)的条件下,若射线OC 在AOB ∠的外部绕点O 旋转(旋转中AOC ∠、COB ∠均是指小于180︒的角),其余条件不变,请借助图3探究EOF ∠的大小,求EOF ∠的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据线段中点的定义和线段三等分点的定义即可得到结论. 【详解】解:∵C 是线段AB 的中点,AB =12cm , ∴AC =BC =12AB =12×12=6(cm ), 点D 是线段AC 的三等分点,①当AD=13AC时,如图,BD=BC+CD=BC+23AC=6+4=10(cm);②当AD=23AC时,如图,BD=BC+CD′=BC+13AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:D.【点睛】本题考查了两点间的距离,线段中点的定义,分类讨论的思想的运用是解题的关键;2.B解析:B【分析】根据线段中点定义先求出P1Q1的长度,再由P1Q1的长度求出P2Q2的长度,从而找到P n Q n 的规律,即可求出结果.【详解】解:∵线段PQ=10,线段AP和AQ的中点P1,Q1,∴P1Q1=AP1-AQ1=12AP-12AQ=12(AP-AQ)=12 PQ=12×10=5.∵线段AP1和AQ1的中点P2,Q2;∴P2Q2=AP2-AQ2=12AP1-12AQ1=12(AP1-AQ1)=12P1 Q1=12×12×10=212×10 =52. 发现规律:P n Q n =12n×10 ∴P 1Q 1+P 2Q 2+…+P 11Q 11=12×10+212×10+312×10+…+1112×10 =10(12+212+312+…+1112) =10(1111212-) =10(1-1112) =10-11102 故选:B . 【点睛】本题考查了线段规律性问题,准确根据题意找出规律是解决本题的关键,比较有难度.3.C解析:C 【分析】根据时针与分针相距的份数乘以每份的度数,可得答案. 【详解】解:8:20时,时针与分针相距4+2060=133份, 8:20时,时针与分针所夹的角是30°×133=130°, 故选:C . 【点睛】本题考查了钟面角,确定时针与分针相距的分数是解题关键.4.A解析:A 【分析】根据平角的定义、中点定义、角的和差以及两点之间,线段最短的性质直接判断即可. 【详解】解:①直线是一个平角,角是由有公共端点的两条射线组成的,故错误;②如果线段AM MC =,则M 是线段AC 的中点;M 不一定在线段AC 上,故错误;③在同一平面内,60AOB ∠=︒,30BOC ∠=︒,30AOC ∠=︒;射线OC 不一定在∠AOB 内部,故错误;④两点之间,线段最短.正确,故选:A .【点睛】本题考查了平角的定义、线段中点的定义、角的和差和线段的性质,准确掌握定义,画出图形是解题关键.5.B解析:B【分析】如图,先求出∠BAD=906525︒-︒=︒,∠CAE=20°,∠EAD=90︒,根据BAC ∠=∠BAD+∠EAD+∠CAE 即可计算得出答案.【详解】如图,∵∠BAD=906525︒-︒=︒,∠CAE=20°,∠EAD=90︒,∴BAC ∠=∠BAD+∠EAD+∠CAE=135°,故选:B ..【点睛】此题考查方位角的计算,正确掌握方位角的表示及角度的和差计算是解题的关键. 6.C解析:C【分析】根据角的表示方法和图形选出即可.【详解】A 、图中的∠MON 不能用∠O 表示,故本选项错误;B 、图中的∠1和∠O 不是表示同一个角,故本选项错误;C 、图中的1∠、O ∠、MON ∠表示同一个角,故本选项正确;D 、图中∠1、∠MON 、∠O 不表示同一个角,故本选项错误;故选:C .【点睛】本题考查了角的表示方法的应用,主要考查学生的理解能力和观察图形的能力. 7.C解析:C【分析】分两种情形:①当点C 在线段AB 上时,②当点C 在线段AB 的延长线上时,再根据线段的和差即可得出答案【详解】解:∵BC=12AB ,AB =8cm , ∴BC=4cm①当点C 在线段AB 上时,如图1,∵AC=AB-BC ,又∵AB=8cm ,BC=4cm ,∴AC=8-4=4cm ;②当点C 在线段AB 的延长线上时,如图2,∵AC=AB+BC ,又∵AB=8cm ,BC=4cm ,∴AC=8+4=12cm .综上可得:AC=4cm 或12cm .故选:C .【点睛】本题考查的是两点间的距离,在画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.D解析:D【分析】分点C 在线段AB 上和点C 在线段AB 反向延长线上,分别计算即可.【详解】解:①C 在线段AB 上:∵10AB =,6AC =,∴4CB =,又∵D 为BC 的中点,∴2CD =,∴268AD =+=.②点C 在线段AB 反向延长线上:∵10AB =,6AC =,∴16BC =,又∵D 为BC 的中点,∴8CD BD ==,∴1082AD =-=,故选D .【点睛】本题考查了线段的中点,线段的和差,解题关键是对点C 的位置分类讨论,依据中点的定义求对应线段长.9.B解析:B【分析】正八边形的一个内角为135°,从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.【详解】正八边形的每个内角为()821808-⨯︒=135°, A 、正八边形、正三角形内角分别为135°、60°,显然不能构成360°的周角,故不能铺满; B 、正方形、八边形内角分别为90°、135°,由于135×2+90=360,故能铺满;C 、正六边形、正八边形内角分别为120°、135°,显然不能构成360°的周角,故不能铺满;D 、正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满.故选:B .【点睛】本题主要考查了平面镶嵌(密铺),解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.10.D解析:D【分析】分为两种情况:①OC 和OB 在OA 的两侧时,②OC 和OB 在OA 的同侧时,分别进行求解即可.【详解】∵∠AOB=30°,∠AOC :∠AOB=4:3,∴∠AOC=40°,分为两种情况:当OC 和OB 在OA 的两侧时,如图1∠BOC=∠AOB+∠AOC=30°+40°=70°②OC 和OB 在OA 的同侧时,如图2∠BOC=∠AOC-∠AOB=40°-30°=10°故选:D .【点睛】考查了角的计算,解题关键是分两种情况:OC 、OB 在OA 的两侧时和OC 、OB 在OA 的同侧时.11.D解析:D【分析】由C 是直线AB 上的一点,且8,4AB BC ==可知,C 点的位置有两个,一个位于线段AB 上,一个位于线段AB 的延长线上;分两种情况:①C 点位于线段AB 上和②C 位于线段AB 的延长线上,根据线段的中点定理1=2AM AC 作答即可. 【详解】解:①C 点位于线段AB 上时,∵8,4AB BC ==,∴844AC AB BC =-=-=,∵点M 是线段AC 的中点, ∴1=22AM AC =; ②C 位于线段AB 的延长线上时,∵8,4AB BC ==∴8412AC AB BC =+=+=,∵点M 是线段AC 的中点, ∴1=62AM AC =;综上所述,线段AM 的长为2或6;故选D .【点睛】本题主要考查了线段的中点定理;仔细读懂题意“C 是直线AB 上的一点”,明确本题C 点的位置有两个,是准确作答本题的关键.12.C解析:C【分析】根据方位角的概念,画图正确表示出方位角,利用平行线的性质即可求解.【详解】∵∠DBA =40°,∠DBC =75°,∴∠ABC =∠DBC−∠DBA =75°−40°=35°,∵DB ∥EC ,∴∠DBC +∠ECB =180°,∴∠ECB =180°−∠DBC =180°−75°=105°,∴∠ACB =∠ECB−∠ACE =105°−50°=55°,∴∠BAC =180°−∠ACB−∠ABC =180°−55°−35°=90°.【点睛】本题考查了方向角.解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.二、填空题13.(1)45°;(2)45°;(3)45°或135°【分析】(1)由∠BOC 的度数求出∠AOC 的度数利用角平分线定义求出∠COD 与∠COE 的度数相加即可求出∠DOE 的度数;(2)∠DOE 度数不变理由为解析:(1)45°;(2)45°;(3)45°或135°【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE =∠COD +∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】解:(1)∵90AOB ∠=︒,70BOC ∠=︒∴9020AOC BOC ∠=︒-∠=︒,∵OD 、OE 分别平分AOC ∠和BOC ∠, ∴1102COD AOC ∠=∠=︒,1352COE BOC ∠=∠=︒,∴45DOE COD COE ∠=∠+∠=︒;(2)DOE ∠的大小不变,理由是:∵90AOB ∠=︒,BOC α∠=∴90AOD α∠=︒-又∵OE ,OD 分别是BOC ∠与AOC ∠的平分线 ∴12EOC α∠=,()1902COD α∠=︒- ∴DOE EOC COD ∠=∠+∠()11904522αα=+︒-=︒. (3)DOE ∠的大小发生变化情况为,如图3,则DOE ∠为45°;如图4,则DOE ∠为135°,分两种情况:如图3所示,∵OD 、OE 分别平分AOC ∠和BOC ∠,∴12COD AOC ∠=∠,12COE BOC ∠=∠, ∴()1452DOE COD COE AOC BOC ∠=∠-∠=∠-∠=︒; 如图4所示,∵OE ,OD 分别是BOC ∠与AOC ∠的平分线∴EOC BOE ∠=∠,COD AOD ∠=∠又∵90AOB ∠=︒∴270AOD DOC COE EOB ∠+∠+∠+∠=︒∴22270DOC COE ∠+∠=︒∴135DOC COE ∠+∠=︒∴135DOE ∠=︒.【点睛】此题考查了角的计算,熟练掌握角平分线定义是解本题的关键.容易出错的地方是解(3)小题漏掉其中的一种情况.14.(1)5cm ;(2)5cm 【分析】(1)求出AC 根据中点分别求出CM 和CN 即可求出答案;(2)求出AC 根据中点分别求出CM 和BN 再求出MB 即可求出答案;【详解】(1)∵∴又∵点是的中点点是的中点∴∴解析:(1)5cm ;(2)5cm【分析】(1)求出AC ,根据中点分别求出CM 和CN ,即可求出答案;(2)求出AC ,根据中点分别求出CM 和BN ,再求出MB ,即可求出答案;【详解】(1)∵10AB =,4BC =∴6AC =又∵M 点是AC 的中点,N 点是BC 的中点∴ 3AM MC ==,2BN CN ==∴5MN MC CN =+=.(2)∵10AB =,4BC =∴14AC AB BC =+=又∵M 点是AC 的中点,N 点是BC 的中点∴7AM MC ==,2BN CN ==∴3MB MC BC =-=∴5MN MB BN =+=.【点睛】本题考查了两点之间的距离的应用,能求出CM 和CN=BN 的长度是解此题的关键,求解过程类似.15.(1)18°;(2)130°;(3)110°;(4)90°+x°【分析】(1)先求出∠AOC 的度数然后根据角平分线的定义求解即可;(2)先根据角平分线的定义求出∠AOE 和∠BOF 的度数然后可求∠EO解析:(1)18°;(2)130°;(3)110°;(4)90°+12x° 【分析】(1)先求出∠AOC 的度数,然后根据角平分线的定义求解即可;(2)先根据角平分线的定义求出∠AOE 和∠BOF 的度数,然后可求∠EOF 的度数; (3)由40COD ∠=︒,可知∠AOC+∠BOD=140°,然后根据角平分线的定义可求出∠COE+∠DOF 的值,进而可求∠EOF 的值;(4)仿照(3)的步骤求解即可;【详解】解:(1)∵144BOC ∠=︒,∴∠AOC=180°-144°=36°,∵OE 平分AOC ∠,∴∠COE=12∠AOC=18°, 故答案为:18°;(2)∵OE 、OF 分别平分AOC ∠、BOD ∠,40AOC ∠=︒,60BOD ∠=︒,∴∠AOE=1220AOC ∠=︒,∠BOF=1230BOD ∠=︒, ∴∠EOF=180°-20°-30°=130°;(3)∵40COD ∠=︒,∴∠AOC+∠BOD=180°-40°=140°,∵OE 、OF 分别平分AOC ∠、BOD ∠,∴∠COE=12AOC ∠,∠DOF=12BOD ∠, ∴∠COE+∠DOF=12(AOC ∠+BOD ∠)=70°, ∴∠EOF=∠COE+∠DOF+∠COD=70°+40°=110°;(4)∵COD x ∠=︒,∴∠AOC+∠BOD=180°-x°,∵OE 、OF 分别平分AOC ∠、BOD ∠,∴∠COE=12AOC ∠,∠DOF=12BOD ∠, ∴∠COE+∠DOF=12(AOC ∠+BOD ∠)=90°-12x°, ∴∠EOF=∠COE+∠DOF+∠COD=90°-12x°+x°=90°+12x°. 【点睛】 本题考查了角的和差,以及角平分线的定义,正确识图是解答本题的关键.16.(1)135°;135°;(2)135°过程见解析;(3)120°【分析】(1)根据角平分线的定义和角的和差即可得到结论;(2)根据已知条件得到∠AOC+∠BOD=180°-∠COD=90°根据角平解析:(1)135°;135°;(2)135°,过程见解析;(3)120°【分析】(1)根据角平分线的定义和角的和差即可得到结论;(2)根据已知条件得到∠AOC+∠BOD=180°-∠COD=90°,根据角平分线的定义得到∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,于是得到结论; (3)仿照(2)的步骤求解即可.【详解】解:(1)如图2,∵∠AOC=90°,OM 平分∠AOC ,∴∠COM=12∠AOC=45°, ∴∠MON=∠OCM+∠CON=45°+90°=135°;如图3,∵∠COD=90°,∴∠AOC+∠BOD=90°.∵AOC BOD ∠=∠,∴AOC BOD ∠=∠=45°,∵OM 和ON 是AOC ∠和BOD ∠的平分线,∴∠COM=22.5°, ∠DON=22.5°,∴∠MON=22.5°+90°+22.5°=135°;故答案为:135,135︒︒;(2)∵90COD ∠=︒,18090AOC BOD COD ∴∠+∠=︒-∠=︒, OM 平分,AOC ON ∠平分BOD ∠,11,22MOC AOC DON BOD ∴∠=∠∠=∠, ()111190452222MOC DON AOC BOD AOC BOD ∴∠+∠=∠+∠=∠+∠=⨯︒=︒, 4590135MON MOC COD DON ∴∠=∠+∠+∠=+︒=︒;(3)23AOM AOC ∠=∠, 13MOC AOC AOM AOC ∴∠=∠-∠=∠. ∵90COD ∠=︒,∴90AOC BOD ∠+∠=,()11130333MOC DON AOC BOD AOC BOD ∴∠+∠=∠+∠=∠+∠=︒, 3090120MON MOC COD DON ∴∠=∠+∠+∠=︒+︒=.【点睛】本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.17.(1)见解析;(2)见解析;(3)见解析【分析】(1)连接OB 即可;(2)连接AOAB 并延长;(3)先用圆规在射线上截取AC=OB 再画直线OC【详解】解:(1)如图所示线段即为所求;(2)如图所示射解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)连接OB 即可;(2)连接AO 、AB 并延长;(3)先用圆规在射线AB 上截取AC=OB ,再画直线OC .【详解】解:(1)如图所示,线段OB 即为所求;(2)如图所示,射线AO 、射线AB 即为所求;(3)如图所示,直线OC 即为所求.【点睛】本题考查了画线段、射线、和直线,解题关键是遵循题意画图,注意直线、射线、线段的区别.18.(1)60°;(2)β;(3)50°【分析】(1)设∠BOD=x°则∠AOC=4x°∠COD=2x°根据题意列方程即可得到结论;(2)设∠BOD=x°则∠AOC=4x°∠COD=2x°根据题意列方程解析:(1)60°;(2)114β;(3)50°【分析】(1)设∠BOD=x°,则∠AOC=4x°,∠COD=2x°,根据题意列方程即可得到结论;(2)设∠BOD=x°,则∠AOC=4x°,∠COD=2x°,根据题意列方程得到∠AOC=47β;然后根据角平分线的定义即可得到结论;(3)根据角平分线的定义和角的和差即可得到结论.【详解】解:(1)由∠AOC:∠COD:∠BOD=4:2:1,设∠BOD=x°,则∠AOC=4x°,∠COD=2x°,∵∠AOB=140°,∴x+2x+4x=140,解得:x=20,∴∠BOD=20°,∠COD=40°,∠AOC=80°,∴∠BOC=20°+40°=60°;(2)设∠BOD=x°,则∠AOC=4x°,∠COD=2x°,∴x+2x+4x=β,∴x=17β,∴∠AOC=47β;∵OP平分∠AOB,∴∠AOP =12β, ∴∠COP =47β﹣12β=114β; (3)∵OF 平分∠BOC ,∠BOD =20°, ∴∠COF =12(∠BOD+∠COD )=10°+12∠COD , ∵OE 平分∠AOD ,∠AOC =80°, ∴∠AOE =12(∠AOC+∠COD )=40°+12∠COD , ∴∠COE =∠AOC ﹣∠AOE =80°﹣(40°+12∠COD )=40°﹣12∠COD , ∴∠EOF =∠COE+∠COF =40°﹣12∠COD+10°+12∠COD =50°. 【点睛】 本意考察查了角的计算,角平分线的定义,正确的理解题意是解题的关键 ;19.(1)是;(2)15°或225°或30°;(3)或或或【分析】(1)若OC 为∠AOB 的角平分线则有则根据题意可求解;(2)根据幸运线的定义可得当时当时当时然后根据角的和差关系进行求解即可;(3)由题解析:(1)是;(2)15°或22.5°或30°;(3)127t =或125t =或1211t =或365t = 【分析】(1)若OC 为∠AOB 的角平分线,则有2AOB AOC ∠=∠,则根据题意可求解; (2)根据“幸运线”的定义可得当2AOB AOC ∠=∠时,当2AOC BOC ∠=∠时,当2BOC AOC ∠=∠时,然后根据角的和差关系进行求解即可;(3)由题意可分①当04t <<时ON 在与OA 重合之前,则有20MOA t ∠=,6015AON t ∠=-,由OA 是MON ∠的幸运线可进行分类求解;②当49<<t 时,ON 在与OA 重合之后,则有560MON t ∠=+,1560AON t ∠=-,由ON 是AOM ∠的幸运线可分类进行求解.【详解】解:(1)若OC 为∠AOB 的角平分线,则有2AOB AOC ∠=∠,符合“幸运线”的定义,所以角平分线是这个角的“幸运线”;故答案为是;(2)由题意得:∵45AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,∴①当2AOB AOC ∠=∠时,则有:22.5AOC ∠=︒;②当2AOC BOC ∠=∠时,则有2303AOC AOB ∠=∠=︒;③当2BOC AOC ∠=∠时,则有1153AOC AOB ∠=∠=︒; 综上所述:当射线OC 为AOB ∠的“幸运线”时,∠AOC 的度数为15︒,22.5︒,30, 故答案为15︒,22.5︒,30;(3)∵60AOB ∠=︒,∴射线ON 与OA 重合的时间为15460︒÷︒=(秒),∴当04t <<时ON 在与OA 重合之前,如图所示:∴20MOA t ∠=,6015AON t ∠=-,OA 是MON ∠的幸运线,则有以下三类情况:①206015t t =-,127t =, ②()2026015t t =-,125t =, ③2206015t t ⨯=-,1211t =; 当49<<t 时,ON 在与OA 重合之后,如图所示:∴560MON t ∠=+,1560AON t ∠=-,ON 是AOM ∠的幸运线,则有以下三类情况:①5601560t t +=-,12t =(不符合题意,舍去),②()56021560t t +=-,365t =, ③()25601560t t +=-,36t =(不符合题意,舍去);综上:127t =或125t =或1211t =或365t =. 【点睛】本题主要考查角平分线的定义及角的动点问题,熟练掌握角平分线的定义及和差关系是解题的关键. 20.(1)20cm ;(2)10cm 【分析】(1)根据AD 与DB 的长度之比2:1列式求解即可;(2)根据中点的定义求出BC 再由CD=BC-BD 可得出答案【详解】解:(1)∵AD 与DB 的长度之比2:1∴(2解析:(1)20cm ;(2)10cm【分析】(1)根据AD 与DB 的长度之比2:1列式求解即可;(2)根据中点的定义求出BC ,再由CD=BC-BD ,可得出答案.【详解】解:(1)∵60cm AB =,AD 与DB 的长度之比2:1, ∴16020cm 3BD =⨯= (2)∵60cm AB =,点C 为线段AB 的中点, ∴130cm 2BC AB ==, ∴CD BC BD =- 3020=-10cm =【点睛】本题考查了两点间的距离,解答本题的关键是掌握线段中点的定义,注意数形结合思想的运用.三、解答题21.(1)106AOE ∠=︒;(2)33COD ∠=︒【分析】(1)据角平分线的定义求得∠AOC 和∠COE 的度数,再相加可得∠AOE 的度数; (2)据角平分线的定义和:1:4BOC BOE ∠∠=得到:2:3AOC COE ∠∠=,再由110AOE ∠=︒求得COE ∠的度数,最后由OD 平分COE ∠求得COD ∠的度数.【详解】解(1)如图∵OB 平分AOC ∠,18AOB ∠=︒∴236AOC AOB ∠=∠=︒∵OD 平分COE ∠,35∠=︒DOE∴270COE DOE ∠=∠=︒∴106AOE AOC COE ∠=∠+∠=︒;(2)如图∵:1:4BOC BOE ∠∠=∴:1:3BOC COE ∠∠=∵OB 平分AOC ∠∴2AOC BOC ∠=∠∴:2:3AOC COE ∠∠=又110AOE ∠=︒ ∴3311066235COE AOE ∠=⨯∠=⨯︒=︒+ ∵OD 平分COE ∠ ∴11663322COD COE ∠=∠=⨯︒=︒. 【点睛】此题考查角平分线的定义和角的有关运算,理解角平分线的定义和结合图形能进行角的加减是关键.22.(1)75,75;(2)75,过程见解析;(3)105°.【分析】(1)图2,由角平分线的性质得到11,22EAM MAD EAD CAN NAB CAB ∠=∠=∠∠=∠=∠,再结合角的和差解题即可;图3,由角平分线的性质,得到12CAN NAE CAE ∠=∠=∠,再结合角的和差解题即可;(2)由∠MAN=∠MAB+∠BAE+∠EAN ,结合角平分线的性质解题;(3)由∠MAN=∠MAD +∠EAN-∠DAE ,结合角平分线的性质解题.【详解】解:(1)图2中,AM 和AN 是∠BAD 和∠CAE 的平分线,1130,4522EAM MAD EAD CAN NAB CAB ∴∠=∠=∠=︒∠=∠=∠=︒ 304575MAN EAM NAB ∴∠=∠+∠=︒+︒=︒;图3中,AM 和AN 是∠BAD 和∠CAE 的平分线,111()(9060)15222CAN NAE CAE CAB EAB ∴∠=∠=∠=∠-∠=⨯︒-︒=︒ 901575MAN MAC CAN ∴∠=∠-∠=︒-︒=︒故答案为:75;75;(2)设∠BAE 为x°,则∠BAD=∠DAE- x°=60°- x°,∠CAE=∠BAC- x°=90°-x°因为AM 和AN 是∠BAD 和∠CAE 的平分线,所以∠MAB=12∠BAD =12(60°- x°)=30°-12 x° ∠EAN=12∠CAE=12(90°- x°)=45°+12x°. 所以∠MAN=∠MAB+∠BAE+∠EAN=(30°-12 x°)+ x°+(45°-12 x°) =75°,故答案为:75°;(3)设∠BAE 为x°,则∠BAD=∠DAE+ x°=60°+ x°,∠CAE=360°-∠BAC-∠BAE=360°-90°-x°=270°-x°,因为AM 和AN 是∠BAD 和∠CAE 的平分线,所以∠MAD=12∠BAD =12(60°+ x°)=30°+12 x° ∠EAN=12∠CAE=12(270°- x°)=135°-12x°. 所以∠MAN=∠MAD +∠EAN-∠DAE=(30°+12 x°)+(135°-12x°)- 60° =105°.【点睛】 本题考查三角板的特殊角、角平分线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.(1)①90°;②45°;(2)3360αβ+=︒.【分析】(1)①根据补角的定义可得135AOB ∠=︒,AOB ∠-COD ∠即可得到结论; ②设2COD x ∠=,根据角平分线的定义和补角的定义即可得到结论;(2)根据角平分线的定义和角的和差求出45COE DOE β∠=∠=-︒,则2290COD DOE β∠=∠=-︒,根据角的和差求出,BOC AOB ∠∠,再由AOB ∠与COD ∠互补即可得到结论.【详解】解:(1)①∵180AOB COD ∠+∠=︒,45COD ∠=︒,∴135AOB ∠=︒,∴90AOB COD αβ+=∠-∠=︒;②设2COD x ∠=,∵OE 平分COD ∠, ∴12COE DOE COD x ∠=∠=∠=, ∵180AOB COD ∠+∠=︒,∴22180x x αβ+++=︒又∵3αβ=, ∴()4180x β+=︒,∴45BOE x β∠=+=︒;(2)∵45COE DOE BOD BOE β∠=∠=∠-∠=-︒,∴2290COD DOE β∠=∠=-︒,∵90BOC BOE COE β∠=∠-∠=︒-,∴90AOB AOC BOC αβ∠=∠-∠=+-︒,∵180AOB COD ∠+∠=︒,∴()()90290180αββ+-︒+-︒=︒, ∴3360αβ+=︒【点睛】本题考查了角的计算,角平分线的定义,补角的定义,正确的识别图形是解题的关键. 24.(1) 94°45′48″;(2)17【分析】(1)根据度分秒的加法,相同的单位相加,满60时向上以单位进1,可得答案; (2)原式先计算乘方,再计算乘除,最后进行加减运算即可.【详解】解:(1)58°32′36″+36.22°=58°32′36″+36°13′12″=94°45′48″;(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷5=-9×(-2)+16÷(-8)÷10-4÷5=18-0.2-0.8=17.【点睛】本题考查了度分秒的换算,度分秒的加减,同一单位向加减,度分秒的乘法,从小单位算起,满60时向上以单位进1.同时还考查了含有乘方的有理数的混合运算.25.(1)-6,84t -;(2)点 P 运动7秒时追上点Q ;(3)线段MN 的长度不发生变化,其值为7【分析】(1)根据点A 表示的数和AB 的长度即可求解;(2)根据题意列出方程4214t t =+,求解即可;(3)分类讨论即可:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,根据中点的定义即可求解.【详解】(1)解:∵数轴上点A 表示的数为8,且14AB =,∴点B 表示的数为6-,点P 表示的数为84t -,故答案为:-6,84t -;(2)设点P 、Q 同时出发,点P 运动时间t 秒追上Q ,依题意得,4214t t =+,解得7t =,∴点P 运动7秒时追上点Q ;(3)线段MN 的长度没有发生变化都等于7;理由如下:①当点P 在点A 、B 两点之间运动时:MN MP NP =+1122AP BP =+1()2AP BP =+12AB =1142=⨯7=, ②当点P 运动到点B 的左侧时:MN MP NP =-1122AP BP =-1()2AP BP =-12AB =7=, ∴线段MN 的长度不发生变化,其值为7.【点睛】本题考查数轴上的动点问题,掌握中点的定义、一元一次方程的应用是解题的关键. 26.(1)50;(2)12EOF α∠=;(3)当射线OE ,OF 只有1条在AOB ∠外面时,12EOF α∠=;当射线OE ,OF 都在∠AOB 外部时,11802EOF α∠=︒-. 【分析】(1)先求解,BOC ∠ 再利用角平分线的性质求解,,EOC FOC ∠∠ 从而可得答案;(2)由射线OE 平分AOC ∠,射线OF 平分COB ∠,可得12EOC AOC ∠=∠,12COF COB ∠=∠,可得()11,22EOF AOC BOC AOB ∠=∠+∠∠=∠ 从而可得答案; (3)分以下两种情况:①当射线OE ,OF 只有1条在AOB ∠外部时,如图3①,②当射线OE ,OF 都在AOB ∠外部时,如图3②,再利用角平分线的性质可得:11,,22COE AOC COF BOC ∠=∠∠=∠ 结合角的和差可得答案. 【详解】解:(1) 100AOB ∠=︒,30AOC ∠=︒,1003070,BOC AOB AOC ∴∠=∠-∠=︒-︒=︒射线OE 平分AOC ∠,射线OF 平分COB ∠,1115,35,22EOC AOC FOC BOC ∴∠=∠=︒∠=∠=︒ 153550EOF EOC FOC ∴∠=∠+∠=︒+︒=︒,故答案为:50.(2)∵射线OE 平分AOC ∠,射线OF 平分COB ∠∴12EOC AOC ∠=∠,12COF COB ∠=∠ ()12EOF EOC COF AOC BOC ∴∠=∠+∠=∠+∠∠ 1,2AOB =∠ ,AOB α∠=1.2EOF α∴∠= (3)分以下两种情况: ①当射线OE ,OF 只有1条在AOB ∠外部时,如图3①,同理可得:11,,22COE AOC COF BOC ∠=∠∠=∠ ()111,222EOF COF COE BOC AOC AOB α∴∠=∠-∠=∠-∠=∠= ②当射线OE ,OF 都在AOB ∠外部时,如图3②,同理可得:11,,22COE AOC COF BOC ∠=∠∠=∠ ()()111360180,222EOF EOC COF AOC BOC AOB α∴∠=∠+∠=∠+∠=︒-∠=︒- 综上所述:当射线OE ,OF 只有1条在AOB ∠外面时,12EOF α∠=;当射线,OE OF 都在AOB ∠的外部时,11802EOF α∠=︒-. 【点睛】 本题考查的是角的和差运算,角平分线的定义,角的动态定义,分类思想的运用,掌握以上知识是解题的关键.。
七年级数学基本平面图形典型例题与强化训练典型例题:例1、已知线段AB ,延长线段AB 到C ,使BC=AB ,反向延长线段AB23至D ,使AD=AB ,P 为线段CD 的中点,已知BP=15cm ,求线段AB 、CD 的长。
12例2、如图,C ,D ,E 将线段AB 分成2:3:4:5四部分,M ,P ,Q ,N 分别是AC ,CD ,DE ,EB 的中点,且MN=21,求线段PQ 的长度.例3、已知线段AB=14cm ,在直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,求线段AM 的长.例4、如图所示,∠AOB=90°, ∠BOC=30°,OE 平分∠AOC ,OD 平分∠BOC,求∠DOE 的度数。
(1)若∠AOB=α,其他条件不变,∠DOE 等于多少?(2)若∠BOC=β,其他条件不变,∠DOE 等于多少? (3)若∠AOB=α,∠BOC=β,其他条件不变,∠DOE 等于多少?例5、如图,直线AB 、CD 相交于点O ,且∠BOC=80°,OE 平分∠BOC .OF 为OE 的反向延长线.求∠2和∠3的度数,并说明OF 是否为∠AOD 的平分线.例6、如图,由点O 引出六条射线OA 、OB 、OC 、OD 、OE 、OF ,且∠AOB=90°,OF 平分∠BOC ,OE 平分∠AOD 。
若∠EOF=170°,求∠COD的度数。
ADEB F C练习:1.下列说法中,错误的是( ) A .经过一点可以作无数条直线B .经过两点只能作一条直线C .一条直线只能用一个字母表示D .线段CD 和线段DC 是同一条线段2.下列说法中,正确的是( ) A .射线AB 和射线BA 是同一条射线 B .延长射线MN 到CC .延长线段MN 到P 使NP =2MND .连结两点的线段叫做两点间的距离3.平面上的三条直线最多可将平面分成( )部分。
A .3 B .6 C .7D .94.如图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点,若MN=a ,BC=b ,则线段AD 的长是( )A. 2(a-b)B. 2a-bC. a+bD. a-b5.如果点P 在AB 上,下列表达式中不能表示P 是AB 中点的是( )A .AP=AB B .AB=2BPC .AP=BPD .AP+BP =AB126.下列四个图中的线段(或直线、射线)能相交的是( )1()2()4()C 3()B A B C D 7.点P 在线段EF 上,现有四个等式:⑴PE=PF ;⑵PE=12EF ;⑶12EF=2PE ;⑷2PE=EF ;其中能表示点P 是EF 中点的有( )A .4个 B .3个 C .2个 D .1个8.如上图所示,从O 点出发的五条射线,可以组成小于平角的角的个数是( )A .10个B .9个C .8个D .4个9.下图中,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是( )。
10.已知∠1=17°18′,∠2=17.18°,∠3=17.3°,下列说法正确的是( )。
A .∠1=∠2 B .∠1=∠3 C .∠2=∠3 D .没有相等的角11.如右图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中.从A 地到B 地有2条水路、2条陆路,从B 地达到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有( )A .20种 B . 8种 C . 5种 D .13种12. 一个人从A 点出发向北偏东60°的方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 的度数是( ) A 、75° B 、105° C 、45° D 、135°13.往返于A 、B 两地的客车,中途停靠五个站,则共有 种票价,要准备 种车票。
14.(1)如图(1)的射线上,O 为端点,A 、B 、C 为任意三点,则图中有____条射线.(2)如图(2)直线m 上有4个点A 、B 、C 、D ,则图中共有____条射线.15.已知平面内三个点A 、B 、C ,过其中每两个点画直线,可以画 几条。
16.如图,AB =40,点C 为AB 的中点,点D 为CB 上的一点,点E 是BD 的中点,且EB =5,则CD 的长为 .17.已知点B 在直线AC 上,线段AB=8cm ,AC=18cm ,p 、Q 分别是线段AB 、AC 的中点,则线段PQ= .18.一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是____个单位. 19.已知∠AOB=3∠BOC,若∠BOC=30°,则∠AOC 等于 ;已知∠AOB =60°,∠AOC =50°,∠BOC =________.20.已知过m 边形的一个顶点有7条对角线,q 边形没有对角线,p 边形有p 条对角线,则(m-p )q 的值为 21、如图,OC 平分∠AOD ,OE 平分∠BOC ,如果∠AOB=135°,∠DOE=12°,求∠COE 度数。
B CD E OE DC BA 第8题A D OA22、如图,已知∠COD=∠AOB=90°。
(1)∠AOC 与∠BOD 是什么关系? (2)若∠BOC=152°,求∠AOD 的度数。
23、如图,已知∠COD=∠AOB=90°,OE 为∠BOD 的平分线,∠BOE=17°18′,求∠AOC 的度数24、如图已知点C 为AB 上一点,AC =12cm, CB =AC ,D 、E 分别为AC 、AB 的中点.求23DE 的长。
附加题:1、如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且AB=14.动点P 从点A 发,以每秒5个单位长度的速度沿数轴向左匀速运动,设时间为t (t>0)秒.(1)写出数轴上点B 表示的数_________,点P 表示的数_____________(用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒3个单位的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长;(4)若点D 是数轴上一点,点D 表示的数是x ,请你探索式子|x+6|+|x-8|是否有最小值?如果有,直接写出最小值;如果没有,请说明理由。
O ●●●8图20图图BC E参考答案:例题、例1、【解析】题目涉及的情况有两种,如图所示:【答案】 12厘米或2厘米.例2、设AC=2x,则CD=3x,DE=4x,EB=5x,于是有MC=x,EN=2.5x,由题意得,MN=MC+CD+DE+EN=x+3x+4x+2.5x即10.5x=21,所以x=2,线段PQ的长度=0.5CD+0.5DE=3.5x=7.故答案为:7.例2、【分析】(1)因为图中的射线只能向右无限延伸,且射线上有3个点(不包括射线的端点),所以一共有4条射线;(2)因为图中的直线是向两方无限延伸的,且直线m上有4个点,所以可把各点分别看成向右边无限延伸的射线的端点时数出4条射线;再把各点看成是向左边无限延伸的射线的端时也可数出4条射线,即直线m上共有8条射线.【答案】(1)4(2)8.【点评】当一条射线上有n个点(包括射线本身的端点)时,共有n条射线,当一条直线上有n个点时,共有2n条射线.例3、【分析】题目中只说明了A、B、C三点在同一直线上,无法判定点C在线段AB上,还是在线段AB外(也就是在线段AB的延长线上).所以要分两种情况求线段AM 的长.【解】①当点C在线段AB上时,如下图.因为M是线段AC的中点,所以AM=12AC.又因为AC-AB-BC,AB-14cm,BC- 4cm.所以AM=12(AB-BC)(14-4)=5(cm).点C在线段AB的延长线上时,如下图所示.因为M是线段AC的中点,所以AM=12AC.又因为AC=AB+BC,AB=14cm,BC-4cm,所以AM=12(AB+BC)=9(cm).所以线段AM的长为5cm或9cm.【点评】“在直线AB上有一点C”解题很重要.我们一定分清楚其分类.例5、【解】因为∠BOC=80°,OE平分∠BOC,所以∠1=12∠BOC=12×80°=40°.又因为CD是直线,所以∠2+∠BOC=180°.所以∠2=180°-80°=100°.同理∠2+∠AOD=180°,∠1+∠2+∠3=180°.所以∠AOD=80°,∠3=40°.所以∠3=∠12AOD.所以OF是∠AOD的平分线.【点评】解答本题必须理解角的平分线的下列含义:角平分线满足如下两个条件:①是从角的顶点引出的射线,即角平分线与该角共顶点,且在角的内部;②把已知角分成两个角,且这两个角相等.练习:1、【解析】①. 应为每一段往返时票价相同,所以有多少条线段就是有多少种票价.②车票数是以这5个点分别为一个端点的线段数.【 答案】① 4+3+2+1=10;②10 .3、【分析】显然,CD =CB -BD .要求CD 的长,应先确定CB 和BD 的长.【解】∵AB =40,点C 为AB 的中点,∴CB =12AB =12×40=20.∵点E 为BD 的中点,EB =5,∴BD =2EB =10.∴CD =CB -BD =20-10=10.【点评】求线段的长度,注意围绕线段的和、差、倍、分展开.3、【解析】本题没有给出图形,在画图时,应考虑到A 、B 、C 三点之间的位置关系的多种可能,再根据正确画出的图形解题.【答案】当点C 在点A 左侧时,AP= 2AC=9,AQ=2AB=4,∴PQ=AQ+AP=9+4=13cm.当点C 在点B 右侧时,AP=2AB =4cm ,BC=AC-AB=10cm ,AQ=12,AC=9,∴PQ=AQ-AP=9-4=5cm.故答案为13cm 或5cm.【小结】在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性.在今后解决类似的问题时,要防止漏解.附加题:解:(1)点B 表示的数是-6,点P 表示的数是8-5t(2)设点P 运动x 秒时,在C 处追上点Q(如图)则AC=5x ,BC=3x,∵AC-BC=AB ∴5x-3x=14,解得x=7(3)没有变化,分两种情况:①当P 在点A 、B 之间运动时:MN=MP+NP=AP+BP=(AP+BP)= AB=712121212②当P 点运动到点B 的左侧时:MN=MP-NP=AP-BP=(AP-BP)= AB=712121212综上所述,线段AB 的长度不发生变化,其值为7.(4)式子|x+6|+|x-8|=|x-(-6)|+|x-8|有最小值,最小值为14.。