当前位置:文档之家› X荧光分析

X荧光分析

X荧光分析
X荧光分析

X射线荧光光谱分析原理

一 X射线荧光光谱分析原理 利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X 射线能谱法(能量色散)。 当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空位,原子内层电子重新配位,较外层的电子跃迁到内层电子空位,并同时放射出次级X射线光子,此即X射线荧光。较外层电子跃迁到内层电子空位所释放的能量等于两电子能级的能量差,因此,X射线荧光的波长对不同元素是特征的。 根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪(能量色散)。 X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。激发单元的作用是产生初级X射线。它由高压发生器和X 光管组成。后者功率较大,用水和油同时冷却。色散单元的作用是分出想要波长的X射线。它由样品室、狭缝、测角仪、分析晶体等部分组成。通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。记录单元由放大器、脉冲幅

度分析器、显示部分组成。通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。 X射线荧光能谱仪没有复杂的分光系统,结构简单。X射线激发源可用X射线发生器,也可用放射性同位素。能量色散用脉冲幅度分析器。探测器和记录等与X射线荧光光谱仪相同。 X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。 X射线荧光分析法用于物质成分分析,检出限一般可达10-5~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用于原子的基本性质如氧化数、离子电荷、电负性和化学键等的研究。 二企业挑选X线荧光光谱仪的基本准则应该包括满足要求、优良性能和低购入成本三个方面。 1.满足使用要求是最基本要素

分子荧光光谱法实验报告

分子荧光光谱法实验报告 一、实验目的 1.掌握荧光光度计的基本原理及使用。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.掌握分子荧光光度计分析物质的特征荧光光谱:激发光谱、发射光谱的测定方法。 4.了解影响荧光产生的几个主要因素。 5.学会运用分子荧光光谱法对物质进行定性和定量分析。 二、实验原理 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。 具有不饱和基团的基态分子经光照射后,价电子跃迁产生荧光,是当电子从第一激发单重态S1的最低振动能级回到基态S0各振动能级所产生的光辐射。 (1)激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,使材料发出某一波长光的效

率。荧光为光致发光,合适的激发光波长需根据激发光谱确定——激发光谱是在固定荧光波长下,测量荧光体的荧光强度随激发波长变化的光谱。获得方法:先把第二单色器的波长固定,使测定的λem不变,改变第一单色器波长,让不同波长的光照在荧光物质上,测定它的荧光强度,以I为纵坐标,λex为横坐标所得图谱即荧光物质的激发光谱,从曲线上找出λex,,实际上选波长较长的高波长峰。 (2)发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长,纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。发射光谱的获得方法:先把第一单色器的波长固定,使激发的λex不变,改变第二单色器波长,让不同波长的光扫描,测定它的发光强度,以I为纵坐标,λem为横坐标得图谱即荧光物质的发射光谱;从曲线上找出最大的λem。 (3)荧光强度与荧光物质浓度的关系 用强度为I0的入射光,照射到液池内的荧光物质时,产生荧光,荧光强度If用仪器测得,在荧光浓度很稀(A 三、实验试剂和仪器试剂:罗丹明B乙醇溶液;1-萘酚乙醇溶液;3,3’-Diethyloxadicarbocyanine iodide:标准溶液,10μg/ml, 20μg/ml,30μg/ml,40μg/ml和未知浓度;蒸馏水;乙 醇。 仪器:Fluoromax-4荧光分光光度计;1cm比色皿;

X射线荧光光谱分析的基本原理解析

X射线荧光光谱分析的基本原理 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。 K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K 系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射。 如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE 释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线,L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数 Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定 的关系,据此,可以进行元素定量分析。 X射线荧光光谱法有如下特点: 1,分析的元素范围广,从4Be到92U均可测定; 2,荧光X射线谱线简单,相互干扰少,样品不必分离,分析方法比较简便; 3,分析浓度范围较宽,从常量到微量都可分析。重元素的检测限可达ppm量级,轻元素稍 差; 4,分析样品不被破坏,分析快速,准确,便于自动化。 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为(10)-12-(10)-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子

荧光分析法实验报告

荧光分光光度法 一、 实验目的 1、学习荧光分光光度法的基本原理; 2、学习荧光光谱仪的结构和操作方法; 3、学习激发光谱、发射光谱曲线的绘制方法。 二、 实验原理 荧光分光光度法(fluorescence spectroscopy, FS )通常又叫荧光分析法,具有灵敏度高、选择性强、所需样品量少等特点,已成为一种重要的痕量分析技术。荧光(fluorescence )是分子吸收了较短波长的光(通常是紫外光和可见光),在很短的时间内发射出比照射光波长较长的光。由此可见,荧光是一种光致发光。 任何荧光物质都有两个特征光谱,即激发光谱(excitation spectrum )和发射光谱(emission spectrum )或称荧光光谱(fluorescence spectrum )。激发光谱表示不同激发波长的辐射引起物质发射某一波长荧光的相对效率。绘制激发光谱时,将发射单色器固定在某一波长,通过激发单色器扫描,以不同波长的入射光激发荧光物质,记录荧光强度对激发波长的关系曲线,即为激发光谱,其形状与吸收光谱极为相似。荧光光谱表示在所发射的荧光中各种波长的相对强度。绘制荧光光谱时,使激发光的波长和强度保持不变,通过发射单色器扫描以检测各种波长下相应的荧光强度,记录荧光强度对发射波长的关系曲线,即为荧光光谱。激发光谱和荧光光谱可用于鉴别荧光物质,而且是选择测定波长的依据。 荧光强度(F )是表征荧光发射的相对强弱的物理量。对于某一荧光物质的稀溶液,在一定波长和一定强度的入射光照射下,当液层的厚度不变时,所发生的荧光强度和该溶液的浓度成正比,即 该式即荧光分光光度法定量分析的依据。使用时要注意该关系式只适用于稀溶液。 三、 仪器与试剂 F-4500荧光光谱仪;比色管(10mL );牛血清白蛋白(BSA ) 四、 实验内容 1、 开机准备:接通电源,启动电脑。打开光谱仪主机电源,预热15分钟。 2、 运行FL solution 软件,设定检测方法和测量参数: EX (激发波长):280nm EM (发射波长):340nm EX 扫描范围:210nm ~330nm EM 扫描范围:290nm ~450nm EX 缝宽:2.5nm ,EM 缝宽:2.5nm 扫描速度:240nm/min PMT 电压:700V 3、 激发光谱和发射光谱的绘制: 先固定激发波长为280nm ,在290~450nm 测定荧光强度,获得溶液的发射光谱,在343nm 附近为最大发射波长λem ;再固定发射波长为λem ,测定激发波长为200nm ~λem 时的荧光强度,获得溶液的激发光谱,在280nm 附近为最大激发波长λex 。 4、 退出FL solution 软件,关闭光谱仪主机电源,关闭计算机。 Kc F

药物分析实验报告

实验四苯甲酸钠的含量测定 一、目的 掌握双相滴定法测定苯甲酸钠含量的原理和操作 二、操作 取本品1.5g,精密称定,置分液漏斗中,加水约25mL,乙醚50mL和甲基橙指示液2滴,用盐酸滴定液(0.5mol/L)滴定,随滴随振摇,至水层显持续橙红色,分取水层,置具塞锥形瓶中,乙醚层用水5mL洗涤,洗涤液并入锥形瓶中,加乙醚20mL,继续用盐酸滴定液(0.5mol/L)滴定,随滴随振摇,至水层显持续橙红色,即得,每1mL的盐酸滴定液(0.5mol/L)相当于72.06mg的C7H5O2Na。 本品按干燥品计算,含C7H5O2Na不得少于99.0% 三、说明 1.苯甲酸钠为有机酸的碱金属盐,显碱性,可用盐酸标准液滴定。 COO Na +H C l COOH +N aC l 在水溶液中滴定时,由于碱性较弱(Pk b=9.80)突跃不明显,故加入和水不相溶混的溶剂乙醚提除反应生成物苯甲酸,使反应定量完成,同时也避免了苯甲酸在瓶中析出影响终点的观察。 2.滴定时应充分振摇,使生成的苯甲酸转入乙醚层。 3.在振摇和分取水层时,应避免样品的损失,滴定前,使用乙醚检查分液漏斗是否严密。 四、思考题 1.乙醚为什么要分两次加入?第一次滴定至水层显持续橙红色时,是否已达终点?为什么? 2.分取水层后乙醚层用5mL水洗涤的目的是什么? 实验五阿司匹林片的分析 一、目的 1.掌握片剂分析的特点及赋形剂的干扰和排除方法。 2.掌握阿司匹林片鉴别、检查、含量测定的原理及方法。 二、操作 [鉴别] 1.取本品的细粉适量(约相当于阿司匹林0.1g),加水10mL煮沸,放冷,加三氯化铁试液1滴,即显紫堇色。 2.取本品的细粉(约相当于阿司匹林0.5g),加碳酸钠试液10mL,振摇后,放置5分钟,滤过,滤液煮沸2分钟,放冷,加过量的稀硫酸,即析出白色沉淀,并发生醋酸的臭气。 [检查] 游离水杨酸 取本品的细粉适量(约相当于阿司匹林0.1g),加无水氯仿3mL,不断搅拌2分钟,用无水氯仿湿润的滤纸滤过,滤渣用无水氯仿洗涤2次,每次1mL,合并滤液和洗液,在室温下通风挥发至干;残渣用无水乙醇4mL溶解后,移至100mL量瓶中,用少量5%乙醇洗涤容器、洗液并入量瓶中,加5%乙醇稀释至刻度,摇匀,分取50mL,立即加新制的稀硫酸铁铵溶液[取盐酸液(1mol/L)1mL,加硫酸铁铵指示液2mL后,再加水适量使成100mL] 1mL,摇匀;30秒钟内如显色,和对照液(精密称取水杨酸0.1g,置1000mL量瓶中,加冰醋酸1mL,

X射线荧光光谱分析基本原理

X射线荧光光谱分析 X射线是一种电磁辐射,其波长介于紫外线和γ射线之间。它的波长没有一个严格的界限,一般来说是指波长为0.001-50nm的电磁辐射。对分析化学家来说,最感兴趣的波段是0.01-24nm,0.01nm左右是超铀元素的K系谱线,24nm则是最轻元素Li的K系谱线。1923年赫维西(Hevesy, G. Von)提出了应用X射线荧光光谱进行定量分析,但由于受到当时探测技术水平的限制,该法并未得到实际应用,直到20世纪40年代后期,随着X射线管、分光技术和半导体探测器技术的改进,X荧光分析才开始进入蓬勃发展的时期,成为一种极为重要的分析手段。 1.1 X射线荧光光谱分析的基本原理 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。图1-1给出了X射线荧光和俄歇电子产生过程示意图。

K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图1-2)。

X荧光分析问题总结

1.用压片法做La203用淀粉做黏结剂,压好片后在空气中放置15分钟后,原来很好的样品在样杯中膨胀破碎了,为什么?还有什么好的方法? (1) 一般压片样碎裂是由于样品受压之后有应力,导致样品破碎。 我的建议是: A 压样之后在破碎之前进行分析。(不得已而为之) B 增加压样的时间,减小压样的压力. (2) 请检查所用淀粉中是否含有水分?水份会导致风干破裂。 (3) 原则上应该按照样品测试标准进行测试,一般情况下,制样有问题,实际上已经不符合标准了。 (4) 减少试样量,增大稀释比试试. 2.SPECTRO的能量色散XRF如何进行日常维护?当不进行样品分析时,X光管该如何处理? 主要是谱仪室内恒温恒湿(22度左右、湿度60%以下),环境清洁,电源稳定,避免震动。当不进行样品分析时,X光管电流电压应降至最低,仪器保持恒温. 3.仅两重金属元素组成的合金,其中低含量元素为 0.1% - 25% 共有13块标样,如果标样精度为±0.01 用目前水平的XRF 作标准曲线。其各点与直线和二次曲线拟和的标准曲线偏差大约是多少? (1) 最重要的是要用自己的试样做标样,制样方法要和实际应用方法一致,这样可以克服基体效应,和矿物效应。标样可以通过湿法分析或者别的方法获得标准值。 (2) 是否有水分应该从以前的分析方法考虑,同时应该可以去除某些点. (3) 可用互标法!以主量元素作为内标! (4) 0.0x的含量可能会有大的偏差! (5) 标样含量分布合理,如做好共存元素基体校正,一次线会很理想。另外,由于含量分布较大,选好低含量样品的背景也很重要。 4.在熔融制样时,二氧化硅的污染总是存在,不知各位有何高见?

荧光定量实验报告(作业)

RT-qPCR比较不同样本中miR-21的相对表达差异 一、实验目的 1、掌握实时荧光定量PCR的实验原理。 2、掌握实时荧光定量PCR相对定量的分析方法。 二、实验原理 实时荧光定量PCR (Quantitative Real-time PCR)是一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应(PCR)循环后产物总量的方法。通过内参或者外参法对待测样品中的特定DNA序列进行定量分析的方法。荧光定量PCR 最常用的方法是DNA 结合染料SYBR Green Ⅰ的非特异性方法和Taqman 水解探针的特异性方法。本实验中采用非特异性SYBR Green I 染料法,SYBR Green I 是一种结合于所有ds DNA 双螺旋小沟区域的具有绿色激发波长的染料,在游离状态下会发出微弱的荧光,但一旦与双链DNA 结合后,荧光大大增强。因此,SYBR Green I 的荧光信号强度与双链DNA 的数量相关,可以根据荧光信号检测出PCR 体系存在的双链DNA 数量。 三、实验仪器、材料和试剂 实验仪器:PCR仪、荧光定量PCR仪 实验材料:MCF7细胞 实验试剂:逆转录试剂盒、SYBR GREEN试剂盒 四、实验步骤 4.1 MCF7细胞RNA提取(RNAiso Plus) 1)将生长至80%的MCF细胞消化为单细胞悬液,准备提取RNA; 2)9000g,2min离心,弃掉培养基,加1 ml RNAiso Plus用移液枪反复吹吸直至裂

解液中无明显沉淀,室温(15-30℃)静置5分钟; 3)加入氯仿(RNAiso Plus的1/5体积量),盖紧离心管盖,混合至溶液乳化呈 乳白色,室温静置5min; 4)12,000 g 4℃离心15分钟。从离心机中小心取出离心管,此时匀浆液分为三 层,即:无色的上清液(含RNA)、中间的白色蛋白层(大部分为DNA)及带有颜色的下层有机相。 5)吸取上清液转移至另一新的离心管中(切勿吸出白色中间层)。 6)向上清中加入0.5-1倍RNAiso Plus体积的异丙醇,上下颠倒离心管充分混匀 后,室温下静置10分钟。 7)12,000g 4℃离心10分钟。一般在离心后,试管底部会出现RNA沉淀。 8)弃上清,加入1ml DEPC水配制的75%乙醇,充分洗涤管盖和管壁,并轻弹 管底,让沉淀浮起来,并静置3-5 min; 9)打开离心管盖,室温干燥沉淀几分钟。沉淀干燥后,加入适量(可以根据沉淀 的多少确定)的RNase-free 水溶解沉淀。测浓度,记录A260/280。 4.2 1%琼脂糖凝胶电泳(取少部分进行跑电泳,留足够的量做反转录) 4.3 反转录 试剂体积(10μl) RNA500 ng Gene specific primers(2μM)RT primer1μl 5×ReverseTranscriptase M-MLV 2μl Buffer dNTP (10mM)0.5μl

X荧光光谱分析仪工作原理

X荧光光谱分析仪工作原理 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 现将两种类型X射线光谱仪的主要部件及工作原理叙述如下: 1.X射线管

两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。上图是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源。只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。笥?SPAN lang=EN-US>lmin的一次X射线其能量不足以使受激元素激发。 X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。 X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。 2.分光系统

X射线荧光光谱分析基本原理及仪器工作原理解析

X射线荧光光谱分析基本原理 当能量高于原子内层电子电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,然后自发地由能量高的状态跃迁到能量低的状态。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子成为俄歇电子.它的能量是具有独一特征的,与入射辐射的能量无关.当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差,因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。如图所示: K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图10.2)。如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=E K-E L,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线, L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。

用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X 射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。而我们天瑞仪器公司生产的X射线荧光光谱仪就属于能量色散型的。下面是仪器的工作原理图: 能量色散型X射线荧光光谱仪工作原理 仪器工作原理 通过高压工作产生电子流打入到X光管中靶材产生初级X射线,初级X射线经过过滤和聚集射入到被测样品产生次级X射线,也就是我们通常所说的X荧光,X荧光被探测器探测到后经放大,数模转换输入到计算机,计算机计算出我们需要的结果。

荧光分析法实验(有思考题答案)

实验二.氨基酸的荧光激发、发射及同步荧光光谱的测量五.数据处理 1.用实验获得的数据绘制两种氨基酸的激发、发射、同步光谱图(如图3、4)。2.从激发和发射光谱中找出最大激发波长和最大发射波长值,以及它们相对应的峰高。在它们的同步荧光光谱中也确定最大波长和对应的峰高。 苯丙氨酸的荧光光谱图 苯丙氨酸扫描激发波长在214nm和285m两处出现最高峰,本实验选择214nm为最大激发波长。此外,激发波长曲线在280-300nm处出现了一个十分完美的峰,此峰为倍频峰,非激发波长峰,我们通过同步扫描荧光光谱技术可以验证,如图,我们通过同步扫描荧光光谱技术获得的激发波长也在215nm,与之前基本吻合。 色氨酸的荧光光谱图

色氨酸扫描激发波长在217nm处有一个最大峰,所以激发波长为217,发射波长为361。发射波长曲线在450-460nm处出现了一个十分完美的峰(在这张图上没显示出来),此峰为倍频峰,非激发波长峰,我们通过同步扫描荧光光谱技术可以验证。 六.讨论与思考 1.对待测溶液进行预扫描的有何作用? 从预扫描得到激发和发射波长的初步结果,根据我们得到的初步结果对仪器进行设置,然后对两种氨基酸溶液测量它们的荧光激发、发射和同步荧光光谱。 2.观察激发波长的整数倍处荧光发射光谱在有何特点?该波长是否适合于进行定量分析? 激发波长的整数倍处荧光发射光谱会出现以很强的峰,是倍频峰。不适合定量分析。 3.同步荧光技术有哪些优点?比较激发、发射和同步荧光光谱中的峰值及对应波长,比较他们的不同,并解释原因。 同步荧光法能简化光谱,减少光谱重叠和散射的影响,提高对荧光性质相近化合物同时测定的选择性和灵敏度。同步荧光法相对于激发光谱和发射光谱, 得到的峰比较窄,更明显。同步荧光光谱不是荧光物质的激发光谱和发射光谱

X射线荧光光谱仪结构和原理

X射线荧光光谱仪结构和原理 第一章 X荧光光谱仪可分为同步辐射X射线荧光光谱、质子X射线荧光光谱、全反射X射线荧光光谱、波长色散X射线荧光光谱和能量色散X射线荧光光谱等。 波长色散X射线荧光光谱可分为顺序(扫描型)、多元素同时分析型(多道)谱仪和固定道与顺序型相结合的谱仪三大类。顺序型适用于科研及多用途的工作,多道谱仪则适用于相对固定组成和批量试样分析,固定道与顺序式相结合 则结合了两者的优点。 X射线荧光光谱在结构上基本由激发样品的光源、色散、探测、谱仪控制和 数据处理等几部分组成。 § 1.1激发源 激发样品的光源主要包括具有各种功率的X射线管、放射性核素源、质子 和同步辐射光源。波长色散X射线荧光光谱仪所用的激发源是不同功率的X射线管, 功率可达4~4.5kW,类型有侧窗、端窗、透射靶和复合靶。能量色散X射线荧光光谱仪用 的激发源有小功率的X射线管,功率从4~1600W,靶型有侧窗和端窗。靶材主要有Rh、Cr、W、Au、Mo、Cu、Ag等,并广泛使用二次靶。现场和便携式谱仪则主要用放射性核素源。 激发元素产生特征X射线的机理是必须使原子内层电子轨道产生电子空位。可使内层轨道电子形式空穴的激发方式主要有以下几种:带电粒子激发、电磁辐射激发、内转换现象 和核衰变等。商用的X射线荧光光谱仪中,目前最常用的激发源是电磁辐射激发。电磁辐射激发源主要用X射线管产生的原级X射线谱、诱发性核素衰变时产生的Y射线、电子俘 获和内转换所产生X射线和同步辐射光源。 § 1.1.1 X射线管 1、X射线管的基本结构 目前在波长色散谱仪中,高功率X射线管一般用端窗靶,功率3~4KW,其结构示意图 如下: X 光管本质上是一个在高电压下工作的二极管,包括一个发射电子的阴极和一个收集电子的阳极(即靶材),并

X荧光分析

X荧光分析 引言 X射线荧光分析又称X射线次级发射光谱分析。本法系利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究的方法。1948年由H.费里德曼(H.Friedmann)和L.S.伯克斯(L.S.Birks)制成第一台波长色X射线荧光分析散X射线荧光分析仪,至60年代本法在分析领域的地位得以确立。现代X射线荧光光谱分析仪由以下几部分组成:X射线发生器(X射线管、高压电源及稳定稳流装置)、分光检测系统(分析晶体、准直器与检测器)、记数记录系统(脉冲辐射分析器、定标计、计时器、积分器、记录器)。不同元素具有波长不同的特征X射线谱,而各谱线的荧光强度又与元素的浓度呈一定关系,测定待测元素特征X射线谱线的波长和强度就可以进行定性和定量分析。本法具有谱线简单、分析速度快、测量元素多、能进行多元素同时分析等优点,是目前大气颗粒物元素分析中广泛应用的三大分析手段之一(其他两方法为中子活化分析和质子荧光分析)。 X 荧光分析是一种快速、无损、多元素同时测定的现代技术,已广泛应用于材料科学、生物医学、地质研究、环境监测、天体物理、文物考古、刑事侦察、工业生产等诸多领域,例如可用X荧光分析技术研究:钢中碳、笛含量与低碳钢的脆性转变温度的关系;千分之儿的锰对铁镍合金薄膜磁电阻的严重影响;检测齿轮箱润滑油中各金属元素的含量,在不拆卸机件的情况下,分析飞行器部件磨损状况;分析大气中浮游尘、气溶胶、水源污染情况、食品中有害物;分析血样、头发、牙齿、淋巴细胞、活性酶中微量元素与人体健康、疾病的相关性;无损分析文物组分;分析飞船带回的月岩、陨石等成分;测定地下水样中砷浓度,依据

分子荧光光谱法实验报告范文

分子荧光光谱法实验报告范文 一、实验目的 1.掌握荧光光度计的基本原理及使用。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.掌握分子荧光光度计分析物质的特征荧光光谱:激发光谱、发射光谱的测定方法。 4.了解影响荧光产生的几个主要因素。 5.学会运用分子荧光光谱法对物质进行定性和定量分析。 二、实验原理 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。 具有不饱和基团的基态分子经光照射后,价电子跃迁产生荧光,是当电子从第一激发单重态S1的最低振动能级回到基态S0各振动能级所产生的光辐射。 (1)激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,

使材料发出某一波长光的效率。荧光为光致发光,合适的激发光波长需根据激发光谱确定——激发光谱是在固定荧光波长下,测量荧光体的荧光强度随激发波长变化的光谱。获得方法:先把第二单色器的波长固定,使测定的λem不变,改变第一单色器波长,让不同波长的光照在荧光物质上,测定它的荧光强度,以I为纵坐标,λex为横坐标所得图谱即荧光物质的激发光谱,从曲线上找出λex,,实际上选波长较长的高波长峰。 (2)发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长(或频率),纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。发射光谱的获得方法:先把第一单色器的波长固定,使激发的λex不变,改变第二单色器波长,让不同波长的光扫描,测定它的发光强度,以I为纵坐标,λem为横坐标得图谱即荧光物质的发射光谱;从曲线上找出最大的λem。 (3)荧光强度与荧光物质浓度的关系 用强度为I0的入射光,照射到液池内的荧光物质时,产生荧光,荧光强度If用仪器测得,在荧光浓度很稀(A0.05)时,荧光物质发射的荧光强度If与浓度有下面的关系:If=KC。 三、实验试剂和仪器

2021年X射线荧光分析的基本原理

X射线荧光分析的基本原理 欧阳光明(2021.03.07) 1. 绪论 物质是由各种元素按照不同的构成方式构成的。各种元素的原子是由原子核和一定数目的核外电子构成。不同元素的原子,原子核中质子和中子的数量不同,核外电子数也不同,具有不同的原子结构。核外电子的能量也各不相同,这些能量不同的原子按能量大小分层排列,离原子核最近的电子层称为K电子层,其外依次为L,M,N,O…层。K层上的电子能量最低,由里向外,电子的能量逐渐升高。原子在未接受足够的能量时,处于基态,即稳定状态,此时,K层最多容纳2个电子,L层最多容纳8个电子,M层最多容纳18个电子……。当使用高能射线(如X射线)照射物质时,物质中的原子的内层电子被高能射线逐出原子之外,在内层电子层上即出现一个“空穴”。具有较高能量的外层电子立即补充这一“空穴”而发生跃迁。发生跃迁的电子将多余的能量(两个电子层能量之差)释放出来。释放出来的能量以电磁波的形式向四周发射,其波长恰好在X射线的波长范围内(0.001~10nm)。为了与照射物质的X射线(初级X射线)相区别,将被照射物质发出的X射线(二次X射线)称为荧光X射线(荧光即光致发光之意)。对于K 层电子而言,L层电子向K层电子跃迁时放射出的荧光X射线称为Kα谱线,M层电子向K层电子跃迁时放射出的荧光X射线称为Kβ谱线,其他层的电子发生跃迁时的情况依此类推(如图 1.1所示)。利用被测物质发出的荧光X射线进行物质化学成分的定性分析或定量分析,称为X射线荧光光谱分析。 图1.1原子结构示意图 在形成的线系中,各谱线的相对强度是不同的,这是由于跃迁几率不同。对K层电子而言,特定元素的荧光X射线Kα>Kβ,对于同一种元素而言,强谱线只有1-2条,特征谱线比较简单,易于分析,光谱干扰小。 2. X射线与固体之间的相互作用

分子荧光光谱实验报告doc

分子荧光光谱实验报告 篇一:分子荧光光谱实验报告 分子荧光光谱实验报告 一、实验目的: 1.掌握荧光光度法的基本原理及激发光谱、发射光谱的测定方法;学会运用分子荧光光谱法对物质进行定性分析。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.了解影响荧光产生的几个主要因素。二、实验内容:测定荧光黄/水体系的激发光谱和发射光谱; 首先根据已知的激发波长(如果未知,则用紫外分光光度计进行测量,以最大吸收波长为激发波长)测定发射光谱,得到最大发射波长;然后根据最大发射波长测定激发光谱,得到最大激发波长;然后在根据最大激发波长测定测定发射光谱; 根据所得数据,用origin软件做出光谱图。三、实验原理: 某些物质吸收光子后,外层电子从基态跃迁至激发态,然后经辐射跃迁的方式返回基态,发射出一定波长的光辐射,此即光致发光。光致发光现象分荧光、磷光两种,分别对应单重激发态、三重激发态的辐射跃迁过程。本实验为荧光光谱的测定。

激发光谱:在发射波长一定的条件下,被测物吸收的荧光强度随激发波长的变化图。 发射光谱:在激发波长一定的条件下,被测物发射的荧光强度随发射波长的变化图。 各种物质均有其特征的最大激发波长和最大发射波长,因此,根据最大激发波长和最大发射波长,可以对某种物质进行定性的测定。 四、荧光光谱仪的基本机构 五、实验结果与讨论: XX00 S1 / R1 (CPS / MicroAmps) 150000 100000 50000 0Wavelength (nm) 400000 S1 / R1 (CPS / MicroAmps) 300000 XX00 100000 Wavelength (nm)

核黄素测定实验报告

核黄素测定实验报告 篇一:实验八荧光光光度法测定核黄素的含量 实验八荧光光度法测定核黄素的含量(见教材p118) 一. 实验目的 1. 了解荧光法测定核黄素的原理和方法; 2. 学习荧光光度计的操作和使用。 二. 实验原理 某些具有π-π电子共轭体系的分子易吸收某一波段的紫外光而被激发,如该物质具有较高的荧光效率,则会以荧光的形式释放出吸收的一部分能量而回到基态。建立在发生荧光现象基础上的分析方法,称为分子荧光分析法,而常把被测物称为荧光物质。在稀溶液中,荧光强度IF与入射光的强度I0、荧光量子效率?F以及荧光物质的浓度c等有关,可表示为IF=K?FI0εbc。式中为比例常数,与仪器的参数固定后,以最大激发波长的光为入射光,测定最大发射波长光的强度时,荧光强度IF与荧光物质的浓度c成正比。 核黄素(维生素B2)是一种异咯嗪衍生物,它在中性或弱酸性的水溶液中为黄色并且有很强的荧光。这种荧光在强酸和强碱中易被破坏。核黄素可被亚硫酸盐还原成无色的二

氢化物,同时失去荧光,因而样品的荧光背景可以被测定。 OHHO OHH3CHNOOHOHHOOHH3CH3C-2HH3CH二氢化物在空气中易重新氧化,恢复其荧光,其反应如下: 核黄素的激发光波长范围约为440—500nm(一般为440nm),发射光波长范围约为510—550nm(一般为520nm)。利用核黄素在稀溶液中荧光的强度与核黄素的浓度成正比,由还原前后的荧光差数可进行定量测定。根据核黄素的荧光特性亦可进行定性鉴别。 注意:在所有的操作过程中,要避免核黄素受阳光直接照射。 三. 仪器与试剂 1. 实验试剂:核黄素标准品;冰醋酸;核黄素药片;连二亚硫酸钠(保险粉)或亚硫酸钠 2. 实验仪器:荧光光度计(F-2500型)天平(感量0.0001g) 3. 实验器材 普通试管: 容量瓶:

材料分析与表征方法实验报告

材料分析与表征方法实验报告 热重分析实验报告 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造。 2.掌握热重分析仪的使用方法。 二、实验原理 热重分析指温度在程序控制时,测量物质质量与温度之间的关系的技术。热重分析所用的仪器是热天平,它的基本原理是,样品重量变化所引起的天平位移量转化成电磁量,这个微小的电量经过放大器放大后,送入记录仪记录;而电量的大小正比于样品的重量变化量。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。 三、实验原料 一水草酸钙CaC2O4·H2O 四、实验仪器 美国TA公司TGA55 升温与降温速率(K/min) 0.1-100℃/min 天平灵敏度(μg) 0.1μg 温度范围(°C)室温-1000℃ 五、操作条件 第一组:10℃/min空气条件下和20℃/min空气条件下,对TG和DTG曲线进行对比。 第二组:10℃/min空气条件下和10℃/min氮气条件下,对DSC进行对比。 第三组:10℃/min氮气条件下,得到TG、DTG、DSC曲线。 六、结果与讨论

含有一个结晶水的草酸钙(242CaC.OHO)在100℃以前没有失重现象,其热重 曲线呈水平状,为TG曲线的第一个平台。DTG曲线在0刻度。 在100℃和200℃之间失重并出现第二个平台。DTG曲线先升后降,在108.4℃达到最大值,即失重速率的最大值。DSC曲线先降后升,在188.4℃达到最小值,即热功率的最小值。这一步的失重量占试样总质量的12.47%,相当于每 mo CaC2O4·H2O失掉1mol H2O,其热分解反应为: CaC2O4·H2O CaC2O4 + H2O 在400℃和500℃之间失重并开始呈现第三个平台,DTG曲线先升后降,在510.4℃达到最大值,即失重速率的最大值。DSC曲线先降后升,在103.1℃达到最小值,即热功率的最小值。其失重量占试样总质量的18.76%,相当于每 mol CaC2O4分解出1mol CO,其热分解反应: CaC2O4 CaCO3 + CO 在600℃和800℃之间失重并开始呈现第四个平台,DTG曲线先升后降,在749.2℃达到最大值,即失重速率的最大值。DSC曲线先降后升,在758.9℃达到最小值,即热功率的最小值。其失重量占试样总质量的29.38%,相当每 mol CaC2O4分解出1mol CO2,其热分解反应: CaCO3 CaO + CO2 六、结论

光谱分析报告 实验报告材料

实 课程名称: 材料科学基础实验 指导老师: 乔旭升 成绩: 实验名称: 光谱分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的 通过本实验了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR )和荧光光谱仪的基本原理、主要用途和实际操作过程。掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。学习分析影响测试结果的主要因素。 二、实验原理 电磁波可与多种物质相互作用。如果这种作用导致能量从电磁波转移至物质,就称为吸收。当光波与某一受体作用时,光子和接受体之间就存在碰撞。光子的能量可被传递给接受体而被吸收,由此产生吸收光谱。通常紫外和可见光的能量接近于某两个电子能级地能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁,又称为电子光谱。 当一束平行单色光照射到非散射的均匀介质时,光的一部分将被介质所反射,一部分被介质吸收,一部分透过介质。如果入射光强度为I0.反射光强度为Ir ,吸收光强度为Ia ,透过光强度为It ,则有I0=Ir+Ia+It 投射光强度与入射光强度之比称为透光率 T=It/I0 当一束具有连续波长的红外光照射某化合物时,其分子要吸收一部分光能转变为分子的震动能量或转动能量。此时若将其透过的光用单色器进行色散,就可得到一带暗条的谱带。以红外光的波长或波数为横坐标,以吸收率或者透过率百分数为纵坐标,把该谱带记录下来,就可得到该化合物的红外吸收光谱图。不同的化合物均有标准特征谱,将实验所得的光谱与标准谱对照,就可进行分子结构的基础研究和化合组成的分析。可由吸收峰的位置和形状来推知被测物的结构,按照特征峰的强度来测定混合物中各组分的含量。 当分子吸收来自光辐射的能量后,其本身就由处于稳定的基态跃迁至不稳定的激发态: M+h ν→。激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁 波(荧光或磷光)的方式回到基态: →M+荧光(或磷光)。任何能产生荧光(或磷光)的物质都具有两个特征光谱:激发光谱和发射光谱。 激发光谱:荧光(或磷光)为光致发光,因此必须选择合适的激发光波长,这可通过激发

光谱分析实验报告

实验报告 课程名称: 材料科学基础实验 指导老师: 乔旭升 成绩: 实验名称: 光谱分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的 通过本实验了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR )和荧光光谱仪的基本原理、主要用途和实际操作过程。掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。学习分析影响测试结果的主要因素。 二、实验原理 电磁波可与多种物质相互作用。如果这种作用导致能量从电磁波转移至物质,就称为吸收。当光波与某一受体作用时,光子和接受体之间就存在碰撞。光子的能量可被传递给接受体而被吸收,由此产生吸收光谱。通常紫外和可见光的能量接近于某两个电子能级地能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁,又称为电子光谱。 当一束平行单色光照射到非散射的均匀介质时,光的一部分将被介质所反射,一部分被介质吸收,一部分透过介质。如果入射光强度为I0.反射光强度为Ir ,吸收光强度为Ia ,透过光强度为It ,则有I0=Ir+Ia+It 投射光强度与入射光强度之比称为透光率 T=It/I0 当一束具有连续波长的红外光照射某化合物时,其分子要吸收一部分光能转变为分子的震动能量或转动能量。此时若将其透过的光用单色器进行色散,就可得到一带暗条的谱带。以红外光的波长或波数为横坐标,以吸收率或者透过率百分数为纵坐标,把该谱带记录下来,就可得到该化合物的红外吸收光谱图。不同的化合物均有标准特征谱,将实验所得的光谱与标准谱对照,就可进行分子结构的基础研究和化合组成的分析。可由吸收峰的位置和形状来推知被测物的结构,按照特征峰的强度来测定混合物中各组分的含量。 当分子吸收来自光辐射的能量后,其本身就由处于稳定的基态跃迁至不稳定的激发态: M+h ν→。激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁 波(荧光或磷光)的方式回到基态: →M+荧光(或磷光)。任何能产生荧光(或磷光)的物质都具有两个特征光谱:激发光谱和发射光谱。 激发光谱:荧光(或磷光)为光致发光,因此必须选择合适的激发光波长,这可通过激发 光谱曲线来确定。选择荧光(或磷光)的最大发射波长为测量波长(监控波长),改变激发专业: 材料0902 姓名: 王应恺 学号: 81 日期: 地点: 曹楼230 装 订 线

相关主题
文本预览
相关文档 最新文档