当前位置:文档之家› 傅里叶变换光谱 s.

傅里叶变换光谱 s.

傅里叶变换光谱  s.
傅里叶变换光谱  s.

傅里叶变换光谱

傅里叶变换光谱:

利用光的干涉现象,得到干涉图,经过傅立叶变换,在频域中得到光谱,这种方法得到的光谱称

为傅立叶变换光谱,所用的仪器称为傅立叶光谱仪。它的优点是:

1. 它以大的圆形入射孔径代替普通光谱仪的窄的入射狭缝,在获得同样分辨本领条件下,它能从

较大的立体角接受光源辐射。

2. 在一般分光光度计中,每一瞬间只能测量一个光谱元,而傅立叶光谱仪能在整个工作时间内,

同时记录所有待测光谱元,这又进一步使接收器获得更多的辐射能量,提高接收信号的信噪比。所以,

它特别适合于光源较弱的红外光谱区,目前它已作为一种新型红外光谱仪广泛应用于红外光谱工作中。

实验目的:

1. 掌握傅里叶变换光谱的原理

2. 自组傅里叶变换光谱仪

3. 测量常用光源的光谱分布

实验原理:

1. 傅里叶变换光谱实验的应用与特点简介

傅里叶变换光谱技术是光谱学中主要的分光手段之一,具有高精度、多通道、高通量、宽光谱范围、结构紧凑等优势。其实验结果是通过傅里叶变换从空间域变换到频率域通过数学计算的方法得到。

多数傅里叶变换光谱仪是基于迈克尔逊干涉仪结构的。其借助于连续的移动其中的一个反射镜(动镜),干涉仪产生的两束相干光的光程差发生连续改变,干涉光强就会发生相应改变。在改变光程差的同时,记录下光强接收器输出中的变化部分,得到干涉光强随光程差的变化曲线,即干涉图函数。在获得干涉图后,算出干涉图的傅里叶余弦变换,即得光源的光谱分布。

2. 运用傅里叶变换得到相干光束的光谱分布

若有两束单色光,波数都为σ,传播方向和偏振方向相同,光强均为I' ,两光束间光程差为Δ,两束光相互叠加产生干涉,得到的光强为

在整个光谱范围内的干涉总光强为:

上式右方第一项为常数项,第二项为光程差Δ的函数,故以

I(Δ 表示第二项为: 2cos( (2 (2?+=πσσσσσd I d I dI ??∞∞?+=00

2cos( ( (σπσσσσd I c d I c I ?

∞?=?0 2cos( ( (σπσσd I c I

由于傅里叶余弦变换可逆,故:

上式需要测量的光程差范围是0到∞,但实际测量范围无法如此精确,存在较大误差。理论分析得到:光程差测量范围大小决定了傅里叶变换光谱的光谱分辨率,即傅里叶变换光谱仪的光谱分辨率由最大光程差决定;同时上式要求测量干涉光强是随光程差变化的连续变化曲线,实际测量中亦无法实现,只能采用间隔一定距离离散采样的方法。

3. 如何实现高精度的等光程差,并采取间隔的选取是实验的关键

基本思路为:

用一个精密电机带动迈克尔逊干涉仪的细调手轮,让其动镜匀速移动,从而以恒定速度改变光程差。用光电接收器接收光强信号,得到干涉光强随时间的变化曲线。

但由于电机的稳定性不好以及传动机传动精度不够等原因,动镜移动的速度会在一定范围内波动,会降低傅里叶变换光谱仪的精度,精密的仪器中需要实时测量动镜的移动速度,根据其调整采样的时间间隔大小,使得采样的光程差间隔是相同的。为此在主光路的旁边引入一条平行的辅助定标光路,以已知波长单色光作光源的辅助干涉仪,其与主干涉仪共用一套静镜、动镜、分束板、补偿板,通过比较单色光干涉图函数曲线的疏密程度,即可以推算出光程差改变速度随时间的变化曲线。

单色光时,强度与位移的关系

非单色光时,强度与位移的关系

傅里叶变换

实验仪器:

迈克尔逊干涉仪、钨丝灯、氦氖激光器、光电倍增管、光电二极管、力矩电机、测量控制单元、计算机

?∞

?

??'=0

2cos( ( (d I c I

πσ

σ

实验内容:

1. 用激光调整迈克尔逊干涉仪,调出光的干涉圆环利用激光调整干涉仪得到干涉条纹,并找到光程

差减小的方向(吞圆环)

2. 而后调出等厚干涉,利用竖直条纹找到光程差为零的较准确的位置,同时消除回程差对实验的影响

3. 调整干涉条纹的方向和宽度,利用计算机得出激光的傅里叶变换光谱

4. 改换汞灯,同理调整光路,再测量汞灯傅里叶变换光谱

5. 进行数据处理,参考激光光谱的出汞灯光谱

思考题:

1. 为什么要测量激光:傅里叶变换横坐标没有准确标值,需要有一个标准光作为参考,氦氖激光器的波长已知,为63

2.8nm ,将其和汞灯频谱进行对比则可以知道汞灯各个峰值的波长

2. 为什么只能显出部分谱线:汞灯部分频率分量较为微弱,对其傅里叶变换后的频域图对应的该频率的峰值很小,不明显,部分频率间距较小,也不容易分辨出来

(完整word版)Nicolet_iS5_型傅里叶变换红外光谱仪标准操作规程

本细则根据傅里叶变换红外光谱方法通则(JY?T 001-1996)和美国Nicolet公司Nicolet 380型傅里叶变换红外光谱仪操作说明书制定。 1 适用范围 本方法适用于液体、固体、气体、金属材料表面镀膜等样品。它不仅可以检测样品的分子结构特征,而且还可对混合物中各组份进行定量分析,本仪器的测量范围为4000 ~ 400cm-1。 2 术语、符号、代号 见国标(GB3100-93)。 3 方法原理 红外光谱是根据物质吸收辐射能量后引起分子振动的能级跃迁,记录跃迁过程而获得该分子的红外吸收光谱。 4 常用试剂及材料 分析纯:四氯化碳、二氯甲烷、溴化钾、氯化钠; 窗片:溴化钾、氯化钠、KRS-5(碘化铯、溴化铯合晶)。

5 检测仪器 5.1仪器技术参数 仪器名称:傅里叶变换红外光谱仪 型号:Nicolet 380 测试波数范围:4000 ~400cm-1 波数精度:≤0.1 cm-1 4cm-1分辨率就可以达到要求。 分辨率: 0.1~16cm-1,一般测试样品使用 5.2 仪器环境要求 室内温度:18℃~ 23℃ 相对湿度:≤ 50% 5.3 仪器供电需求 仪器供电电压:220V?% 交流电频率:50Hz?% 交流电零地电压:<1 V 6 检测方法 6.1 试样制备方法 6.1.1 一般注意事项 在定性分析中,所制备的样品最好使最强的吸收峰透过率为 10%左右。

Nicolet 380 型傅里叶变换红外光谱仪标准操作指导书 作者: 唐兴国审核: 丁春燕文件编号: HY-002 生效日期: 2010-11-22 最后审核日期: 2010-11-26 版次:01 修订号: 00 6.1.2 固体样品 (1)压片法:取 1~2mg的样品在玛瑙研钵中研磨成细粉末与干燥的溴化钾(A. R.级)粉末(约 100mg,粒度 200目)混合均匀,装入模具内,在压片机上压制成片测试。 玛瑙研钵压片模具 (2)溶液法:把样品溶解在适当的溶液中,注入液体池内测试。所选择的溶剂应不腐蚀池窗,在分析波数范围内没有吸收,并对溶质不产生溶剂效应。一般使用 0.1mm的液体池,溶液浓度在 10%左右为宜。 a:镜片; b:液体池部件(不含镜片); c: 装配图; d:使用方法

实验八 利用快速傅里叶变换(FFT)实现快速卷积(精选、)

实验八 利用FFT 实现快速卷积 一、 实验目的 (1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。 (2) 进一步掌握循环卷积和线性卷积两者之间的关系。 二、 实验原理与方法 数字滤波器根据系统的单位脉冲响应h(n)是有限长还是无限长可分为有限长单位脉冲响应(Finite Impulse Response )系统(简记为FIR 系统)和无限长单位脉冲响应(Infinite Impulse Response )系统(简记为IIR 系统)。 对于FIR 滤波器来说,除了可以通过数字网络来实现外,也可以通过FFT 的变换来实现。 一个信号序列x(n)通过FIR 滤波器时,其输出应该是x(n)与h(n)的卷积: ∑+∞ -∞ =-= =m m n h m x n h n x n y )()()(*)()( 或 ∑+∞ -∞ =-= =m m n x m h n x n h n y ) ()()(*)()( 当h(n)是一个有限长序列,即h(n)是FIR 滤波器,且10-≤≤N n 时 ∑-=-=1 0) ()()(N m m n x m h n y 在数字网络(见图6.1)类的FIR 滤波器中,普遍使用的横截型结构(见下图6.2 图6.1 滤波器的数字网络实现方法 图6.2 FIR 滤波器横截型结构 y(n) y(n) -1-1-1-1

应用FFT 实现数字滤波器实际上就是用FFT 来快速计算有限长度列间的线性卷积。 粗略地说,这种方法就是先将输入信号x(n)通过FFT 变换为它的频谱采样 值X(k),然后再和FIR 滤波器的频响采样值H(k)相乘,H(k)可事先存放在存储器中,最后再将乘积H(k)X(k)通过快速傅里叶变换(简称IFFT )还原为时域序列,即得到输出y(n)如图6.3所示。 图6.3 数字滤波器的快速傅里叶变换实现方法 现以FFT 求有限长序列间的卷积及求有限长度列与较长序列间的卷积为例来讨论FFT 的快速卷积方法。 (1) 序列)(n x 和)(n h 的列长差不多。设)(n x 的列长为1N ,)(n h 的列长为2N ,要求 )()(n x n y =N ∑-=-==1 ) ()()(*)()(N r r n h r x n h n x n h 用FFT 完成这一卷积的具体步骤如下: i. 为使两有限长序列的线性卷积可用其循环卷积代替而不发生混叠,必须选择循环卷积长度121-+≥N N N ,若采用基2-FFT 完成卷积运 算,要求m N 2=(m 为整数)。 ii. 用补零方法使)(n x ,)(n h 变成列长为N 的序列。 ?? ?-≤≤-≤≤=10 10)()(11N n N N n n x n x ?? ?-≤≤-≤≤=10 1 0)()(22N n N N n n h n h iii. 用FFT 计算)(),(n h n x 的N 点离散傅里叶变换 )()(k X n x FFT ??→? )()(k H n h FFT ??→? iv. 做)(k X 和)(k H 乘积,)()()(k H k X k Y ?= v. 用FFT 计算)(k Y 的离散傅里叶反变换得 y(n)

实验一快速傅里叶变换

实验一 快速傅里叶变换之报告 一 、实验目的 1、在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2、熟悉并掌握按时间抽取FFT 算法的程序; 3、了解应用FFT 进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、 栅栏效应等,以便在实际中正确应用FFT 。 二 实验内容 a ) 信号频率F =50Hz ,采样点数N=32,采样间隔T= matlab 程序代码为: F=50; T=; N=32; n=0:N-1; t=n*T; A=sin(2*pi*F*t); figure; Y = fft(A,N); h = (abs(Y)); h=h/max(h(1:N)); for n=1:N; string1=strcat('X(',num2str(n-1), ')=',num2str(h(n))); disp(string1); f=(n/T)/N; end stem([0:N-1]/N/T,h); xlabel('?μ?ê/HZ'); ylabel('??·ùX£¨ejw£?'); title('·ù?μì?D?'); 上述代码命令中,将FFT 变换后的数字变量K ,在画图时转换成频域中的频率f 。这主 要是根据数字频率与模拟域频率之间的关系: T Ω=ω 其中ω、Ω分别为数字和模拟域中的频率,且N k πω2= f π2=Ω 于是有: NT k f = 运算结果: X(1)=1 X(2)= X(3)= X(4)=

X(5)= X(6)= X(7)= X(8)= X(9)= X(10)= X(11)= X(12)= X(13)= X(14)= X(15)= X(16)= X(17)= X(18)= X(19)= X(20)= X(21)= X(22)= X(23)= X(24)= X(25)= X(26)= X(27)= X(28)= X(29)= X(30)= X(31)=1 b)信号频率F=50Hz,采样点数N=32,采样间隔T= 同理可将a)中F、N、T,参数改成要求值(以下均是如此),即可得,X(0)= X(1)= X(2)= X(3)= X(4)= X(5)= X(6)= X(7)= X(8)=1 X(9)= X(10)= X(11)= X(12)= X(13)= X(14)= X(15)= X(16)= X(17)= X(18)= X(19)= X(20)= X(21)= X(22)= X(23)= X(24)=1 X(25)= X(26)= X(27)= X(28)= X(29)= X(30)= X(31)=

傅里叶变换红外光谱仪的测试原理解读

傅里叶变换红外光谱仪的测试原理 傅里叶变换红外光谱仪由迈克耳逊干涉仪和数据处理系统组合而成,它的工作原理就是迈克耳逊干涉仪的原理。 迈克耳逊干涉仪的光路如图所示,图中已调到M2与M1垂直。∑是面光源(由被单色光或白光照亮的一块毛玻璃充当,面上每一点都向各个方向射出光线,又称扩展光源,图中只画出由S点射出光线中的一条来说明光路。这条光线进入分束板G1后,在半透膜上被分成两条光线,反射光线①和透射光线②,分别射向M1和M2又被反射回来。反射后,光线①再次进入G1并穿出,光线②再次穿过补偿板G2并被G1上的半透膜反射,最后两条光线平行射向探测器的透镜E,会聚于焦平面上的一点,探测器也可以是观测者的眼睛。由于光线①和光线②是用分振幅法获得的相干光,故可产生干涉。光路中加补偿板G2的作用是使分束后的光线①和光线②都以相等的光程分别通过G1、G2两次,补偿了只有G1而产生的附加光程差。M2′是M2被G1上半透膜反射所成的虚象,在观测者看来好象M2位于M2′的位置并与M1平行,在它 们之间形成了一个空气薄膜。移动M1即可改变空气膜的厚度,当M1接近M2′时厚度减小,直至二者重合时厚度为零,继续同向移动,M1还可穿越M2′的另一测形成空气膜。最后通过观测干涉条纹的分布情况就可以获得我们所要的信息。 如果是傅里叶变换红外光谱仪,那还要加上对干涉信息的数据处理系统而最终获得我们的数据图表。 二.紫外—可见分光光度计定量分析法的依据是什么? 比耳(Beer确定了吸光度与溶液浓度及液层厚度之间的关系,建立了光吸收的基本定律。 ○1. 朗伯定律 当溶液浓度一定时,入射光强度与透射光强度之比的对数,即透光率倒数的对数与液层厚度成正比。人们定义:溶液对单色光的吸收程度为吸光度。公式表示为 A=Lg(I0/It

FTIR(傅里叶红外光谱简介)

1、简介: 傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 2、基本原理 光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。 3、主要特点 ①信噪比高 傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。 ②重现性好 傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。 ③扫描速度快 傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集求平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。 4、技术参数 光谱范围:4000--400cm-1 7800--350cm-1(中红外) 125000--350cm-1(近、中红外) 最高分辨率:2.0cm-1 / 1.0cm-1 / 0.5cm-1 信噪比:15000:1(P-P) / 30000:1(P-P) / 40000:1(P-P)

快速傅里叶变换实验报告..

快速傅里叶变换实验报告 班级: 姓名: 学号:

快速傅里叶变换 一.实验目的 1.在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2.熟悉并掌握按时间抽取FFT 算法的程序; 3.了解应用FFT 进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT 。 二.实验内容 1.仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT 进行信号分析的C 语言(或MATLAB 语言)程序; 2.用FFT 程序分析正弦信号 ()sin(2)[()(*)],(0)1y t f t u t u t N T t u π=---∞<<+∞=设 分别在以下情况进行分析并讨论所得的结果: a ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.000625s b ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.005s c ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.0046875s d ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.004s e ) 信号频率 f =50Hz ,采样点数N=64,采样间隔T=0.000625s f ) 信号频率f =250Hz ,采样点数N=32,采样间隔T=0.005s g ) 将c ) 信号后补32个0,做64点FFT 三.实验要求 1.记录下实验内容中各种情况下的X (k)值,做出频谱图并深入讨论结果,说明参数的变化对信号频谱产生哪些影响。频谱只做模特性,模的最大值=1,全部归一化;

2.打印出用C 语言(或MATLAB 语言)编写的FFT 源程序,并且在每一小段处加上详细的注释说明; 3.用C 语言(或MATLAB 语言)编写FFT 程序时,要求采用人机界面形式: N , T , f 变量均由键盘输入,补零或不补零要求设置一开关来选择。 四.实验分析 对于本实验进行快速傅里叶变换,依次需要对信号进行采样,补零(要求补零时),码位倒置,蝶形运算,归一化处理并作图。 此外,本实验要求采用人机界面形式,N,T,F 变量由键盘输入,补零或不补零设置一开关来选择。 1.采样 本实验进行FFT 运算,给出的是正弦信号,需要先对信号进行采样,得到有限 长序列()n x , N n ...... 2,1,0= Matlab 实现: t=0:T:T*(N-1); x=sin(2*pi*f*t); 2.补零 根据实验要求确定补零与否,可以用if 语句做判断,若为1,再输入补零个数, 并将补的零放到采样得到的序列的后面组成新的序列,此时新的序列的元素个数等于原采样点个数加上补零个数,并将新的序列个数赋值给N 。 Matlab 实现: a=input('是否增加零点? 是请输入1 否请输入0\n'); if (a) ZeroNum=input('请输入增加零点的个数:\n'); else ZeroNum=0; end if (a) x=[x zeros(1, ZeroNum)];%%指令zeros(a,b)生成a 行b 列全0矩阵,在单行矩阵x 后补充0 end N=N+ZeroNum; 3.码位倒置 本实验做FFT 变换的级数为M ,N M 2log =

快速傅里叶变换实验报告

快速傅里叶变换实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

快速傅里叶变换实验报告 机械34班 刘攀 2013010558 一、 基本信号(函数)的FF T变换 1. 000()sin()sin 2cos36x t t t t π ωωω=+++ 1) 采样频率08s f f =,截断长度N =16; 取02ωπ=rad/s,则0f =1Hz ,s f =8Hz ,频率分辨率 f ?=s f f N ?= =0.5Hz 。 最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2) 采样频率08s f f =,截断长度N=32; 取02ωπ=rad/s ,则0f =1Hz,s f =8Hz ,频率分辨率f ?=s f f N ?==0.25Hz 。 最高频率c f =30f =3H z,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度04T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2. 00()sin()sin116x t t t π ωω=++ 1) 采样频率08s f f =,截断长度N=16; 取02ωπ=ra d/s,则0f =1Hz ,s f =8Hz,频率分辨率f ?=s f f N ?==0.5H z。 最高频率c f =110f =11H z,s f <2c f ,故不满足采样定理,会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图:

傅里叶变换光谱实验

傅里叶变换光谱实验 一、实验目的 1、了解傅里叶变换光谱的基本原理。 2、学会测量待测光的光谱图。 重点:傅里叶变换光谱实验装置的正确使用,实验过程中参数的选定 难点:傅里叶变换光谱原理的理解 二、实验原理 现代光学的一个重大进展是引入“傅里叶变换”概念,由此发展成为光学领域内的一个崭新分支——傅里叶变换光学。本实验中用到的“傅里叶变换光谱实验装置”利用了傅里叶光谱中存在的干涉图和光谱图的变换关系,仪器用途是演示通过傅里叶变换的方法测定光源的辐射光谱。本实验仪器的意义在于进行傅里叶变换原理的演示。本实验测量光谱范围设计在可见区(400-800nm )并且光路部分设计为开放式,以便能更深刻、直观地了解傅里叶变换光学的实现与应用。 傅里叶变换过程实际上就是调制与解调的过程,通过调制我们将待测光的高频率调制成我们可以掌控、接收的频率。然后将接收到的信号送到解调器中进行分解,得出待测光中的频率成分及各频率对应的强度值。这样我们就得到了待测光的光谱图。下面介绍两个方程: 调制方程:()()cos 2I x I xd σπσσ+∞-∞=? 解调方程:()()cos 2I I x xdx σπσ+∞ -∞=?

调制过程:这一步由迈克耳孙干涉仪实现,设一单色光进入干涉仪后,它将被分成两束后进行干涉,干涉后的光强值为 0()c o s 2I x I x πσ=,(其中x 为光程差,它随动镜的移动而变化,σ为单色光的波数值)。如果待测光为连续光谱,那么干涉后的光强为()()cos 2I x I xd σπσσ+∞ -∞=?。 图1 实验装置中的迈克尔孙干涉仪 解调过程:我们把从接收器上采集到的数据送入计算机中进行数据处理,这一步就是解调过程。使用的方程就是解调方程,这个方程也是傅里叶变换光谱学中干涉图—光谱图关系的基本方程。 对于给定的波数σ,如果已知干涉图与光程差的关系式,就可以用解调方程计算的这波数处的光谱强度()I σ。为了获得整个工作波数范围的光谱图,只需对所希望的波段内的每一个波数反复按解调方程进行傅里叶变换运算就行了。 三、实验仪器 XGF-Ⅰ型傅里叶变换光谱实验装置 、数据传输设备(USB 线)、 计算机一套(如需要数据输出还应连接相应的输出设备,比如说打印机等)、待测光源(如图2所示)。

快速傅里叶变换实验报告

快速傅里叶变换实验报告 快速傅里叶变换实验报告 机械34班刘攀 2019010558 一、基本信号(函数)的FFT变换 1. x(t)=sin(ω0t+)+sin2ω0t+cos3ω0t 6 1) 采样频率fs=8f0,截断长度N=16; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.5Hz。 Nπ最高频率fc=3f0=3Hz,fs>2fc,故满足采样定理,不会发生混叠现象。截断长度T=2T0,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下: 幅值误差?A=0,相位误差??=0。 2) 采样频率fs=8f0,截断长度N=32; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.25Hz。 N最高频率fc=3f0=3Hz,fs>2fc,故满足采样定理,不会发生混叠现象。截断长度T=4T0,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下: 幅值误差?A=0,相位误差??=0。 2. x(t)=sin(ω0t+π 6)+sin11ω0t 1) 采样频率fs=8f0,截断长度N=16; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.5Hz。 N最高频率 fc=11f0=11Hz,fs 漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图:

由上图可以看出,并未体现出11f0的成分,说明波形出现混叠失真。为了消除混叠 现象,应加大采样频率,使之大于等于 22Hz。 f0处的幅值误差?A=0,11f0处由于出现 了混叠现象,幅值误差没有意义;相位误差??=0。 2) 采样频率fs=32f0,截断长度N=32; 取ω0=2πrad/s,则f0=1Hz,fs=32Hz,频率分辨率?f=?f=fs=1Hz。 N最高频率 fc=11f0=11Hz,fs>2fc,故满足采样定理,不会发生混叠现象。 漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图: 该频谱图体现出了f0和11f0的成分,说明未失真,且幅值均为1,。幅值误差?A=0,相位误差??=0。 3. x(t)=0t 1) 采样频率fs=8f0,截断长度N=16; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.5Hz。 N最高频率f cf 0Hz,fs>2fc,故满足采样定理,不会发生混叠现象。 频谱图: 在忽略旁瓣信号的情况下,可近似认为: x(t)≈0.9098cos(3ω0t+56.9520?) 故幅值误差?A=0.9096-1=-0.0904,相位误差??=56.9520?。 2) 采样频率fs=32f0,截断长度N=32; 取ω0=2πrad/s,则f0=1Hz,fs=32Hz,频率分辨率?f=?f=fs=1Hz。N最高频率f cf 0Hz,fs>2fc,故满足采样定理,不会发生混叠现象。 频谱图: 在忽略旁瓣信号的情况下,可近似认为:

傅里叶变换红外光谱分析基础知识

傅里叶变换红外光谱分析基础知识 傅里叶变换红外光谱分析技术介绍傅里叶变换红外光谱分析技术为大量的学术研究实验室、化学分析实验室、质保/质控实验室和法庭科学实验室提供了重要的分析手段。傅里叶变换红外光谱分析方法的普及已深深植根,从简单的化合物鉴定到质控监测,广泛应用于各种化学分析,尤其是聚合物和有机化合物分析。 什么是傅立叶变换红外光谱? FTIR指的是傅立叶变换红外,是红外光谱分析的优选方法。当连续波长的红外光源照射样品时,样品中的分子会吸收或部分某些波长光,没有被吸收的光会到达检测器(称为透射方法)。将检测器获取透过样品的光模拟信号进行模数转换和傅立叶变换,得到具有样品信息和背景信息的单光束谱,然后用相同的检测方法获取红外光不经过样品的背景单光束谱,将透过样品的单光束谱扣除背景单光束谱,就生成了代表样品分子结构特征的红外指纹的光谱。由于不同化学结构(分子)会产生不同的指纹光谱,这就体现出红外光谱的价值意义。 那么,什么是FTIR(傅立叶变换红外光谱)? 傅立叶变换技术将检测器输出信号转换成可解读红外光谱。傅立叶变换红外生成的光谱以图形的形式提供可解析的样品分子结构的信息。 傅立叶变换红外的工作原理是什么?为何使用它? 傅立叶变换红外利用干涉图记录放置于红外光路中的材料的相关信息。傅立叶变换产生光谱,分析人员利用该光谱鉴定材料或进行定量分析。 一个傅立叶变换红外光谱是从干涉图被译解成为可解读的光谱。光谱图的图形可帮助鉴定样品,因为样品的分子振动吸收会在光谱上显示出特定的红外指纹。 傅立叶变换红外采样介绍 傅立叶变换红外主要有以下四种采样技术: 透射衰减全反射 (ATR)镜面反射漫反射每一项技术有各自特点,这使它们可适用于不同的状态的样品。 傅立叶变换红外光谱仪的采样和应用

实验-傅立叶变换光谱实验

实验3-3 傅立叶变换光谱实验 ● 实验简介: 利用光的干涉现象,得到干涉图,经过傅立叶变换,在频域中得到光谱,这种方法得到的光谱称为傅立叶变换光谱,所用的仪器称为傅立叶光谱仪。它的优点是: 1. 它以大的圆形入射孔径代替普通光谱仪的窄的入射狭缝,在获得同样分辨本领条件下,它能从较大的立体角接受光源辐射。 2. 在一般分光光度计中,每一瞬间只能测量一个光谱元,而傅立叶光谱仪能在整个工作时间内,同时记录所有待测光谱元,这又进一步使接收器获得更多的辐射能量,提高接收信号的信噪比。所以,它特别适合于光源较弱的红外光谱区,目前它已作为一种新型红外光谱仪广泛应用于红外光谱工作中。 ● 实验目的: 利用傅立叶变换光谱仪,测量常用光源的光谱分布。 ● 实验原理 傅立叶光谱方法利用干涉图和光谱图之间的对应关系。通过测量干涉图和对干涉图进行傅立叶积分变换的方法来测定和研究光谱图。和传统的色散性光谱仪相比较,傅立叶光谱仪可以理解为以某种数学方式对光谱信息进行编码的摄谱仪,它能同时测量、记录所有谱元的信号,并以更高的效率采集来自光源的辐射能量,从而使它具有比传统光谱仪高得多的信噪比和分辨率;同时它的数字化的光谱数据,也便于计算机处理和演绎。正是这些基本优点,使得傅立叶光谱方法发展为目前红外和远红外波段中最有力的光谱工具。它的研究、开发和应用已经形成了光谱学的一个独立分支——傅立叶光谱学,或称干涉光谱学。 傅立叶的变换过程实际上就是调制与解调的过程,通过调制我们将待测光的高频率调制成我们可以掌控、接收的频率。然后将接收器接收到的信号送到调制器中进行分解,得出待测光中的频率成分及各频率对应的强度值。这样我们就得到了待测光的光谱图。 调制和解调方程: 调制方程: ()()cos(2)I B d δνπνδν+∞-∞=? 解调方程: ()()cos(2)B I d νδπνδδ+∞-∞=? I(δ)——随光程变化的干涉图 v ——表示最小波数 B(v)——复原光谱图强度分布 ● 实验内容 1.利用激光调整迈克尔逊干涉仪,调出光的干涉条纹 2.利用钨丝灯调出白光的干涉条纹,目的是找出光程差为零的位置 3.去掉白光灯,放入被测光源,调整干涉条纹的方向和宽度 4.调整参考激光光路,尽量减少两光路之间的相互影响 5.调整电机转速,连接计算机,开始采集数据

快速傅里叶变换实验报告

快速傅里叶变换实验报告 机械34班 攀 2013010558 一、 基本信号(函数)的FFT 变换 1. 000()sin()sin 2cos36 x t t t t πωωω=+++ 1) 采样频率08s f f =,截断长度N=16; 取02ωπ=rad/s ,则0f =1Hz ,s f =8Hz ,频率分辨率f ?=s f f N ?==0.5Hz 。 最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2) 采样频率08s f f =,截断长度N=32; 取02ωπ=rad/s ,则0f =1Hz ,s f =8Hz ,频率分辨率f ?=s f f N ?==0.25Hz 。 最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度04T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2. 00()sin()sin116 x t t t πωω=++ 1) 采样频率08s f f =,截断长度N=16; 取02ωπ=rad/s ,则0f =1Hz ,s f =8Hz ,频率分辨率f ?=s f f N ?==0.5Hz 。 最高频率c f =110f =11Hz ,s f <2c f ,故不满足采样定理,会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图:

快速傅里叶变换实验

快速傅里叶变换实验

————————————————————————————————作者:————————————————————————————————日期: ?

实验七快速傅里叶变换实验 2011010541?机14 林志杭 一、实验目的 1.加深对几个特殊概念的理解:“采样”……“混叠”;“窗函数”(截断)……“泄漏”;“非整周期截取”……“栅栏”。 2.加深理解如何才能避免“混叠”,减少“泄漏”,防止“栅栏”的方法和措施以及估计这些因素对频谱的影响。 3.对利用通用微型计算机及相应的FFT软件,实现频谱分析有一个初步的了解。 二、实验原理 为了实现信号的数字化处理,利用计算机进行频谱分析――计算信号的频谱。由于计算机只能进行有限的离散计算(即DFT),因此就要对连续的模拟信号进行采样和截断。而这两个处理过程可能引起信号频谱的畸变,从而使DFT的计算结果与信号的实际频谱有误差。有时由于采样和截断的处理不当,使计算出来的频谱完全失真。因此在时域处理信号时要格外小心。 时域采样频率过低,将引起频域的“混叠”。为了避免产生“混叠”,要求时域采样时必须满足采样定理,即:采样频率fs必须大于信号中最高频率fc的2倍(fs>2fc)。因此在信号数字处理中,为避免混叠,依不同的信号选择合适的采样频率将是十分重要的。 频域的“泄漏”是由时域的截断引起的。时域的截断使频域中本来集中的能量向它的邻域扩散(如由一个δ(f)变成一个sinc(f),而泄漏的旁瓣将影响其它谱线的数值。时域截断还会引起“栅栏效应”,对周期信号而言,它是由于截断长度不等于周期信号的周期的整数倍而引起的。因此避免“栅栏”效应的办法就是整周期截断。 综上所述,在信号数字化处理中应十分注意以下几点: 1.为了避免“混叠”,要求在采样时必须满足采样定理。 为了减少“泄漏”,应适当增加截断长度和选择合适的窗 对信号进行整周期截取,则能消除“栅栏数应”。 增加截断长度,则可提高频率分辨率。 三、预习内容 熟悉Matlab语言、函数和使用方法;利用Matlab所提供的FFT函数编写程序。 四、实验内容及步骤 调通所编写的程序,对下列信号〔函数〕进行离散FFT变换,根据题目的要求……FFT变换点数〔截断长度〕及采样频率,计算各点的傅里叶变换值,画出频谱图,对典型的谱线标出其幅值及相角。 (-)内容: 1. t t t t x 3 cos 2 sin ) 6 sin( )(ω ω π ω+ + + = 代码: N=input('N='); n=input('n=');t=1:1:N;

实验五 快速傅里叶变换

CENTRAL SOUTH UNIVERSITY 数字信号处理实验报告 题目快速傅里叶变换 学生姓名 学院物理与电子学院 专业班级电子信息科学与技术1105班 学号140411072

实验五快速傅里叶变换 一、实验仪器 PC机一台、JQ—SOPC开发系统实验箱及辅助软件(DSP Builder、Matlab/Simulink、QuartusII、Modelsim)。 二、实验目得 1、了解快速傅里叶变换得基本结构组成、 2、学习使用DSP Builder设计FFT。 三、实验原理 1、FFT得原理: 快速傅里叶变换(FFT)就是离散傅里叶变换(DFT)得一种高效运算方法,它大大简化了DFT得运算过程,使运算时间缩短几个数量级、FFT算法可以分为按时间抽取(DIT)与按频率抽取(DIF)两类,输入也可分为实数与复数两种情况。八点时间抽取基—2FFT算法信号流图如图1示: 图18点基-2 DIT-FFT信号流图 四、实验步骤 1、将桌面得my_fft_8。mdl拷贝到“D:\Program Files\MATLAB71\work”(MATLAB安装目录下得work文件夹)处,并双击打开。

图5-1快速傅里叶变换系统图 图5—2 快速傅里叶变换子系统1图

图5—3快速傅里叶变换子系统2图

图5—3 快速傅里叶变换子系统3图 2、点击工具栏即可开始系统级simulink仿真,以验证该模型得正确性、在仿真进行过程中分别将三个输入控制开关打到000、001、010、011、100以选择五组输入数据进行FFT运算。 (1)当开关打到000时选择第一组数据{2.0,2.0,4。0,7。0,3.0,5。0,5、0,8.0},其运算结果应为36、-2、41+3.84i、—4+8i、0、4219+1.844i、—8、0。4102-1、84i、-4-8i、-2、422-3.844i。 (2)当开关打到001时选择第二组数据{1。1,5。0,10.5,15、3,20。2,25。7,30、6,40。1},其运算结果应该为148、5、-16、1+52、35i、-19.8+24、7i、-22、02+12。25i、—23.7、-22、1-12。15i、-19.8-24。7i、-16.9—52、45i、 (3)当开关打到010时选择第三组数据{5.6,5、0,15、8,20.4,25、2,35、1,40、2,45。0},其运算结果结果应该为192。3、-23.39+63、19i、—25。2+25、3i、-15.69+14。49i、—18、7、-15。81—14、39i、-25。2-25。3i、-23。51-63、29i。 (4)当开关打到011选择第四组数据{10、2,15。3,18。1,20。3,24.2,30、0,35.2,42、3},

傅里叶变换红外光谱仪解析

仪器分析综述 系别:生物科学与技术系 班级:09食品2 姓名:欧阳凡学号:091304251 傅里叶变换红外光谱仪 前言 随着计算方法和计算技术的发展,20世纪70年代出现新一代的红外光谱测量技术及仪器--傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR ,简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 正文 傅里叶变换红外光谱仪分光光度计由光学检测系统、计算机书籍处理系统、计算机接口、电子线路系统组成。 光源发出的光被分束器(类似半透半反镜)分为两束,一束经反射到达动镜,另一束经透射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。 光学检测系统由迈克逊干涉仪、光源、检测器组成、迈克逊干涉仪内有两个相垂直的平面反射镜M1、M2和一个与两镜成45度角的分束器,M1可沿镜轴方向前后移动。自光源发出的红外光经准直镜M3反射后变为平行光束,照在分束器上

后变成两束光。其中一束被反射到可动镜头M1后又被M1反射回分束器,并在分束器上再次分城反射光和透射光,透射光部分照在举聚光镜M4上,然后到到达探测器,另一束光透过分束器,射在固定镜M2上,并被M2反射回分束器,在分束器上再次发生反射和透射,反射部分照在聚光镜M4上,最后也到达探测器。因而这两束到达探测器的光油了光程差,成了相干光,移动可动镜M1可改变两束光程差。在连续改变光程差的同时,记录下中央干涉条纹的光强变化,及得到干涉图。如果在复合的相干光路中放有样品,就得到样品的干涉图。需要通过计算机进行傅里叶变换后才能得到红外光谱图。 主要特点 1、信噪比高 傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。 2、重现性好 傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。 3、扫描速度快 傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。 FTIR 的吸收强度和表示方法 红外吸收光谱分析对于同一类型的化学键,偶极矩的变化与结构的对称性有关。例如C =

实验二 快速傅里叶变换算法实验

快速傅里叶变换算法实验 院系:电子与信息工程学院 班级:电信10-2 姓名:张玥 学号:10071201026 指导老师:郜参观

快速傅里叶变换算法实验 一、实验目的 1、加深对DFT算法原理和基本性质的理解; 2、熟悉FFT算法原理和FFT子程序的应用; 3、学习用FFT对连续信号和时域信号进行谱分析的方法,了解可能 出现的分析误差及其原因,以便在实际中正确应用FFT。 二、实验设备 计算机 CCS2.0版软件实验箱 DSP仿真器 三、基本原理 1、离散傅里叶变换DFT的定义:将时域的采样变换成频域的周期性离散函数,频域的采样也可以变换成时域的周期性离散函数,这样的变换称为离散傅里叶变换,简称DFT。 2、FFT是DFT的一种快速算法,将DFT的步运算减少为 步,极大地提高了运算速度。 3、旋转因子的变化规律。 4、蝶形运算规律。 5、基2FFT算法。 四、实验步骤 复习DFT的定义、性质和用DFT作谱分析的有关内容; 1、复习FFT算法原理与编程思想,并对照DIT-FFT运算流程图 和程序框图,了解本试验提供的FFT子程序; 2、阅读本实验所提供的样例子程序;

3、运行CCS软件,对样例程序进行跟踪,分析结果;记录 必要的参数。 4、填写实验报告。 5、提供样例程序实验操作说明。 A、实验前准备: ⑴、开关K9拨到右边,即仿真器选择连接右边的CPU:CPU2; ⑵、“A/D转换单元”的拨码开关设置; ⑶、拨码开关设置: JP3拨码开关: SW2拨码开关:

S23拨码开关: ⑷、检查:计算机、DSP仿真器、实验箱是否正确连接。 正确完成计算机、DSP仿真器和实验箱的连接后,系统上电。 B、实验 ⑴、启动CCS2.0,project/open打开“algorithm”目录“exp01_cpu2”中子目录下“exp01.pjt”工程文件;双击“exp01.pjt”及“source”可查看各源程序;加载“exp01.out”;在中断子程序中,flag=0处设置断点;单击“run”运行程序,程序将运行至断点处停止,如图(一)所示;

傅里叶变换红外(FTIR)光谱专题实验

傅里叶变换红外(FTIR )光谱专题实验 实验一、红外吸收光谱仪的结构及基本操作(老师讲解) 实验二、薄膜样品的层数定量分析 二、实验准备 准备好某种塑料薄膜,分别制成1、2、3、4层样品。 三、实验步骤 1)开机步骤 a.开启计算机 b.打开仪器 c.打开Perkinelmer Spectrum 软件 2)测定步骤 a.设置合适的各参数(扫描范围在4000-4001 cm ) b.背景扫描 c.用强磁力样品架,依次扫描准备好的样品 d.对图谱进行数据处理并保存至文件夹 四、注意事项 a.所制薄膜样品不可太厚或太薄。过薄或浓度过低常使弱的甚至中等强度的吸收谱带显示不出来;如果样品过厚或过浓会使许多主要吸收谱带彼此连成一片(或峰过宽),看不出准确的波数位置和其精细结构。 b.样品中不应有游离水 c.样品表面反射回引起能量损失,造成普带变形。并产生干涉条纹,可使样品表面粗糙些来消除。 d.样品扫描过程中禁止打开样品舱盖 五、数据处理 040 80 T r a n s m i t t a n c e % wavenumber (cm -1 ) 图1 1、对图谱进行基线校正,并标出个谱峰的位置对照红外波谱数据解析,了解所标普带

Area n 表示的化学键 2、分析所实验样品得结果并与标准样品对照,考察其匹配程度。 分析:由上图1红外光谱对照红外数据推知约36001 -cm 处的吸收为自由OH -,峰尖很大可能是材料表面有水分所导致。重点是该材料在400~40001 -cm 的特征吸收主要有3组,分别为峰为2912(与2849是一组)、1466和7221 -cm 四处峰,其中29121 -cm 对应于反对称伸缩振动,28491 -cm 对称伸缩振动(并由图可知材料中H C -基团浓度较高,该组振动强度很大);14661 -cm 对应弯曲振动;7221 -cm 处的峰是n CH )(2(4≥n )亚甲基平面摇摆振动。据此可初步判断该材料为聚乙烯。 3、薄膜层数计算 由origin 软件经积分处理得到薄膜层数与特征吸收峰高度和薄膜层数与特征吸收面积数据表(未转换成吸收光谱): 图2 Lambert-beer 定律 bc I I T A t ε=-=-=)lg( lg 0 n Height

基于傅立叶变换的光谱数据分析

1绪论 本章介绍课题的研究背景,总结阐述光谱分析技术的发展应用,以及光谱测量仪 器的分类和各自特点,特别是傅里叶光谱仪及应用情况,简要介绍傅里叶变换光谱仪 的研究现状及成果;最后阐述本课题的研究目的、意义以及主要研究内容和技术指标 要求。 1.1选题的背景、目的和意义 在现代高技术战争中,激光武器及其对抗已显得日益重要,面对战场上激光战术 侦察、激光武器和激光制导武器等激光威胁,加速发展激光侦察告警技术己成为激光 对抗的首要任务。准确、可靠、迅速地掌握对方激光的属性己成为交战双方开战的重要前提,因此采用先进技术提高激光告警设备敌我识别的性能、抗干扰能力和反应速度是非常必要的。 激光告警技术是是光电对抗的重要组成部分。研究激光告警技术的目的是快速探测敌方激光威胁的存在,尽可能确定出其方位、波长、强度、脉冲特性(脉宽、重复频率等)等信息,以便我方能及时采取保护或反击措施。激光告警设备硬件通常由激光接收系统、光电传感器、信号处理器、显示与告警装置等部分组成。目前,告警设备在软件上基本都采用解方程组或者查表的方法,求解来袭激光的波长、角度和次数等基本信息。例如,典型相干识别法的迈克尔逊型、法布里一拍罗(F-P)型和光栅衍射型告警机,利用形成的干涉条纹间距确定入射激光的波长,利用干涉图的横向位移量确定入射激光方向等。当激光以一定波长和方向入射时,特定条纹在光电探测器上的位置的不同或者条纹阳间距的不同,制作波长和与入射方向对应的查找表,这样处理器只需计算目标条纹的成像位置和间距,便可通过软件查表实现波长和角度的测定。这种方法原理简单、编程容易;但是无法求出目标激光的光谱特征,从而无法得到威胁激光的时、空特性和类型[1]。 为了实时获取来袭激光的光谱分布和类型,提高告警系统的信噪比和探测率,需 要研究具有高速、准确、性能可靠的新型激光告警系统。 1.2激光光谱探测技术的国内外研究现状 目前,激光信号光谱的探测,主要通过光谱仪来实现,光谱仪从原理上可分为色 散型和干涉型两大类。

相关主题
文本预览
相关文档 最新文档