催化剂跑损原因
- 格式:doc
- 大小:95.50 KB
- 文档页数:7
Annual MeetingMarch 20-22, 2011Marriott RivercenterSan Antonio, TXAM-11-35 Twenty Questions:Identify Probable Cause of High FCCCatalyst LossPresented By:Phillip K. NiccumDirector – FCCTechnologyKellogg Brown & RootLLCHouston, Texas, USAN ational Petrochemical & Refiners Association 1667 K Street, NWSuite 700202.457.0480 voice 202.457.0486 faxThis paper has been reproduced for the author or authors as a courtesy by the National Petrochemical & Refiners Association. Publication of this paper does not signify that the contents necessarily reflect the opinions of the NPRA, its officers, directors, members, or staff. Requests for authorization to quote or use the contents should be addressed directly to the author(s)Twenty Questions:Identify Probable CauseofHigh FCC Catalyst LossPhillip K. NiccumDirector – FCC TechnologyKellogg Brown & Root LLCHouston, Texas, USAAbstractFluid catalytic cracking unit performanceand reliability are primary drivers of refineryeconomics. The containment of the finelypowdered catalyst within the circulatingFCC unit inventory is a critical element ofeffective FCC operation. Identifying theprobable causes of high catalyst loss from afluid catalytic cracking unit remains one ofthe more important yet esoteric challengesthat can be faced by FCC operators andengineers. The answers to twenty keyquestions provide a basis to list the morelikely causes of high losses. Armed with alisting of the most likely causes, a refinercan develop cost effective mitigation strate-gies to relieve if not solve the problem on-line or be prepared to confirm and correctthe situation during the next unit shut-down.This can prevent chasing unlikely solutions,while the real culprits escape detection.Figure 1 – Where Has the Cat Gone?IntroductionFluid catalytic cracking unit performance and reliability are pri-mary drivers of refinery economics. The containment of the fine-ly powdered catalyst within the circulating FCC unit inventory is critical for effective FCC operation. It is remarkable that two-stage reactor and regenerator cyclones as depicted in Figure 2 typically capture more than 99.997% of the catalyst dust en-trained with the product and flue gas vapors. Any significant loss in the ability to contain the catalyst will have serious nega-tive economic consequences such as those listed below. • Catalyst contamination of the slurry oil product reducing its value in the marketplace • Severe erosion of slurry circulation pumps• Required cleaning of heavy oil tanks due to catalyst build-up • Loss of compliance with permitted atmospheric particu-late emissions • Premature failure of flue gas power recovery turbines • Loss of catalyst fluidity; causes irregular or unstable cata-lyst circulation leading to lower FCC unit throughput and less desirable product yields • Several fold increase in fresh catalyst make up costs After a refinery notices an increase in FCC catalyst loss rate, an unfortunate scenario can start with a premature conclusion that the high loss rate must be due to mechanical problems that can only be cured by a unit shut-down and repairs. This scenario can then deepen when no obvious mechanical damage is found during a shutdown and it becomes apparent that the root cause of the losses can only be diagnosed by gathering clues and studying unit operations while the FCC unit is in service. In-deed, the worst thing that can be found during the shutdown and inspection could be finding nothing at all.Figure 2Orthoflow™ FCCUThere are many questions that can be asked when gatheringclues to determine the most likely cause of high FCC catalyst losses. These questions can be grouped into three categories.9 Questions with answers at your fingertips9 Questions that should have readily available answers9 Questions whose answers require data or analysis beyond that considered routine The above groupings can provide an order to an investigation, starting with the questions where answers are most easily available, and working down the list toward those requiring more time and cost to answer.Another complicating factor in FCC catalyst loss investigations, like many troubleshooting exercises, is that some of the supposed evidence may be corrupt or just plain wrong. It is up to the investigator to look for what is being indicated by the preponderance of a body of evidence, and not be drawn into making premature conclusions based on limited data. First Things First (Questions 1 -7)If the increased rate of catalyst loss is not severe, the first indication may be the report of higher than expected fresh catalyst additions needed to maintain the unit catalyst inventory. The first order of business is to ascertain which side of the reactor-regenerator system, if not both sides, is responsi-ble for the increased cata-lyst loss.Q1: What is the relativerate of catalyst loss in thefractionator bottoms com-pared to normal? loss rate through the reac-tor cyclones is normally astraightforward multiplica-tion of the slurry oil produc-tion rate times the concen-tration of ash in the slurry oil product. Q2: What is the relative stack opacity or rate offines catch compared tonormal?An increase in regeneratorindicates an increase in stack catalyst emissions.It is noted that particles with diameters greater than a few microns generally have an in-creasingly smaller impact on opacity while those with diameters in the range of 0.1 to 1.0 microns have the larger impact on opacity 1,2. The presence of third stage separators, elec-trostatic precipitators and flue gas scrubbers can obscure the impact of increased regene-rator catalyst losses on stack opacity 3.A concept referred to again and again in this paper is “what is normal?” Unfortunately, in many cases, this “normal” data may be difficult to obtain as the incentive to document prob-lems often gets more priority than collecting data concerning what things look like when all is well.It is also noteworthy if either the reactor or regenerator loss rate has decreased while losses from the other vessel have increased. With a constant rate of fines input (fresh catalyst) and fines generation by attrition, anything that reduces the fines losses from one vessel will increase the fines concentration in the unit and result in a corresponding in-crease in fines flow rate from the other vessel. For instance, commissioning a catalyst slur-ry oil filter with recycle back to the riser will increase the loss rate from a regenerator.Q3: What is the relative amount of equilibrium catalyst in the 0-40 micron range?An equilibrium catalyst data sheet provides a long term accounting of many important equi-librium catalyst properties that are useful in diagnosing catalyst loss issues. Chief among these is the particle size data4.The relative amount of fines in the catalyst inventory is often indicated by the percentage of the catalyst particles having a diameter less than 40 microns. This parameter provides an indication of whether or not the increased loss rate is due to cyclone malfunction versus an increase in fines generation due to increased attrition or a higher loading of fines with the fresh catalyst.Q4: What is the average equilibrium catalyst APS compared to normal?The change in average particle size (APS) of the equilibrium catalyst generally moves op-posite the fraction of fines in the catalyst. However, APS can also increase over time due to decreasing equilibrium catalyst withdrawals that traps the largest particles within the cir-culating catalyst inventory.Q5: How does the volumetric flow rate of reactor product vapors through the cyclones com-pare to normal?The volumetric rate of vapor flowing through the reactor cyclones can be estimated based on the reactor operating temperature and pressure together with the hydrocarbon product rate, reactor and stripper steam rates, and an estimate of the hydrocarbon product molecu-lar weight. The rates and molecular weights of any hydrocarbon recycle streams should also be included in the calculations.Q6: How does the volumetric flow rate of air or flue gas through the regenerator compare to normal?The regenerator air rate together with the regenerator operating temperature and pressure provide an indication of the volumetric vapor traffic through the regenerator and its cyclone system. Even better accuracy can be obtained by calculating the molar rate of the flue gas based on the air rate and flue gas composition.Q7: How does the catalyst circulation rate compare to normal?The most common method of estimating the catalyst circulation rate is based on the rege-nerator air rate, flue gas analysis and reactor and regenerator temperatures. For the pur-pose of catalyst loss troubleshooting, consistency of method is more important than the ab-solute accuracy of the method.The Next Level of Questions Require Legwork (Questions 8 – 13)Q8: What is the relative rate of catalyst loss from the regenerator compared to normal? On the regenerator side, quantification of the catalyst loss rate is best determined over a period of time by subtracting the reactor catalyst loss rate from the catalyst addition rate. Careful attention to changes in the unit and catalyst hopper inventories over the same time period is important for the catalyst balance.As mentioned previously, the presence of particulate capture devices downstream of the regenerator may obscure the impact of increased regenerator catalyst losses on stack opacity. In these cases, the investigator can review the catalyst catch rate in the post-regenerator flue gas clean-up equipment. For instance, data on the catch rate in a fourth stage cyclone fines hopper or electrostatic precipitator (ESP) dust bins can provide more evidence of increased re-generator catalyst loss.Q9: How does the freshcatalyst make-up ratecompare to normal?Documentation of catalystadditions is important forseveral reasons. Firstly,after accounting for anychanges in routine equili-brium catalyst withdrawalcatalyst additions to main-tain unit inventory corro-borates other indicationslosses. Secondly, increasing fresh catalyst addition rate, in and of itself, generally leads to increased losses due to increased fines input with the fresh catalyst and because the newer catalyst may have surfaces that are more easily abraded5.Q10: Are the losses steady or intermittent?If the increased catalyst losses seem to come and go with time, that is an indication that the problem may be more related to operating conditions than mechanical damage. For in-stance, the diplegs may be operating close to a flooded condition, where changes in gas rate or catalyst loading drastically affect the cyclone efficiency. In a counter-example, if the increased loss rate is due to a hole in a plenum or cyclone outlet tube, then the losses are more likely continuous and increasing.Q11: When did you last change the type of fresh FCC catalyst?If the type of fresh catalyst has changed in a timeframe that could coincide with the in-creased catalyst losses, the catalyst itself becomes suspect. Similarly, the same is true if the fresh catalyst receipts show significant physical property changes, especially in terms of the fraction of fines, density or Attrition Index6.Q12: When did the loss increase first occur?Q12: When did the loss increase first occur? It is also worthwhile to consider the date when the increased catalyst losses seemed to be-gin. Look for coincidences with other significant events in the FCC operation. For instance, did the time of the increased loss rate correspond with a unit turnaround or upset? Equip-ment damage is more likely to occur during a start-up, upset or shut down. Loss of restric-tion orifices that can cause an attrition prob-lem more commonly occurs during a turna-round. Were there other significant changes in the operation corresponding to the time of the increase in catalyst losses such as changes in feed rate, combustion air rate, catalyst circulation rate or feedstock quali-ty?Q13: How long did it take for the losses to Increase from a normal rate?If the catalyst loss rate made a step change from normal to a higher value, then that generally indicates the problem is not an erosion induced hole somewhere in the cyc-lone system; the hole size will increasegradually if erosion is to blame. Figure 3 – Microscopic View of FCC CatalystQuestions that may be Harder to Answer(Questions 14 -20) Most of the questions inthis grouping require some sample capture and/or la-boratory testing that would be considered non-routine.Q14: What is the relative angularity of the equili-brium catalyst?Looking at the sample ofloss under a microscopeas shown in Figure 3 can be very revealing. If thesample contains a lot ofsmall, jagged, or broken pieces, it indicates an ab-normally severe degree of catalyst attrition 7.Q15: What is the relative angularity of lost catalyst?Generally speaking, samples of the catalyst lost from the reactor are readily available from a sample of the slurry oil product or circulating slurry oil. The slurry oil can be washed and filtered in a laboratory, and the captured catalyst can be viewed under a microscope. If available, samples of catalyst lost from the regenerator can be viewed under a microscope. The microscope can reveal whether the sample contains a high concentration of small, jagged, or broken pieces indicating an abnormally severe degree of catalyst attrition.Q16: What is the relative APS of the catalyst in the reactor carryover?Catalyst taken from the slurry oil can be subjected to the all important particle size analysis. For a given rate of fines input and fines generation within the unit, material balance consid-erations dictate that the APS of the lost catalyst must increase as the loss rate increases. The image from the microscope can corroborate the particle size analysis by showing more than an expected fraction of larger particles and even very large particles that would never escape a properly functioning cyclone system.9If the average particle size (APS) of the lost catalyst is smaller than normal, and the loss rate is higher than normal, then that would indicate an increased degree of fines input or increased catalyst attrition.9Moderately increasing APS would indicate some loss of cyclone efficiency if the loss rate is higher than normal.9Moderately increasing APS would indicate a reduction in fines input or attrition if the loss rate is less than normal.9 A large increase in APS would indicate a major cyclone malfunction or serious dam-age.Q17: What is the shape of the differential particle size curve of the catalyst in the reactor carryover?The particle size analysis of a loss sample can also be reported as differential particle size distribution, indicating the fraction of particles falling in narrow size ranges. This is a differ-ent presentation than a cumulative particle size distribution displaying the weight percen-tage of particles having less than a given diameter8.Twenty Questions: Identify Probable Cause of High FCC Catalyst LossPARTICLE SIZE DISTRIBUTION0123456789100102030405060708090100PARTICLE SIZEP E R C E N TTypical PSDPoor Second Stage CyclonePerformanceFigure 4a -Reduced System Efficiency0123456789100102030405060708090100PARTICLE SIZEP E R C E N TAttrition0123456789100102030405060708090100P E R C E N THole or Crack in Outlet Tube or PlenumFigure 4b - Bi-Modal Distribution Indicating an Attrition ProblemFigure 4c - Bi-Modal Distribution IndicatingCyclone BypassThe shape of the differential particle size distribution curve can be insightful.9If the curve has only a single broad peak centered about a higher than normal par-ticle size as shown in Figure 4a, then this could indicate a partial loss of cyclone effi-ciency, but not complete bypassing of solids.9 A bimodal curve having a peak near that considered normal as well as a secondarypeak at a lower than normal particle size as shown in Figure 4b may indicate a cata-lyst attrition problem.9Some bypassing of material around the cyclones altogether would occur with a breached plenum chamber or hole in a secondary cyclone outlet tube as shown in Figure 4c. This curve has a peak near that considered normal as well as a second-ary peak at a higher than normal particle size.Q18: What is the relative APS of the catalysts in the regenerator carryover?The collection of a representative sample of catalyst lost from the regenerator is less straightforward than the collection of fines from slurry oil. Ideally, a dust sample can be col-lected from the regenerator effluent, and the results can be analyzed as previously dis-cussed with respect to catalyst separated from slurry oil. If dust collection equipment exists downstream of the regenerator, such as a scrubber, ESP or TSS, then the fines catch can also be analyzed and useful in the investigation.Q19: What is the shape of the differential particle size curve of the catalysts in the regene-rator carryover?If a dust sample from the regenerator effluent can be obtained, then the results can be ana-lyzed as previously discussed with respect to catalyst separated from slurry oil.Q20: How does the cyclone system pressure drop compare to normal?Some FCC units are instrumented with differential pressure measurements across vessel disengaging space and the vapor outlet. This provides an indication of the pressure drop though the cyclone system and it will indicate whether there has been a significant change in the catalyst or vapor loadings of the cyclones.Possible Causes of High FCC Catalyst LossesOnce answers to many of the 20 questions are available, these answers can be analyzed for fit with the characteristics of the problems described below to establish the more likely causes of the catalyst loss problem.Excessive Attrition in a Fluid BedCatalyst attrition in a fluid bed is caused by catalyst par-Array ticles colliding at high velocity with other particles or solidsurfaces. The high particle velocities in a fluid bed arechiefly the result of particle acceleration driven by highvelocity gas jets within the fluid bed. The focus of an in-vestigation into the source of excessive catalyst attritioncan include looking for the following types of problems:¾Missing restriction orifices or open orifice by-passes associated with pressure taps, torch oil nozzles, and other vessel connec-tions intended to pass only a small amount of gas, air or steam.¾ High velocity gas jets can also emanate from broken or eroded steam or air distribu-tors where gas escapes without traveling through a velocity reducing nozzle typically used in the design of such distributors.A high fines concentration in the lost catalyst, high fines content in the catalyst inventory and splintered, broken and jagged particles as viewed with a microscope, all are indicative of a catalyst attrition problem.Excessive Reactor or Regenerator Dilute Phase Attrition Excessive Reactor or Regenerator Dilute Phase Attrition Since there is little catalyst in a dilute phase, by definition, high attrition rates in this region are likely associated with particle impacts on solid surfaces within the cyclones, especially cyclones with high exit velocities.¾ The nature of the solid surfaces can also play a role in catalyst attrition with badlydamaged refractory or unusually rough refractory surfaces providing more opportu-nity for abrupt impact of the travelling catalyst.Plugged Reactor Secondary Cyclone DiplegSecondary cyclone dipleg plugging is much more common than the plugging of primary cyclone diplegs. The reason is smaller diameter diplegs. The plugging of a second stage reactor cyclone dipleg often calls for an immediate shutdown of the FCC unit due to high catalyst losses.¾ Coke can form in a reactor cyclone and then fall into the dipleg causing a full or par-tial plug 9.¾ If feed is introduced into the reactor before the internals are sufficiently heated, suchas can happen during start-up or upset, then large amounts of coke can appearwherever feedstock can condense.¾ Some cyclones have check valves on the dipleg.Anything that can cause the flapper to stick or beheld closed, including design problems or hingecoking will provide an effectively plugged dipleg.¾ Failures of the cyclone hexsteel attachments tothe cyclone interior shell can release sheets ofhexsteel and refractory sufficiently large to plugeven a large diameter diplegs. Such failures canbe attributed to poor hexsteel design or installa-tion as well as coke induced refractory anchorfailure 10.Plugged Reactor Primary Cyclone DiplegThe causes of primary reactor cyclone dipleg plugging are the same as given above for theplugging of reactor secondary cyclone diplegs.Plugging of reactor primary cyclone diplegs is relatively uncommon due to the large diplegdiameters normally associated with primary cyclones.If a primary cyclone dipleg does become plugged, then the catalyst loading to the second-ary cyclone may exceed the capacity of the secondary cyclone dipleg. In this event, thesecondary cyclone will become flooded with catalyst and full range catalyst will begin flow-ing at a high rate from the secondary cyclone outlet.Plugged Regenerator Cyclone DiplegsThe plugging of regenerator cyclone diplegs has sim-Array ilar causes and effects to those encountered with re-spect to the reactor cyclones, but plugging of rege-nerator cyclone diplegs is less common. In the re-generator, the coking phenomenon that is at the rootof most reactor cyclone plugging problems does notexist. However, there are some situations peculiar tothe regenerator cyclones.¾agents such as sodium, potassium, calcium ,introduced with contaminated feedstock, andespecially at high temperatures, the catalysttemperatures as low as 930 to 1200°F5. Athigher temperatures, the catalyst can fusetogether and prevent flow through the diplegs.¾secondary cyclone diplegs is that the almostextinct use of spray water in the regenerator primary cyclone outlets can lead to the formation of wet catalyst in the dipleg, preventing catalyst flow.¾Regenerator upsets, such as a sudden drop in pressure or the activation of emergency spent catalyst riser lift steam can precipitate a large catalyst carryover that may persist even after the disturbance is gone. This has been explained by noting that defluidized solids will drain from a cyclone much more slowly than flui-dized solids. So much catalyst can be thown into the cyclones that it defludizes before it can get into the dipleg. Then, even at normal entainment rates, the catalyst will not drain out of the cyclone fast enough to eliminate the packed catalyst level in the cyclone11.Holes in Plenum or Second Stage Cyclone Outlet TubeA hole in a plenum or secondary cyclone outlet tube as shown in Figure 5 provides a direct path for catalyst escape, bypassing the cyclone system, and allowing even large catalyst particles to show up in the main fractionator bottoms or flue gas system. Even a 10 mm hole can increase the catalyst losses several fold. In time, the passage of high velocitycatalyst through the hole will increase the hole size and the catalyst losses will intensify.¾ Holes often start as cracks or tears inthe metal, and in time they grow due tothe erosive effects of the catalyst flow.If the catalyst loss problem is not yetsevere, a unit inspection may have dif-ficulty finding the cracks as the cracksmay tend to close as the unit cools.¾ The impact of a hole in the outlet tubeor plenum of a reactor with Riser Cyc-lones will be less than with an inertialriser termination device because therewill be little catalyst in the dilute phasethat can be sucked into the hole.Holes in a Second Stage CycloneHoles in a secondary cyclone (or a singlestage cyclone), including holes in the cyclone dipleg will have serious consequences on catalyst containment. The rate of performancedeterioration will be controlled by how quickly the hole enlarges due to erosion. Holes in the dipleg allow the vapor flow into and up the dipleg. This can restrict the ability of catalyst to flow down the dipleg and even entrain catalyst up the dipleg. If the hole is in the cyclone body, then the incoming vapor jet can disrupt the desired vapor profile in the cyclone, da-maging the collection efficiency.Figure 5 – Two StageRegenerator Cyclone SystemHoles in First Stage CycloneHoles in primary cyclones are not as common due to the lower velocities in primary cyc-lones. The catalyst loss impact from a hole in a primary cyclone will be much less severe compared to a hole in a secondary cyclone, because the secondary cyclone will catch al-most all the catalyst lost from the primary cyclone. In fact, it may be difficult to even notice the increased catalyst loss associated with a hole in a primary cyclone.Stuck Open or Missing Flapper in First Stage Cyclone Stuck Open or Missing Flapper in First Stage Cyclone Most first stage cyclones are submerged in a fluid bedand do not have or need check valves because thecatalyst traffic is sufficiently high that gas does notforce itself up the dipleg. Sometimes check valves asshown in Figure 6 are included to limit losses duringstart-up when the diplegs are not submerged. In thesecases, a stuck-open flapper will be of little conse-quence during normal operations.In some cases, due to the unit geometry or tech-nical preference, the primary cyclones can be de-signed to discharge above the bed. In these cas-es, assuming the cyclone is not a positive pres-sure riser cyclone, a properly functioning valve isrequired. The consequences of a valve that isstuck open would be a major loss of cyclone effi-ciency, increasing the loading to the secondarycyclones and increasing the catalyst losses fromthe unit. Stuck Open or Missing Flapper in Second Stage CycloneA flapper stuck open or missing may not affect thecyclone performance if the dipleg is submergedsufficiently in a well-fluidized bed. If the bed fluidi-zation is erratic, then the losses may increase dueto unsteady catalyst flow down the dipleg or due togas bypassing up the dipleg.If the secondary cyclone dipleg is not submergedinto the fluid bed, a stuck open or missing flapperturns the dipleg into a vacuum tube sucking vaporsinto the cyclone; destroying the cyclone efficiency. A detached dipleg would have similar consequences.Figure 6 – Cyclone Dipleg Check ValveReactor Cyclone Overload (Excessive Dipleg Back-up / Insufficient Dipleg Diameter)A reactor cyclone system can become overloaded if thecatalyst or vapor traffic exceeds the design hydrauliccapability of the cyclone system. The cyclone systempressure drop increases with both catalyst and vaporloading. As the pressure drop increases, the catalyst inthe dipleg must back-up to a higher elevation as shownin Figure 7 to provide enough static head to force thecatalyst out of the dipleg. When the catalyst height inthe dipleg reaches the dipleg top, the swirling vapors inthe bottom of the cyclone will re-entrain the catalyst anddrastically reduce cyclone collection efficiency. Thissituation is referred to as “cyclone flooding”. Increasing。
催化装置催化剂失活与破损原因分析及解决措施张志亮薛小波随着全厂加工原油结构的改变,为了平衡全厂重油压力,今年以来催化装置持续提高掺渣比,目前控制在25%左右。
催化原料的重质化、劣质化,对催化装置催化剂造成较大影响。
出现了催化剂重金属中毒加剧、失活严重、破损加重等现象,从而导致装置催化剂单耗上升、产品收率下降、各项经济指标下降。
通过在显微镜下研究催化剂的颗粒度分布、粒径的大小及形状,找到影响催化剂失活和粉碎的主要原因,通过采取多种措施,调整操作、精细管理等方式,提高装置催化剂活性、降低催化剂破损,保证装置在高掺渣率条件下,优质良好运行。
1、催化剂失活原因分析催化剂失活主要分为两种:一、暂时性失活;二、永久性失活。
暂时性失活主要由于催化剂孔径和活性中心被焦炭所堵塞,可在高温下烧焦基本得到恢复。
而永久性失活是指催化剂结构发生改变或者活性中心发生化学反应而不具有活性,其中包括催化剂重金属中毒和催化剂水热失活。
1.1 催化剂的重金属中毒失活原料中重金属浓度偏高很容易使催化剂发生中毒而破裂,尤其是钠、钒和镍。
由于钠离子和钒离子在催化剂表面易形成低熔点氧化共熔物,这些共熔物接受钠离子生成氧化钠,氧化钠不仅能覆盖于催化剂表面减少活性中心,而且还能降低催化剂的热稳定性;其中重金属中Ni对催化剂的污染尤为突出,平衡剂中Ni含量每上升1000ppm,催化剂污染指数上升1400ppm。
图1 2012年与2011年平衡催化剂性质分析对比从图1中可以看出:2012年平衡剂与2011年同期对比,平衡剂活性有所下降,从同期的62%降至今年的60%左右。
金属Fe、Na、Ca含量基本持平,V的含量下降了37%,但是Ni浓度大幅上升,上升了55%。
对比污染指数:2011年为8840ppm,2012年为11970ppm,同比上升了35.4%,从而导致催化剂活性下降了2~3个百分点。
因此,目前催化剂活性下降的重要原因是Ni含量大幅上升。
2015年7月第23卷第7期 工业催化INDUSTRIALCATALYSIS July2015Vol.23 No.7石油化工与催化收稿日期:2014-12-04;修回日期:2015-06-29 作者简介:滕升光,1970年生,男,山东省莱州市人,高级工程师,长期从事石油设备和炼化产品物资采购及国际贸易工作。
催化装置催化剂跑损诊断和处理滕升光(中国石油化工股份有限公司物资装备部,北京100728)摘 要:找到催化剂跑损的原因和位置,减少和避免催化剂跑损,对催化装置的良好运行十分重要。
分析了催化剂粒径分布、机械强度、重金属污染能力、水热稳定性等催化剂自身原因以及原料组成变化、生产操作不当等操作原因。
结果表明,回收系统问题、流化分布问题、设备固有问题、设备出现异常等设备问题是造成催化剂跑损的主要因素。
通过分析新鲜催化剂、待生催化剂、再生催化剂、三旋回收催化剂等筛分组成以及油浆固含量和催化装置仪表的数值诊断出催化剂跑损位置,提出减少和避免催化剂跑损的主要措施。
关键词:石油化学工程;催化装置;催化剂跑损;诊断doi:10.3969/j.issn.1008 1143.2015.07.013中图分类号:TE624.4;TQ426.95 文献标识码:A 文章编号:1008 1143(2015)07 0555 04DiagnosisandtreatmentoftherunoffofthecatalystsincatalyticcrackingunitTengShengguang(SinopecProcurementDivision,Beijing100728,China)Abstract:Itisveryimportanttofindoutthecauseandlocationofthecatalystlossinthecatalyticdevicesandtoreduceandavoidthecatalystloss.Thecauseofcatalystperformance,includingcatalystparticlesizedistribution,mechanicalstrength,heavymetalpollutioncapacity,andhydrothermalstabilitywereanalyzed.Atthesametime,thereasonsforthecompositionchangesofrawmaterialsandimproperoperationswerealsointroduced.Theresultsshowedthattheproblemsofrecyclingsystem,fluiddistribu tion,deviceinherentlyfailandequipmentabnormitywerethemainfactorsofcausingthecatalystconsumption.Simultaneously,thepositionofthecatalystlosswasdeterminedbyanalyzingtheparticlesizedistributionoffreshagent,spentagents,andrecyclingagentsaswellastheoilslurrysolidcontentsandthenumericalvalueofcatalyticdeviceincatalyticdevices.Themainmeasuresofreducingandpreventingtherunoffofthecatalystswereputforward.Keywords:petrochemicalengineering;catalyticdevice;catalystrunoff;diagnosisdoi:10.3969/j.issn.1008 1143.2015.07.013CLCnumber:TE624.4;TQ426.95 Documentcode:A ArticleID:1008 1143(2015)07 0555 04 催化装置催化剂跑损是困扰催化装置运行的重要问题,不仅影响装置正常、平稳操作,而且直接影响炼油厂的经济效益、社会效益以及周边的大气环境。
丙烯腈装置反应器催化剂跑损原因分析及处理丙烯腈装置反应器在经过扩能改造后,反应器运行过程中出现了多次跑剂现象,导致装置能耗、物耗升高,使反应成本上升,严重时装置需停车进行处理。
通过对跑剂问题的处理,以及对可能導致跑剂原因的分析,可以在生产中及时调整反应器状态,减少跑剂现象。
a标签:丙烯腈;反应器;催化剂;跑损;原因分析;处理方法丙烯腈装置是国家“七.五”重点项目,设计生产能力为年产50000吨丙烯腈,采用BP国际化学公司的BP美国索亥俄分公司的丙烯、氨氧化法生产丙烯腈工艺技术。
丙烯腈反应器为流化床反应器,直径7.47m,内置8组三级旋风分离器。
因扩能需要,先后进行过两次较大的技术改造:2003年6月,由5万吨/年扩能至8万吨/年,采用12组两级旋风分离器;2007年6月,进一步扩能至9.2万吨/年,仍采用12组两级旋风分离器。
在丙烯腈装置扩能改造后,反应器在运行过程中出现了多次催化剂跑损现象。
频繁跑剂使装置生产过程中物耗、能耗大幅增加,大大增加了产品成本。
本文主要对装置多次跑剂问题处理方法进行了总结,同时对可能引起催化剂跑损的原因进行探讨,并提出行之有效的解决方法及预防措施。
从而减少催化剂跑剂现象的发生。
1 反应器催化剂跑损原因分析1.1 生产操作方面原因①催化剂长期使用,产生磨损,导致反应器中细颗粒催化剂增加。
在相近的反应压力下,由于细颗粒含量增多,导致反应器内,催化剂床层高度上升,床层催化剂密度下降,从而易发生催化剂跑损;②旋风分离器料腿反吹风流量过低或反吹风管线有漏点。
进入旋风分离器料腿内的反吹风风量不足,无法将料腿内的催化剂吹松动。
催化剂在料腿了堆积、结块,堵塞料腿,从而发生跑剂现象;③反应线速过低或过高。
反应线速过低或过高,将改变反应气体进入旋风分离器内的初速度,入口气速偏离旋风分离器设计值范围时,旋风分离器的分离效率将大幅下降,从而使催化剂被反应气体带出反应器;④旋风分离器料腿反吹风管线堵塞。
催化裂化装置催化剂跑损的原因及对策分析摘要:长期以来,通过重油催化裂化装置的工作经验,催化剂脱扣损失主要是由于电网故障,仪表故障,设备故障和操作失误等原因造成的。
受电弓反应再生系统波动导致催化剂非自然位移损失,分析了在稳定运行条件下,由于催化剂摩擦和热崩溃而产生的细粉引起的机组自然位移损失由技术人员负责,整改后采取适当措施,减少催化剂损失造成的经济损失。
关键词:催化裂化装置;催化剂跑损;对策分析一、催化剂的自然损失不循环造成的损失称为自然损失,催化剂的破碎机制一般为:破碎、破碎、磨损催化剂开启,在电流流动过程中,会改变再生温度和催化剂循环量,对管口底部流动化的蒸汽环造成严重损伤,环与吸气管连接处的焊接线裂开,流动化蒸汽通过环形喷嘴中心流动,在催化剂流动的过程中,产生涡流破碎催化剂的热崩溃主要与使用过程有关,在装置中加入大型药剂时,新催化剂升温后脱水,其中包括吸附水和结晶水和铵盐分解失重,从烟囱中可以观察到大量催化剂的运行损失,约占新鲜催化剂的10%;二是新鲜催化剂中自身粉末的操作损失;第三。
新催化剂在生产过程中的热崩溃破坏,基于这三个因素,新催化剂的磨损指数与新催化剂的强度和耐磨性有关,提高催化剂的强度和耐磨性需要在催化剂的制造和制造过程中解决该做的事。
二、典型的机械设备故障情况2.1电网故障造成催化剂损失2004年7月4次低压闪,由于一次高压闪闪,泥浆的固定含量较高,2008年6月7日受外部电网的影响,3次风机停运,2次风机排出空气,最终导致两种低流量药剂产生后,材料由于切断空气,机器装置的主要风量损失很大。
2.2沉淀塔严重焦炭催化剂损失2003年3月19日,由于显示屏焦点严重,预入管被焦点块堵塞,导致显示屏旋风分离器分离效果丧失,大量催化剂进入分馏塔,导致分馏塔下催化剂、污泥停止运输,焦炭紧急聚焦修理,在运输中断时,主要风故障导致催化剂回流。
2.3设备故障造成催化剂损失2009年8月13日,我的吸管开始分解,三环出口浓度开始升高,8月14日0时,三环出口浓度升至170,8月14日2时,再生机倾斜管密度波动较大。
甲醇制烯烃装置催化剂跑损的原因分析及建议徐鹏发布时间:2021-08-08T11:08:01.556Z 来源:《中国科技人才》2021年第12期作者:徐鹏[导读] 甲醇制烯烃技术作为低碳烯烃产品(乙烯、丙烯)的重要工艺路线,适用于我国的能源结构。
国内现已有多套甲醇制烯烃装置生产运行,本文对某甲醇制烯烃装置中催化剂跑损的原因进行分析,进而针对不同原因,结合实际操作,提出建议,优化催化剂跑损。
徐鹏天津渤化化工发展有限公司天津滨海 300450摘要:甲醇制烯烃技术作为低碳烯烃产品(乙烯、丙烯)的重要工艺路线,适用于我国的能源结构。
国内现已有多套甲醇制烯烃装置生产运行,本文对某甲醇制烯烃装置中催化剂跑损的原因进行分析,进而针对不同原因,结合实际操作,提出建议,优化催化剂跑损。
关键词:甲醇制烯烃;催化剂;跑损Analysis and Suggestions on the Causes of Catalyst Run-out in Methanol-to-Olefin Unit Abstract:As an important process route for low-carbon olefin products(ethylene,propylene),methanol-to-olefin technology is suitable for my country's energy structure.There are already many sets of methanol-to-olefin plants in production and operation in China.This article analyzes the causes of catalyst run-out in a methanol-to-olefin plant,and then proposes suggestions for optimizing catalyst run-out according to different reasons and combined with actual operations.Key words:methanol to olefins;catalyst;running loss 甲醇制烯烃装置在运行过程中,细粉催化剂会随气相介质进入后续设备,影响后续工段的平稳运行及废固处理难度。
合成催化剂是一种重要的化学工业材料,广泛应用于各种化学反应过程。
然而,在长期使用过程中,合成催化剂会逐渐损耗,导致反应效率下降,需要定期更换。
本文将探讨合成催化剂的损耗原因、影响以及应对策略。
首先,我们来了解一下合成催化剂的损耗原因。
一方面,催化剂的活性组分在反应过程中会发生化学变化,导致催化剂性能下降。
另一方面,催化剂表面的活性中心会被反应物和产物所覆盖,逐渐失去活性。
此外,催化剂在高温、高压等极端反应条件下也会受到破坏,导致损耗。
合成催化剂的损耗会对化学工业生产产生重大影响。
首先,催化剂的损耗会导致反应效率下降,生产成本增加。
这不仅会影响企业的经济效益,还可能导致市场竞争力下降。
其次,合成催化剂的损耗还会影响产品质量。
如果反应条件无法得到有效控制,可能会导致产品纯度下降、副产物增多等问题。
为了应对合成催化剂的损耗问题,我们可以采取以下策略:1. 定期更换催化剂:根据生产需求和催化剂性能,定期更换新的催化剂。
这样可以保证反应过程的连续性和稳定性,提高生产效率。
2. 优化反应条件:通过调整反应温度、压力、浓度等参数,优化反应条件,减少对催化剂的破坏。
3. 研发新型催化剂:研发具有更高活性、更稳定的新型催化剂,提高反应效率,降低损耗率。
4. 精细化管理:建立完善的监测和记录体系,及时发现和处理催化剂的损耗问题,确保生产过程的顺利进行。
综上所述,合成催化剂的损耗问题不容忽视。
通过采取合理的应对策略,我们可以降低损耗率,提高生产效率,为化学工业的发展做出更大的贡献。
同时,我们也需要关注合成催化剂的环保问题,加强废弃催化剂的处理和再利用,实现可持续发展。
未来,随着科技的不断进步,我们相信合成催化剂的性能将得到进一步提升,损耗率也会逐渐降低。
同时,我们也期待更多的科研人员和企业关注合成催化剂的研究与应用,为化学工业的发展注入新的动力。
催化剂跑损原因分析摘要:甲醇制低碳烯烃(MTO)主要是利用甲醇在高温的条件下和酸性催化剂作用生成主要以乙烯、丙烯和C4等混合低碳烯烃。
乙烯和丙烯做为石油化工最为基础的原料,乙烯和丙烯传统上主要是通过石油裂解等路径制得,近几年煤制甲醇和甲醇制低碳烯烃得到广泛的重视和应用。
催化剂做为煤(甲醇)制烯烃技术的核心部分,其烯烃的选择性和收率直接关乎着工厂的经济效益,同时其消耗量关乎着工厂的运行成本的一个非常重要因素。
催化剂跑损量是催化剂日常消耗的重要工艺控制指标。
本文对催化剂的跑损的原因进行分析,为工业化生产提供技术指导。
关键词:甲醇制低碳烯烃;催化剂;跑损;线速某装置采用中国科学院大连化学物理研究所、中国石化集团洛阳石油化工工程公司和陕西新型煤化工科技发展有限公司共同开发的DMTO工艺技术。
某处理能力为180万吨/年甲醇原料(折纯),生产60万吨/年烯烃(乙烯+丙烯)产品,年开工时数为8000小时。
其生产工艺主要为复杂的湍流流化床工艺。
催化剂在参与流化和反应过程中,不仅催化剂自身进行磨损,同时催化剂同管道、设备等进行磨损。
所以催化剂的消耗量不仅和催化剂的自身的性能有关,同样还和工艺控制条件以及设备运行状况有关。
本文主要从设备、工艺、催化剂自身性能以及生产操作等四个方面简要的阐述了影响催化剂跑损的原因。
1 设备方面1.1 旋风分离器的分离性能旋风分离器是一种将粉粒从气流中分离出来的干式气--固分离装置,被广泛用于工业生产,具有结构简单、耐高温、操作维修方便、占地面积小及分离效率高等优点。
旋风分离器的分离效率直接影响催化剂的跑损。
为了降低催化剂的跑损,减少对下游装置和环境的影响,故在反应器和再生器出口设置了三级旋风分离器用于回收催化剂细粉。
影响旋风分离器的效率的因素主要分为以下几点:1.根据旋风分离器的设计原理和工艺操作条件,目前旋风分离器的入口线速的合适范围一般为12—22 m/s,不宜低于10 m/s,防止入口线速过小形成催化剂细粉堆积。
156研究与探索Research and Exploration ·智能检测与诊断中国设备工程 2024.05 (上)在催化裂解过程中,由于催化剂在高温环境作用下,部分催化剂被磨损产生细粉,催化剂会出现少量损耗,属于正常生产现象。
通常情况下,再生器内设有两级串联的旋风分离器,可将粒径20μm 以上的催化剂回收,在生产过程中,有少部分颗粒在气体分离装置的升气管中逃逸,即“跑剂”。
大量实践经验指出,通过补充新的催化剂能够抵消跑剂损耗。
行业标准规定,正常DDC 装置工作期间,催化剂的损耗量不得超过0.7kg/t,若损耗量超过0.9kg/t,则表明跑剂严重。
对生产环节实践展开分析可知,造成催化剂跑剂的原因较多,具体包括不符合规范的生产操作、设备自身问题、原料问题、催化剂组分问题等。
鉴于此,有关人员需要分析再生器跑剂的实际原因,并采取针对性预防措施,以确保催化裂解生产全过程稳定且可靠。
1 DDC 装置再生器介绍催化裂解装置通过催化剂的作用,使原料油在适宜的温度和压力下进行裂化、异构化、氢转移、环化等一系列复杂的化学反应,将大分子烃类转化为各种小分子烃类的混合物,并通过后续分馏、吸收、稳定系统分离出汽油、柴油、油浆、干气、液化气等产品。
考虑到随着时间的推移,催化剂表面会积累碳以及其他杂质,影响催化活性和选择性,因此,为了保持装置的正常运行和产物的质量,催化剂需要进行再生。
再生器是组成该装置中的重要部分,主要负责对失活的催化剂进行再生,以恢复其活性,工作原理是在高温、再生剂的双重作用下,使积碳以及杂质充分燃烧,恢复催化剂活性。
再生器内设有主风分布管和旋风分离器,主风分布管的作用是均匀分布气体,促进气固相的良好接触,支撑整个催化剂床层,防止固体漏料;旋风分离器的作用是回收烟气中的催化剂粉尘。
设计、操作再生器时,要考虑催化剂的再生效果、装置的稳定性和能耗等因素,一般情况下,大型装置通常采用连续循环再生的方式,以保持装置的连续生产。
基于催化剂粒度分布分析催化裂化装置催化剂跑损的原因王迪;孙立强;严超宇;贾梦达;魏耀东【摘要】针对某催化裂化装置出现催化剂跑损故障,现场对三级旋风分离器入口进行采样,通过对跑损催化剂进行颗粒粒度分布和扫描电镜分析,探讨催化剂跑损的原因.结果表明,跑损催化剂的粒度分布曲线呈现多峰分布,其中峰值对应的粒径分别为0.8,9,30 μm.造成这种现象的原因,一方面是由于跑损催化剂中存在较严重的摩擦磨损颗粒和冲击破碎颗粒,形成了前2个较小粒径的峰值;另一方面则是由于旋风分离器的分离效率下降,使得跑损催化剂的中位粒径偏高,形成了较大粒径的峰值.【期刊名称】《石油炼制与化工》【年(卷),期】2019(050)007【总页数】5页(P47-51)【关键词】催化裂化;催化剂跑损;颗粒粒度分布;旋风分离器【作者】王迪;孙立强;严超宇;贾梦达;魏耀东【作者单位】中国石油大学(北京)重质油国家重点实验室,北京102249;过程流体过滤与分离技术北京市重点实验室;中国石油大学(北京)重质油国家重点实验室,北京102249;过程流体过滤与分离技术北京市重点实验室;中国石油大学(北京)重质油国家重点实验室,北京102249;过程流体过滤与分离技术北京市重点实验室;中国石油大学(北京)重质油国家重点实验室,北京102249;过程流体过滤与分离技术北京市重点实验室;中国石油大学(北京)重质油国家重点实验室,北京102249;中国石油大学(北京)克拉玛依校区工学院【正文语种】中文催化裂化装置催化剂的跑损可分为自然跑损和非自然跑损,前者为装置平稳运行工况下细粉催化剂未能被旋风分离器回收而造成的跑损,属于正常跑损;后者为装置故障原因造成的催化剂跑损,属于故障跑损[1]。
催化剂跑损的出口有两个:一个是再生器出口,再生烟气中所含催化剂经过二级旋风分离器分离后,少部分催化剂随烟气进入三级旋风分离器作进一步分离后不再返回装置,作为废剂排掉;另一个是沉降器出口,沉降器中油气所含催化剂经过二级旋风分离器分离后,大部分催化剂被分离下来返回装置,剩余的部分催化剂随油气离开装置进入分馏塔,在油浆中沉降,通过外甩油浆排掉。
催化剂损耗率
催化剂损耗率是指在化学反应中,催化剂因与废气或废水中的杂质或有害物质发生反应而损耗的速率。
催化剂在化学反应中起着至关重要的作用,能够降低反应活化能,提高反应速率,从而节省能源和降低生产成本。
然而,催化剂在反应过程中会受到各种因素的影响,导致损耗率的增加。
首先,催化剂的物理性质会影响其损耗率。
比如,催化剂的比表面积越大,其与废气或废水中的有害物质接触的机会就越多,从而损耗率会增加。
此外,催化剂的孔隙结构、晶格结构等也会对损耗率产生影响。
其次,反应条件的变化也会导致催化剂的损耗率发生变化。
比如,温度的升高会加速催化剂的损耗,因为反应速率会增加,催化剂的活性也会提高,从而加剧损耗率。
同时,反应中的压力、浓度等参数的改变也会影响催化剂的损耗率。
另外,催化剂的质量和化学成分也会对损耗率造成影响。
比如,催化剂的纯度越高,其损耗率就会越低;而一些催化剂本身就会在反应中发生氧化、还原等化学反应,导致损耗率的增加。
为了降低催化剂的损耗率,可以采取以下措施。
首先,选择合适的催化剂,包括合适的物理性质和化学成分,以降低损耗率。
其次,优化反应条件,控制温度、压力、浓度等参数,减少催化剂的损耗。
此外,定期检查催化剂的状态,及时更换老化的催化剂,也是降低损耗率的有效途径。
总的来说,催化剂的损耗率是一个复杂的问题,受多种因素的影响。
通过合理选择催化剂、优化反应条件和定期检查催化剂的状态,可以有效降低催化剂的损耗率,提高催化剂的利用率,从而实现节能减排的目的。
摘要:中国石油大庆炼化公司1?0Mt/a重油催化裂化装置出现了催化剂跑损问题。
在检修过程中发现了引起催化剂破碎的原因通过整改装置运行状况良好:催化剂自然跑损量为0?3~0?4kg/t 油浆外甩量控制在5?5t/h油浆固体物质量浓度不大于2g/L再生催化剂中0~20μm及20~40μm 的细粉体积分数分别为1%~2%15%~16%。
要害词:催化剂;跑损;破碎;热崩;磨损;线速度中图分类号:TE624?9+1 文献标识码:B 文章编号:1009-0045(2008)06-0563-05中国石油大庆炼化公司1?0Mt/a的重油催化裂化装置是在原0?6Mt/a装置基础上采用中国石化洛阳石油化工工(guo2 shi2 hua4 luo4 yang2 shi2 you2 hua4 gong1 gong1)程公司开发的灵活多效催化裂化(FDFCC)专利技术改造而成以常压渣油、催化汽油为原料消费富含丙烯的液化气同时降低了汽油中烯烃含量达到了消费清洁汽油的目的。
该装置采用沉降器与再生器同轴布置和主风单段逆流再生工艺。
1 装置存在的问题①(zhuang zhi cun zai de wen ti _)2007年5月12日由于晃电导致装置紧急停车恢复消费后催化剂跑损量增加。
5月13日至8月20日催化剂天天平均损失量为5?7t单耗为1?77kg/t。
从实测数据可知再生催化剂筛分组成(体积分数)为:0~20μm4%~ 6%20~40μm21%~22%。
装置正常运行时这2项指标分别为1%~2%15%~16%。
通过肉眼观察由烟囱排放的烟气中催化剂浓度明显升高;同时油浆固体物质量浓度也由4~5g/L 升高至8~9g/L 这表明沉降器及再生器的催化剂跑损量增加。
由于沉降器及再生器内旋风分离器对粒径小于40μm 的催化剂细粉分离效果差所以跑损主要原因是由于催化剂破碎引起细粉体积分数升高所致。
2 原因分析及解决对策2?1 催化剂破碎引起细粉体积分数升高催化剂破碎机理通常有以下3种:研磨崩碎磨损指数偏高(因催化剂机械强度不够所致)[1]。
通过显微镜观察装置中的再生催化剂发现部分细粉表面比较光(fa xian bu fen xi fen biao mian bi jiao guang)滑部分棱角比较明显二者差别不大故无法判定催化剂细粉体积分数升高的主要原因是由热崩还是过度研磨所致。
2?1?1 热崩装置于2007年4月曾发生过一次中压内取热盘管泄漏事故。
由于热崩会导致沉降器及再生器发生跑剂问题所以首先思忖是否由于热崩引起催化剂细粉体积分数升高。
因此从以下几个方面对催化剂破碎的原因进行检查并对发现的问题及时整改。
(1)对反应-再生零碎的所有蒸汽阀组进行了放空脱水检查没有发现带水现象。
同时对各点用汽流量计进行了校对各流(ge liu)量计均为正常糙作数值无失灵现象。
(2)对汽油进料采样观察未发现带水现象且催化汽油进料的馏程仅略高于装置自产稳定汽油没有其他异常变化。
(3)减少原料罐的玻璃板液位计(jian shao yuan liao guan de bo li ban ye wei ji)反吹蒸汽量从而进一步降低原料的含水量。
(4)对中、低压内取热盘管逐根试漏没有发现泄漏点。
(5)关闭套筒事故蒸汽孔板的下游阀门减少进入再生器的蒸汽量。
(6)对反应-再生零碎各处蒸汽松动点的孔板上游阀门进行了限量调整。
(7)采用听诊器及电子测温枪对中、低压内取热器及外取热器进行了检查无泄露迹象。
(8)4月份(yue fen)泄漏并已切除的中压内取热盘管出入口阀门存在稍微泄漏现象故将入口阀后的法兰略微解开并将入口阀前的放空阀打开排汽减少由此进入再生器密相的蒸汽量。
重油催化裂化装置催化剂跑损原因分析张力民(中国石油大庆炼化公司炼油一厂,黑龙江大庆163411)摘要:中国石油大庆炼化公司1?0Mt/a重油催化裂化装置出现了催化剂跑损问题。
在检修过程中,发现了引起催化剂破碎的原因,通过整改,装置运行状况良好:催化剂自然跑损量为0?3~0?4kg/t, 油浆外甩量控制在5?5t/h,油浆固体物质量浓度不大于2g/L,再生催化剂中0~20μm及20~40μm 的细粉体积分数分别为1%~2%,15%~16%。
关键词:催化剂;跑损;破碎;热崩;磨损;线速度中图分类号:TE624?9+1 文献标识码:B 文章编号:1009-0045(2008)06-0563-05中国石油大庆炼化公司1?0Mt/a的重油催化裂化装置是在原0?6Mt/a装置基础上,采用中国石化洛阳石油化工工程公司开发的灵活多效催化裂化(FDFCC)专利技术改造而成,以常压渣油、催化汽油为原料,生产富含丙烯的液化气,同时降低了汽油中烯烃含量,达到了生产清洁汽油的目的。
该装置采用沉降器与再生器同轴布置和主风单段逆流再生工艺。
1 装置存在的问题①2007年5月12日,由于晃电导致装置紧急停车,恢复生产后,催化剂跑损量增加。
5月13日至8月20日,催化剂每天平均损失量为5?7,t单耗为1?77kg/t。
从实测数据可知,再生催化剂筛分组成(体积分数)为:0~20μm4%~ 6%,20~40μm21%~22%。
装置正常运行时, 这2项指标分别为1%~2%,15%~16%。
通过肉眼观察,由烟囱排放的烟气中催化剂浓度明显升高;同时,油浆固体物质量浓度也由4~5g/L 升高至8~9g/L,这表明沉降器及再生器的催化剂跑损量增加。
由于沉降器及再生器内旋风分离器对粒径小于40μm的催化剂细粉分离效果差,所以跑损主要原因是由于催化剂破碎引起细粉体积分数升高所致。
2 原因分析及解决对策2?1 催化剂破碎引起细粉体积分数升高催化剂破碎机理通常有以下3种:研磨,崩碎,磨损指数偏高(因催化剂机械强度不够所致)[1]。
通过显微镜观察装置中的再生催化剂, 发现部分细粉表面比较光滑,部分棱角比较明显,二者差别不大,故无法判断催化剂细粉体积分数升高的主要原因是由热崩还是过度研磨所致。
2?1?1 热崩装置于2007年4月曾发生过一次中压内取热盘管泄漏事故。
由于热崩会导致沉降器及再生器发生跑剂问题,所以首先考虑是否由于热崩引起催化剂细粉体积分数升高。
因此从以下几个方面对催化剂破碎的原因进行检查,并对发现的问题及时整改。
(1)对反应-再生系统的所有蒸汽阀组进行了放空脱水检查,没有发现带水现象。
同时对各点用汽流量计进行了校对,各流量计均为正常操作数值,无失灵现象。
(2)对汽油进料采样观察,未发现带水现象, 且催化汽油进料的馏程仅略高于装置自产稳定汽油,没有其他异常变化。
(3)减少原料罐的玻璃板液位计反吹蒸汽量,从而进一步降低原料的含水量。
(4)对中、低压内取热盘管逐根试漏,没有发现泄漏点。
(5)关闭套筒事故蒸汽孔板的下游阀门,减少进入再生器的蒸汽量。
(6)对反应-再生系统各处蒸汽松动点的孔板上游阀门进行了限量调整。
(7)采用听诊器及电子测温枪,对中、低压内取热器及外取热器进行了检查,无泄露迹象。
(8)4月份泄漏并已切除的中压内取热盘管出入口阀门存在轻微泄漏现象,故将入口阀后的法兰略微解开,并将出口阀前的放空阀打开排汽,减少由此进入再生器密相的蒸汽量。
(9)从原料含水量分析结果可知,跑剂前后原料含水质量分数为0?12%~0?18%,没有大的波动。
(10)经过上述检查调整后,催化剂跑损量及再生催化剂细粉体积分数仍居高不下。
考虑到可能仍有部分中压蒸汽由泄漏的内取热盘管进入再生器,引起催化剂热崩,故在泄漏的内取热盘管出口阀前及入口阀后带压灌注衬里材料,然后加装盲板进行隔离。
(11)由于烟机振动较大,主风机切换至备用主风机运行,重油进料量降至95t/h,此时停止外取热器内催化剂流化,蒸汽包放空卸压,观察外取热器中的管束是否存在泄漏问题。
在停止外取热器生产蒸汽的过程中,再生器压力没有明显变化。
在外取热器内催化剂停止流化后,每隔2h 在外取热器的2处松动点取样(催化剂)观察,没有发现催化剂潮湿现象,表明外取热器管束无泄漏现象。
(12)待生催化剂在待生立管中的密度较高(约为800kg/m3),考虑到待生立管有泄漏的可能,致使蒸汽进入再生器引起催化剂热崩,故投用了开工时停用的四点待生立管松动风,并对待生立管进行逐根试漏,没有发现漏点。
(13)关闭主风事故蒸汽自保阀的下游阀门, 进一步减少了进入再生器的蒸汽量。
2?1?2 过度研磨由于在提升管反应器、旋风分离器、进料喷嘴、主风分布管等高速射流区中,催化剂受损较为严重[1],故对装置进行了以下调整,以降低各处线速度,从而减少催化剂由于过度研磨而产生的细粉体积分数。
(1)重油、汽油提升管预提升干气分别由5?5t/h降至3?5t/h,由2?5t/h降至2?0t/h。
(2)主风量由140000m3/h降低到136000m3/h。
(3)重油进料量严格控制在3300t/d,原料雾化蒸汽量由6?5t/h降至6?0t/h,重油提升管出口温度由520℃降至518℃,催化汽油进料量由48t/h降至45t/h。
(4)回炼油的回炼量由18t/h降至12t/h。
(5)油浆回炼量首日由14t/h降至6t/h,次日降至3t/h,第三日停止回炼油浆,同时为了保证油浆固体物质量浓度不大于6g/L,油浆外甩量提至16t/h。
(6)套筒流化风由4500m3/h降至4000m3/h。
(7)关闭预提升蒸汽控制阀。
(8)对再生器藏量在150~170t中进行反复调整,但效果不明显。
(9)由于烟机振动超标,将主风机切换至备用主风机运行,重油进料量由138t/h降至90t/ h,主风量由136000m3/h降至87000m3/h,催化汽油回炼量不变。
备用主风机运行后,除汽油提升管反应器外,其余各处线速度均有大幅度降低,但催化剂细粉体积分数仍没有下降的趋势, 其筛分组成见表1。
由表1可知,6月20日的再生催化剂细粉体积分数高于待生催化剂,但6月21日的待生催化剂细粉体积分数又略高于再生催化剂,这虽然无法判断催化剂破碎主要发生在什么部位。
但可以证明,催化剂细粉体积分数升高不是由于前述各处线速度过高、磨损严重造成的。
(10)由于钠离子和钒离子在催化剂表面易形成低熔点氧化共熔物,这些共熔物接受钠离子生成氧化钠,氧化钠不仅能覆盖于催化剂表面减少活性中心,而且还能降低催化剂的热稳定性。
因此对常压渣油及再生催化剂的金属含量进行了分析,但结果与装置正常运行时的数据相比,偏差不大,且各种金属离子含量均在正常范围内。
(11)将套筒流化风降至3500m3/h。
(12)外取热器的流化风降至500m3/h。
2?2 催化剂自身原因2?2?1 平衡剂由于催化剂跑损量大,装置为了维持再生器藏量,保证再生效果,同时为了降低新鲜催化剂单耗,定期向再生器中补充平衡剂。