同底数幂的除法1[下学期]--浙教版-
- 格式:pdf
- 大小:994.11 KB
- 文档页数:8
浙教版八年级数学一、知识点总结。
1. 代数部分。
- 整式的乘除。
- 同底数幂的乘法:a^m× a^n = a^m + n(m,n为正整数),例如2^3×2^4=2^3 + 4=2^7。
- 同底数幂的除法:a^m÷ a^n=a^m - n(a≠0,m,n为正整数且m>n),如3^5÷3^2 = 3^5 - 2=3^3。
- 幂的乘方:(a^m)^n=a^mn,例如(2^3)^4=2^3×4=2^12。
- 积的乘方:(ab)^n=a^n b^n,如(2×3)^4 = 2^4×3^4。
- 因式分解。
- 提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
例如ax+ay=a(x + y)。
- 公式法。
- 平方差公式:a^2 - b^2=(a + b)(a - b),如9x^2-16y^2=(3x + 4y)(3x -4y)。
- 完全平方公式:a^2±2ab + b^2=(a± b)^2,例如x^2+6x + 9=(x + 3)^2。
2. 几何部分。
- 三角形。
- 三角形的内角和为180^∘,可以通过作平行线等方法进行证明。
- 三角形的三边关系:两边之和大于第三边,两边之差小于第三边。
例如,若三角形三边为a,b,c,则a + b>c且| a - b|。
- 等腰三角形的性质:两腰相等,两底角相等;等腰三角形三线合一(底边上的高、中线、顶角平分线重合)。
- 等边三角形的性质:三边相等,三个内角都等于60^∘。
- 平行四边形。
- 平行四边形的定义:两组对边分别平行的四边形是平行四边形。
- 平行四边形的性质。
- 对边相等:若平行四边形ABCD,则AB = CD,AD = BC。
- 对角相等:∠ A=∠ C,∠ B=∠ D。
- 对角线互相平分:AO = CO,BO = DO(O为对角线交点)。
第14讲:同底数幂的除法、零指数幂与负整数指数幂一、本讲知识标签同底数幂的除法:(≠0, 为正整数,并且). 同底数幂相除,底数不变,指数相减.零指数幂:即任何不等于零的数的零次方等于1.负整数指数幂:a-n=n a 1( a ≠0,n 为正整数)即:任何不为零的-n (n 为正整数)次幂等于这个数n 次幂的倒数要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.二、范例分析例1.已知,求的值.【分析】利用除法与乘法的互逆关系,通过计算比较系数和相同字母的指数得到的值即可代入求值.解:由已知,得,即,,,解得,,.所以. 也可以直接做除法,然后比较系数和相同字母的指数得到的值.【变式】(1)已知,求的值. (2)已知,,求的值. (3)已知,,求的值.【答案】解:(1)由题意,知.∴ . ∴ ,解得.a m n ,m n >()010.a a =≠312326834m n ax y x y x y ÷=(2)n m n a +-m n a 、、312326834m n ax y x y x y ÷=31268329284312m n n ax y x y x y x y +=⋅=12a =39m =2812n +=12a =3m =2n =22(2)(23212)(4)16n m n a +-=⨯+-=-=m n a 、、1227327m m -÷=m 1020a =1105b =293a b ÷23m =24n =322m n -312(3)327m m -÷=3(1)2333m m --=3323m m --=6m =(2)由已知,得,即.由已知,得.∴ ,即.∴ ∴. (3)由已知,得.由已知,得.∴ .例2.已知2a=3,4b=6,8c=12,a 、b 、c 的关系.【分析】本题逆用幂的运算规律,同底数幂乘除的规律,巧妙地将3用2a 代替将6用22b 代换,化成2的幂,从而找出a 、b 、c 之间的关系.解:因为8c=12,所以(23)c=2×6,又因为4b=6,所以23c=2×4b=2×22b=22b+1,所以3c=2b+1因为4b=6,所以22b=2×3,又因为2a=3,所以22b=2×2a=2a+1,所以2b=a+1,所以3c-1=a+1,所以a-4b+3c=0.三、训练提高(一)选择题:1.(2015•下城区二模)下列运算正确的是( )A .(a3﹣a )÷a=a2B .(a3)2=a5C .a3+a2=a5D .a3÷a3=12.化简11)(--+y x 为( ) A 、y x +1 B 、y x 1+ C.、1+xy y D 、1+xy x 3.已知P=,那么P 、Q 的大小关系是( ) A.P>Q B.P=Q C.P<Q D.无法确定(二)填空题:4. 计算.5.(2015春•成都校级月考)(﹣a6b7)÷= . 1020a =22(10)20a =210400a =1105b =211025b =221101040025a b ÷=÷2241010a b -=224a b -=22222493333381a b a b a b -÷=÷===23m =3227m =24n =2216n =32322722216m n m n -=÷=9999909911,99Q =()()34432322396332x y x y x y x y x y xy -+÷=-+-6.若整数x 、y 、z 满足,则x=_______,y=_______,z=________.(三) 解答题:7.先化简,再求值:,其中=-5.8.已知a 、b 互为相反数,c 、d 互为倒数,12=-x ,2=y ,求22007)(y cd x b a --++ 的值.(4分)9.若2010=a , 1510-=b ,求b a 239÷的值.10.已知,求整数x.11.阅读下列材料:关于x 的方程:121212111,;222,;333,;x c x c x x c cx c x c x x c cx c x c x x c c +=+==+=+==+=+==的解是的解是的解是 …请观察上述方程与解的特征,比较关于x 的方程(0)m m x c m x c +=+≠与它们的关系,猜想它的解是什么?并加以验证.12.请你来计算:若1+x +x2+x3=0,求x +x2+x3+…+x2012的值.91016()()()28915x y x ⨯⨯=()()()23242622532a a a a a ⎡⎤⋅-÷÷-⎢⎥⎣⎦a 2(1)1x x +-=。
同底数幂的除法同底数幂除法法则:同底数幂相除,底数不变,指数相减。
即a m ÷a n ==a m -n (a ≠0,m ,n 都是正整数,且m >n )正确理解法则的含义应注意的问题:1. 在运算公式n m n m aa a -=÷中,0≠a ,因为当a=0时,a 的非零次幂都为0,而0不能作除数,所以0≠a2. 底数相同,如23)5(6-÷-是除法运算,但不是同底数幂相除,不能运用这个法则3. 相除运算,如23a a +是同底数幂,但不是相除运算,不能运用这个法则4. 运算结果是底数不变,指数相减,而不是指数相除例1 计算 (1)22243647)4();())(3(;)())(2(;b bxy xy x x a a m ÷÷-÷-÷+ 解:(1)(2)(3)(4)知能点6 同底数幂的除法应用例2 计算:(1)8322158213)())(2(;a a a x x x ÷-÷-÷÷提示:对于两个或三个以上的同底数幂相除,仍然适用运算性质。
解:(1)(2)知能点7 零指数与负整数指数的意义(1)零指数 )0(10≠=a a 即任何不等于0的数的0次幂都等于1(2)负整数指数 =-p a (p 是正整数)即任何不等于零的数的-p(p 是正整数)次幂,等于这个数的p 次幂的倒数。
规律点拔:(1) 零指数幂和负整数指数幂中,底数都不能为0,即0≠a(2) 规定了零指数和负整数指数的意义后,正整数指数幂的运算性质就可以推广到整数指数幂知能点8用小数或分数表示绝对值较小的数例3 (1)4203106.1)3(;87)2(;10---⨯+解:(1)(2)(3)【知能整合提升】一、选择题1、如果mn n m a A a =÷)(,那么A 的值为( )A 、m a ;B 、n a ;C 、1;D 、mn a 。
同底数幂的除法法则同底数幂的除法法则是指当两个数的底数相同,且指数不同的情况下,如何进行除法运算。
在数学中,底数是幂的基数,指数是幂的次数。
同底数幂的除法法则是求解同底数幂的商的方法,它有一定的规律和特点,下面我们将详细介绍同底数幂的除法法则。
首先,让我们来看一个简单的例子,假设有两个数的底数都是a,指数分别为m和n,即a^m和a^n。
根据同底数幂的除法法则,我们可以将这两个幂进行除法运算,即(a^m)/(a^n)。
根据除法的定义,我们知道这个运算可以转化为乘法的形式,即(a^m)/(a^n)=a^(m-n)。
这就是同底数幂的除法法则的基本原理。
接下来,让我们通过几个具体的例子来进一步说明同底数幂的除法法则。
假设我们要计算2^5除以2^3,根据同底数幂的除法法则,我们可以将这个运算转化为乘法的形式,即2^5除以2^3等于2^(5-3)=2^2=4。
再举一个例子,如果要计算10^4除以10^2,同样根据同底数幂的除法法则,我们可以将这个运算转化为乘法的形式,即10^4除以10^2等于10^(4-2)=10^2=100。
同底数幂的除法法则还有一个重要的特点,即当指数相减的结果为0时,商为1。
这是因为任何数的0次幂都等于1。
例如,计算3^5除以3^5,根据同底数幂的除法法则,我们可以得到3^(5-5)=3^0=1。
除了上述的基本原理和特点,同底数幂的除法法则还可以通过化简来进行更复杂的运算。
例如,如果要计算a^m除以a^n,我们可以将这个运算化简为a^(m-n)的形式。
这种化简方法在解决实际问题时非常有用,可以简化计算过程,提高计算效率。
总之,同底数幂的除法法则是求解同底数幂的商的方法,它有一定的规律和特点,通过这些规律和特点,我们可以快速准确地进行计算。
在实际应用中,同底数幂的除法法则可以帮助我们解决各种复杂的数学问题,是数学中的重要概念之一。
希望通过本文的介绍,读者能更加深入地理解同底数幂的除法法则,并能灵活运用它来解决实际问题。