空间直线、平面的平行-PPT教学课件人教A版高中数学
- 格式:ppt
- 大小:7.56 MB
- 文档页数:40
8.5.2直线与平面平行第二课时 直线与平面平行的性质一、教学目标 1. 掌握空间平面与平面平行的判定定理,并能应用这个定理解决问题2. 平面与平面平行的判定定理的应用3. 进一步培养学生观察、发现问题的能力和空间想象能力二、教学重点 空间平面与平面平行的判定定理教学难点 应用平面与平面平行的判定定理解决问题三、教学过程1、复习回顾情境引入问题1:直线与平面平行的判定定理答:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行问题2:如果一条直线和一个平面平行,那么这条直线和这个平面内的直线有怎样的位置关系?答:问题3:什么条件下,平面α内的直线与直线a 平行呢?引出下面问题:已知://, , a a b αβαβ⊂=,求证://a b 证明:∵b αβ=∴b α⊂又//a α∴a 与b 无公共点又 , a b ββ⊂⊂∴//a b2、探索新知1)直线与平面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行符号表述:a ∥α,a ⊂β,α∩β=b ⇒a ∥b简记:线线平行 线面平行注意:①定理中三个条件缺一不可②简记:线面平行,则线线平行③定理的作用:判断直线与直线平行的重要依据④定理的关键:寻找平面与平面的交线【例1】如右图的一块木料中,棱BC 平行面A'C'(1)要经过面A'C'内的一点P 和棱BC 将木料锯开,在木料表面应该怎样画线?(2)所画的线与平面AC 是什么位置关系?解:(1)如右图,在平面A'C 内,过点P 作直线EF ,使EF//B'C',并分别交棱A'B'、D'C' 于点E 、F.连接BE 、CF,则EF 、BE 、 CF 就是应画的线(2) ∵BC ∥平面A'C',平面BC'平面A'C'=B'C'∴BC//B'C'由(1)知EF//B'C'∴EF//BC ,而BC ⊂平面AC ,EF ⊄平面AC∴EF//平面AC显然,BE 、CF 都与平面AC 相交【例2】如图所示,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,AC 与BD 交于点O ,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .证明:连接MO∵四边形ABCD 是平行四边形∴O 是AC 的中点又∵M 是PC 的中点∴AP ∥OM又∵AP ⊄平面BDMOM ⊂平面BDM∴AP ∥平面BDM又∵AP ⊂平面APGH ,平面APGH ∩平面BDM =GH∴AP ∥GH【例3】如图,在三棱柱111ABC A B C -中,点,E F 分别是棱11,CC BB 上的点,点M 是线段AC 上的动点,22EC FB ==.若//MB 平面,AEF MB ⊂,试判断点M 的位置解:M 是AC 的中点因为//MB 平面,AEF MB ⊂平面FBMN平面FBMN ⋂平面AEF FN =所以//MB FN所以四边形BFNM 是平行四边形所以1MN BF ==而//,22EC FB EC FB == 所以1//,12MN EC MN EC == 故MN 是ACE 的中位线所以M 是AC 的中点时,//MB 平面AEF方法规律:线面平行的性质和判定经常交替使用,也就是通过线线平行得到线面平行,再通过线面平行得线线平行.利用线面平行的性质定理解题的具体步骤:(1)确定(或寻找)一条直线平行于一个平面(2)确定(或寻找)过这条直线且与这个平行平面相交的平面(3)确定交线(4)由性质定理得出线线平行的结论四、课堂练习P 138 练习1、如图,在五面体EF ABCD 中,已知四边形ABCD 为梯形,AD ∥BC ,求证:AD ∥EF证明 ∵AD ∥BC ,AD ⊄平面BCEF ,BC ⊂平面BCEF∴AD ∥平面BCEF∵AD ⊂平面ADEF ,平面ADEF ∩平面BCEF =EF∴AD ∥EF2、如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,C 1D 1的中点.求证:EF ∥平面BDD 1B 1证明:取D 1B 1的中点O ,连接OF ,OB (图略)∵F 为C 1D 1的中点∴OF ∥B 1C 1且OF =12B 1C 1 又BE ∥B 1C 1,BE =12B 1C 1 ∴OF ∥BE 且OF =BE∴四边形OFEB是平行四边形,∴EF∥BO∵EF⊄平面BDD1B1,BO⊂平面BDD1B1∴EF∥平面BDD1B1五、课堂小结1、直线与平面平行的性质定理2、证明线与线、线与面的平行关系的一般规律是:“见了已知想性质,见了求证想判定”,也就是说“发现已知,转化结论,沟通已知与未知的关系”.这是分析和解决问题的一般思维方法,而作辅助线和辅助面往往是沟通已知和未知的有效手段六、课后作业习题8.5 7、8七、课后反思。
8.5 空间直线、平面的平行【知识点一】直线与直线平行1.平行公理(公理4) 平行于同一条直线的两条直线互相平行.符号表示:⎭⎪⎬⎪⎫a ∥b b ∥c ⇒a ∥c . 2.等角定理 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.【知识点二】直线与平面平行的判定【知识点三】平面与平面平行的判定定理【知识点四】直线与平面平行的性质【知识点五】平面与平面平行的性质【例1-1】下列四个结论中错误命题的个数是________.①垂直于同一直线的两条直线互相平行;②平行于同一直线的两直线平行;③若直线a,b,c满足a∥b,b⊥c,则a⊥c;④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.【变式1】下列三种说法:①若直线a,b相交,b,c相交,则a,c相交;②若a∥b,则a,b与c所成的角相等;③若a⊥b,b⊥c,则a∥c.其中正确的个数是________.【例1-2】(公理4与等角定理的应用) 如图,已知在棱长为a的正方体ABCD—A1B1C1D1中,M,N 分别是棱CD,AD的中点.求证:(1)四边形MNA1C1是梯形;(2)∠DNM=∠D1A1C1.【变式1】如图所示,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)若AC ⊥BD ,求证:四边形EFGH 是矩形.【例2-1】如图,正方体1111ABCD A B C D 中,E 为1DD 中点.求证:1//BD 平面AEC .【变式1】如图,四边形ABCD 是平行四边形,P 是平面ABCD 外一点,M ,N 分别是AB ,PC 的中点.求证:MN ∥平面P AD .【变式2】如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,AB BC ⊥,D 为AC 的中点,12AA AB ==,3BC =.求证:1//AB 平面1BC D ;【例3-1】(平面与平面平行的证明)如如图,在正方体ABCDA1B1C1D1中,S是B1D1的中点,E,F,G 分别是BC,DC,SC的中点,求证:(1)直线EG//平面BDD1B1;(2)平面EFG//平面BDD1B1.【变式1】如图,在四棱锥P-ABCD中,点E为P A的中点,点F为BC的中点,底面ABCD是平行四边形,对角线AC,BD交于点O.求证:平面EFO∥平面PCD.【变式2】如图,在正方体ABCD-A1B1C1D1中,点S是B1D1的中点,点E,F,G分别是BC,DC 和SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.【例4-1】(线面平行的性质)如图,用平行于四面体ABCD的一组对棱AB,CD的平面截此四面体,求证:截面MNPQ是平行四边形.【变式1】如图所示,在四棱锥P-ABCD中,底面ABCD是平行四边形,AC与BD交于点O,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.【变式2】如图,在五面体EF ABCD中,已知四边形ABCD为梯形,AD∥BC,求证:AD∥EF.【例5-1】(面面平行的性质)(1)如图,平面α∥β,A,C∈α,B,D∈β,直线AB与CD交于点S,且AS=3,BS=9,CD=34,求CS的长.(2)如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段P A,PB,PC 于A′,B′,C′,若P A′∶AA′=2∶3,则S△A′B′C′∶S△ABC等于()A.2∶25 B.4∶25C.2∶5 D.4∶5【变式1】如图,在棱长为a的正方体ABCD-A1B1C1D1中,E,F,P,Q分别是BC,C1D1,AD1,BD的中点.(1)求证:PQ∥平面DCC1D1;(2)求PQ的长;(3)求证:EF∥平面BB1D1D.课后练习题1.如图所示,在三棱柱ABC 111A B C 中,E ,F ,G ,H 分别是AB ,AC ,11A B ,11A C 的中点,求证:(1)B ,C ,H ,G 四点共面;(2)1A E ∥平面BCHG .2.如图,在三棱锥A ﹣BCD 中,AB ⊥平面BCD ,BC ⊥BD ,BC=3,BD=4,直线AD 与平面BCD 所成的角为45°,点E ,F 分别是AC ,AD 的中点.(1)求证:EF ∥平面BCD ;(2)求三棱锥A ﹣BCD 的体积.3.如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.4.如图所示,在四棱锥P-ABCD中,BC//平面PAD,12BC AD,E是PD的中点.(1)求证:BC//AD;(2)求证:CE//平面PAB.5.如图,梯形ABCD中,//BC AD,E是PD的中点,过BC和点E的平面与PA交于点F.求证://BC EF.6.如图所示,四棱锥P-ABCD的底面ABCD为矩形,E,F,H分别为AB,CD,PD的中点,求证:平面AFH∥平面PCE.7.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为梯形,AD∥BC,平面A1DCE与B1B交于点E.求证:EC∥A1D.8.5 空间直线、平面的平行【知识点一】直线与直线平行1.平行公理(公理4) 平行于同一条直线的两条直线互相平行.符号表示:⎭⎪⎬⎪⎫a ∥b b ∥c ⇒a ∥c . 2.等角定理 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.【知识点二】直线与平面平行的判定【知识点三】平面与平面平行的判定定理【知识点四】直线与平面平行的性质【知识点五】平面与平面平行的性质【例1-1】下列四个结论中错误命题的个数是________.①垂直于同一直线的两条直线互相平行;②平行于同一直线的两直线平行;③若直线a,b,c满足a∥b,b⊥c,则a⊥c;④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.【答案】2【解析】①④均为错误命题.①可举反例,如a,b,c三线两两垂直.④如图甲,c,d与异面直线l1,l2交于四个点,此时c,d异面;当点A在直线l1上运动(其余三点不动)时,会出现点A与B重合的情形,如图乙所示,此时c,d共面相交.【变式1】下列三种说法:①若直线a,b相交,b,c相交,则a,c相交;②若a∥b,则a,b与c所成的角相等;③若a⊥b,b⊥c,则a∥c.其中正确的个数是________.【答案】 1【解析】若a,b相交,b,c相交,则a,c相交、平行、异面均有可能,故①不对;若a⊥b,b⊥c,则a,c平行、相交、异面均有可能,故③不对;②正确.【例1-2】(公理4与等角定理的应用) 如图,已知在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,M ,N 分别是棱CD ,AD 的中点.求证:(1)四边形MNA 1C 1是梯形; (2)∠DNM =∠D 1A 1C 1.证明 (1)如图 ,连结AC ,在△ACD 中,∵M ,N 分别是CD ,AD 的中点, ∴MN 是△ACD 的中位线, ∴MN ∥AC ,且MN =12AC .由正方体的性质,得 AC ∥A 1C 1,且AC =A 1C 1. ∴MN ∥A 1C 1,且MN =12A 1C 1,即MN ≠A 1C 1,∴四边形MNA 1C 1是梯形. (2)由(1)可知,MN ∥A 1C 1.又ND ∥A 1D 1,且∠DNM 与∠D 1A 1C 1的两边的方向相同,∴∠DNM =∠D 1A 1C 1.【变式1】如图所示,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)若AC ⊥BD ,求证:四边形EFGH 是矩形.证明 (1)如图所示,连结EF ,FG ,GH ,HE ,在△ABD 中,∵E ,H 分别是AB ,AD 的中点,∴EH ∥BD ,且EH =12BD .同理FG ∥BD ,且FG =12BD ,∴EH ∥FG ,且EH =FG ,∴E ,F ,G ,H 四点共面.(2)由(1)知EH ∥FG ,且EH =FG ,∴四边形EFGH 为平行四边形.∵HG 是△ADC 的中位线,∴HG ∥AC .又EH ∥BD ,AC ⊥BD ,∴EH ⊥HG ,∴四边形EFGH 为矩形. 【例2-1】如图,正方体1111ABCD A B C D -中,E 为1DD 中点.求证:1//BD 平面AEC .【解析】证明:连结BD 与AC 交于点H ,连结HE . 在1BDD 中,,E H 分别为1DD 、BD 的中点. 得1//EH BD .又因为1BD ⊄平面AEC ,EH ⊂平面AEC , 所以1//BD 平面AEC【变式1】如图,四边形ABCD 是平行四边形,P 是平面ABCD 外一点,M ,N 分别是AB ,PC 的中点.求证:MN ∥平面P AD .【解析】如图,取PD 的中点G ,连接GA ,GN .∵G ,N 分别是△PDC 的边PD ,PC 的中点, ∴GN ∥DC ,GN =12DC .∵M 为平行四边形ABCD 的边AB 的中点, ∴AM =12DC ,AM ∥DC ,∴AM ∥GN ,AM =GN ,∴四边形AMNG 为平行四边形,∴MN ∥AG . 又MN ⊄平面PAD ,AG ⊂平面PAD , ∴MN ∥平面PAD .【变式2】如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,AB BC ⊥,D 为AC 的中点,12AA AB ==,3BC =.求证:1//AB 平面1BC D ;【答案】详见解析 【解析】如图所示:连接1B C 与1C B 交于点O ,连接OD , 因为O ,D 为中点, 所以1//OD AB ,又OD ⊂平面1BC D ,1AB ⊄平面1BC D , 所以1//AB 平面1BC D ;【例3-1】(平面与平面平行的证明)如如图,在正方体ABCD A 1B 1C 1D 1中,S 是B 1D 1的中点,E ,F ,G 分别是BC ,DC ,SC 的中点,求证:(1)直线EG //平面BDD 1B 1; (2)平面EFG //平面BDD 1B 1.【解析】证明:(1)如图,连接SB ,因为E ,G 分别是BC ,SC 的中点, 所以EG //SB .又因为SB ⊂平面BDD 1B 1,EG ⊄平面BDD 1B 1, 所以直线EG //平面BDD 1B 1.(2)连接SD ,因为F ,G 分别是DC ,SC 的中点, 所以FG //SD .又因为SD ⊂平面BDD 1B 1,FG ⊄平面BDD 1B 1, 所以FG //平面BDD 1B 1,由(1)有直线EG//平面BDD1B1;又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,所以平面EFG//平面BDD1B1.【变式1】如图,在四棱锥P-ABCD中,点E为P A的中点,点F为BC的中点,底面ABCD是平行四边形,对角线AC,BD交于点O.求证:平面EFO∥平面PCD.【解析】证明因为四边形ABCD是平行四边形,AC∩BD=O,所以点O为BD的中点.又因为点F为BC的中点,所以OF∥CD.又OF⊄平面PCD,CD⊂平面PCD,所以OF∥平面PCD,因为点O,E分别是AC,P A的中点,所以OE∥PC,又OE⊄平面PCD,PC⊂平面PCD,所以OE∥平面PCD.又OE⊂平面EFO,OF⊂平面EFO,且OE∩OF=O,所以平面EFO∥平面PCD.【变式2】如图,在正方体ABCD-A1B1C1D1中,点S是B1D1的中点,点E,F,G分别是BC,DC 和SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.【解析】证明(1)如图,连接SB.∵点E,G分别是BC,SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴EG∥平面BDD1B1.(2)连接SD.∵点F,G分别是DC,SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1.又EG∥平面BDD1B1,且EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.【例4-1】(线面平行的性质)如图,用平行于四面体ABCD的一组对棱AB,CD的平面截此四面体,求证:截面MNPQ是平行四边形.证明因为AB∥平面MNPQ,平面ABC∩平面MNPQ=MN,且AB⊂平面ABC,所以由线面平行的性质定理,知AB∥MN.同理AB∥PQ,所以MN∥PQ.同理可得MQ∥NP.所以截面MNPQ是平行四边形.【变式1】如图所示,在四棱锥P-ABCD中,底面ABCD是平行四边形,AC与BD交于点O,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.证明 连接MO .∵四边形ABCD 是平行四边形, ∴O 是AC 的中点.又∵M 是PC 的中点,∴AP ∥OM . 又∵AP ⊄平面BDM ,OM ⊂平面BDM , ∴AP ∥平面BDM .又∵AP ⊂平面APGH ,平面APGH ∩平面BDM =GH ,∴AP ∥GH .【变式2】如图,在五面体EF ABCD 中,已知四边形ABCD 为梯形,AD ∥BC ,求证:AD ∥EF .证明 ∵AD ∥BC ,AD ⊄平面BCEF ,BC ⊂平面BCEF , ∴AD ∥平面BCEF ,∵AD ⊂平面ADEF ,平面ADEF ∩平面BCEF =EF , ∴AD ∥EF .【例5-1】(面面平行的性质)(1)如图,平面α∥β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于点S ,且AS =3,BS =9,CD =34,求CS 的长.证明 设AB ,CD 共面γ,因为γ∩α=AC ,γ∩β=BD ,且α∥β, 所以AC ∥BD ,所以△SAC ∽△SBD ,所以SC SC +CD =SASB ,即SC SC +34=39,所以SC =17.(2)如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A ,PB ,PC 于A ′,B ′,C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′∶S △ABC 等于( )A .2∶25B .4∶25C .2∶5D .4∶5答案 B解析 ∵平面α∥平面ABC ,平面P AB 与它们的交线分别为A ′B ′,AB ,∴AB ∥A ′B ′, 同理B ′C ′∥BC ,易得△ABC ∽△A ′B ′C ′,S △A ′B ′C ′∶S △ABC =⎝⎛⎭⎫A ′B ′AB 2=⎝⎛⎭⎫P A ′P A 2=425. 【变式1】如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F ,P ,Q 分别是BC ,C 1D 1,AD 1,BD 的中点.(1)求证:PQ ∥平面DCC 1D 1;(2)求PQ 的长;(3)求证:EF ∥平面BB 1D 1D .解析:(1)证明 如图,连接AC ,CD 1.因为ABCD 是正方形,且Q 是BD 的中点,所以Q 是AC 的中点,又P 是AD 1的中点,所以PQ ∥CD 1.又PQ ⊄平面DCC 1D 1,CD 1⊂平面DCC 1D 1,所以PQ ∥平面DCC 1D 1.(2)解 由(1)易知PQ =12D 1C =22a .(3)证明 方法一 取B 1D 1的中点O 1,连接FO 1,BO 1,则有FO 1∥B 1C 1且FO 1=12B 1C 1.又BE ∥B 1C 1且BE =12B 1C 1, 所以BE ∥FO 1,BE =FO 1.所以四边形BEFO 1为平行四边形,所以EF ∥BO 1,又EF ⊄平面BB 1D 1D ,BO 1⊂平面BB 1D 1D ,所以EF ∥平面BB 1D 1D .方法二 取B 1C 1的中点E 1,连接EE 1,FE 1,则有FE 1∥B 1D 1,EE 1∥BB 1,且FE 1∩EE 1=E 1,FE 1,EE 1⊂平面EE 1F ,B 1D 1,BB 1⊂平面BB 1D 1D ,所以平面EE 1F ∥平面BB 1D 1D .又EF ⊂平面EE 1F ,所以EF ∥平面BB 1D 1D .课后练习题1.如图所示,在三棱柱ABC 111A B C 中,E ,F ,G ,H 分别是AB ,AC ,11A B ,11A C 的中点,求证:(1)B ,C ,H ,G 四点共面;(2)1A E ∥平面BCHG .【解析】(1)∵G ,H 分别是11A B ,11A C 的中点,∴11//GH B C ,而11//B C BC ,∴//GH BC ,即B ,C ,H ,G 四点共面.(2)∵E ,G 分别是AB ,11A B 的中点,∴1,AG EB 平行且相等,所以四边形1A EBG 为平行四边形,即1//A E GB ,又1A E ⊄面BCHG ,GB ⊂面BCHG ,∴1//A E 面BCHG ,2.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°,点E,F分别是AC,AD的中点.(1)求证:EF∥平面BCD;(2)求三棱锥A﹣BCD的体积.【答案】(1)证明见解析;(2)8【解析】(1)∵点E,F分别是AC,AD的中点,∴EF∥CD,又∵EF⊄平面BCD,CD⊂平面BCD,∴//EF平面BCD;(2)∵AB⊥平面BCD,∴∠ADB为直线AD与平面BCD所成的角,45,4ADB AB BD∴∠=︒∴==,∵BC⊥BD,162BCDBCS BD∴=⨯⨯=,∴三棱锥A﹣BCD的体积183BCDV s AB=⋅=.3.如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.【解析】证明∵四边形ABCD为矩形,∴BC∥AD.∵AD⊂平面P AD,BC⊄平面P AD,∴BC ∥平面P AD .∵平面BCFE ∩平面P AD =EF ,BC ⊂平面BCFE ,∴BC ∥EF .∵AD =BC ,AD ≠EF ,∴BC ≠EF ,∴四边形BCFE 是梯形.4.如图所示,在四棱锥P-ABCD 中,BC//平面PAD ,12BC AD =,E 是PD 的中点.(1)求证:BC//AD ;(2)求证:CE//平面PAB .【答案】(1)证明见解析;(2)证明见解析.【解析】证明:()1在四棱锥P ABCD -中,//BC 平面PAD ,BC ⊂平面ABCD ,平面ABCD 平面PAD AD =,//BC AD ∴,()2取PA 的中点F ,连接EF ,BF ,E 是PD 的中点,//EF AD ∴,12EF AD =, 又由()1可得//BC AD ,且12BC AD =, //BC EF ∴,BC EF =,∴四边形BCEF 是平行四边形,∴,EC FB//EC⊄平面PAB,FB⊂平面PAB,∴平面PAB.EC//BC AD,E是PD的中点,过BC和点E的平面与PA交于点F.求证:5.如图,梯形ABCD中,//BC EF.//【答案】证明见解析BC AD,BC⊄平面PAD,AD⊂平面PAD,【解析】∵//BC平面PAD,∴//∵BC⊂平面BCEF,平面BCEF平面PAD EF=,BC EF∴//6.如图所示,四棱锥P-ABCD的底面ABCD为矩形,E,F,H分别为AB,CD,PD的中点,求证:平面AFH∥平面PCE.证明因为F为CD的中点,H为PD的中点,所以FH∥PC,又FH⊄平面PEC,PC⊂平面PEC,所以FH∥平面PCE.又AE∥CF且AE=CF,所以四边形AECF为平行四边形,所以AF∥CE,又AF⊄平面PCE,CE⊂平面PCE,所以AF∥平面PCE.又FH⊂平面AFH,AF⊂平面7.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为梯形,AD∥BC,平面A1DCE与B1B交于点E.求证:EC∥A1D.证明因为BE∥AA1,AA1⊂平面AA1D,BE⊄平面AA1D,所以BE∥平面AA1D.因为BC∥AD,AD⊂平面AA1D,BC⊄平面AA1D,所以BC∥平面AA1D.又BE∩BC=B,BE⊂平面BCE,BC⊂平面BCE,所以平面BCE∥平面AA1D.又平面A1DCE∩平面BCE=EC,平面A1DCE∩平面AA1D=A1D,所以EC∥A1D.。