独立分量分析(ICA)课件
- 格式:ppt
- 大小:868.50 KB
- 文档页数:59
第2章独立分量分析原理2.1 引言ICA是20世纪90年代发展起来的一种新的信号处理技术,它是从多维统计数据中找出隐含因子或分量的方法。
从线性变换和线性空间角度,源信号为相互独立的非高斯信号,可以看作线性空间的基信号,而观测信号则为源信号的线性组合,ICA就是在源信号和线性变换均不可知的情况下,从观测的混合信号中估计出数据空间的基本结构或者说源信号。
目前ICA的研究工作大致可分为两大类,一是ICA的基本理论和算法的研究,基本理论的研究有基本线性ICA模型的研究以及非线性ICA、信号有时间延时的混合、卷积和的情况、带噪声的ICA、源的不稳定问题等的研究。
算法的研究可分为基于信息论准则的迭代估计方法和基于统计学的代数方法两大类,从原理上来说,它们都是利用了源信号的独立性和非高斯性。
各国学者提出了一系列估计算法。
如FastICA算法、Infomax 算法、最大似然估计算法、二阶累积量、四阶累积量等高阶累积量方法。
另一类工作则集中在ICA 的实际应用方面,已经广泛应用在特征提取、生物医学信号处理、通信系统、金融领域、图像处理、语音信号处理等领域,并取得了一些成绩。
这些应用充分展示了ICA的特点和价值。
本章首先了介绍了ICA原理;接着简单阐述了ICA的发展历史;因ICA涉及到很多数学知识,为更好地理解ICA的原理及算法,与ICA密切相关的概率、统计、信息论等数学知识亦得到了简要阐述;最后介绍了ICA中独立性度量的几种方法。
2.2 独立分量分析的定义2.2.1独立分量分析的线性模型因为ICA是伴随着盲信号分离(Blind Signal Separation, BSS)问题发展起来的,所以BSS问题的介绍,有助于对ICA的理解。
(1)盲信号分离问题[24][25]BSS问题是信号处理中一个传统而又极具挑战性的课题。
BSS是指仅从观测的混合信号(通常是多个传感器的输出)中恢复独立的源信号,这里的“盲”是指:1.源信号是不可观测的;2.混合系统是事先未知的。
独立分量分析在水工结构模态混频中的应用1. 引言1.1 独立分量分析概述独立分量分析(Independent Component Analysis, ICA)是一种用于数据降维和信号分离的统计方法。
它通过独立性的概念,将多个混合在一起的信号分解成相互独立的成分,使得每个独立成分所包含的信息更加纯粹和有意义。
ICA在信号处理、机器学习、神经科学等领域都有着广泛的应用。
在水工结构模态分析中,独立分量分析可以帮助工程师更好地理解结构的模态振动特性。
通过将结构响应数据进行ICA处理,可以提取出结构振动中相互独立的成分,从而揭示结构的整体振动特性。
这种方法不仅可以用于静态条件下的结构振动分析,还可以应用在动态条件下对结构的模态混频进行分析,有助于提高工程设计的精度和效率。
1.2 水工结构模态分析的重要性水工结构是指建造在水体中或水下,用于调节水流、控制水位、保护岸岩等目的的各种建筑物。
水工结构在水利工程中起着至关重要的作用,其安全性和稳定性直接关系到整个水利工程的运行效果和人民生命财产安全。
水工结构的模态分析是为了研究结构在不同频率下的振动特性,进而评估结构的稳定性和安全性。
通过模态分析,可以确定结构的自然频率、振型和结构的受力状态,有助于设计人员优化结构设计,提高结构的抗震性能和耐久性。
在水工结构中,模态混频是指结构受激励作用下,在多个频率下同时发生振动。
对水工结构模态混频进行准确分析具有重要意义。
只有深入了解和分析水工结构的模态混频特性,才能更好地预防结构的疲劳损伤和结构破坏,确保水工结构的安全可靠运行。
水工结构模态分析的重要性不言而喻,研究人员需要不断探索更加精准和有效的分析方法,以提高水工结构的安全性和稳定性。
2. 正文2.1 独立分量分析在水工结构模态混频中的原理独立分量分析(Independent Component Analysis,简称ICA)是一种基于统计学的信号处理技术,其原理是通过对混合信号进行解混,找到各个独立的信号成分。
独立分量分析(ICA)简单认识ICA (Independent Components Analysis),即独立分量分析。
它是传统的盲源分离方法,旨在恢复独立成分观测的混合物。
FastICA 是一个典型的独立分量分析(ICA)方法。
它是信号盲处理的基础,对信号独立分量分析的检测是信号盲处理的起点。
现有的信号盲处理的算法,大都是基于独立分量分析的,通过对独立分量分析的研究就可以把这些算法统一起来。
一、信号分类:1.无噪声时:假设混叠系统由m个传感器和n个源信号组成,并且源信号与观测信号遵从如下所示的混叠模型:x(t)=As(t),其中,x(t)=[x1(t),x2(t),...,x m(t)]T表示m维观测信号矢量;A为m*n维混叠权系数为未知的混叠矩阵;n个源信号的组合为:s(t)=[s1(t),s2(t),...,sn(t)]T2.有噪声时:若考虑噪声的影响,则有:x(t)=As(t)+n(t),其中,从m个传感器采集来的噪声集合为:n(t)=[n1(t),n2(t),...,n m(t)]T针对式子:x(t)=As(t)+n(t)独立分量分析(ICA)就是要求解分离矩阵W,使得通过它可以从观测信号x(t)中恢复出未知的源信号s(t),分离系统输出可通过下式表示:y(t)=Wx(t)其中,y(t)=[y1(t),y2(t),…,y n(t)]T为源信号的估计矢量,即:y(t)=S(t)二、用ICA方法的信号分析——基于小波变换和ICA的分离方案(分离步骤)首先介绍下语音分离的大体思路。
先采用小波变换对各个带噪混叠语音进行预消噪处理,然后进行预处理,最后用ICA的方法对消噪后的混叠语音进行分离;最后根据分离信号的特点进一步提出对其进行矢量归一和再消噪处理,最终得到各个语音源信号的估计。
1.预消噪处理——小波变换这里采用的是小波阈值法去噪,它类似于图像的阈值分割。
(阈值就是临界值或叫判断设定的最小值)设带噪语音信号为: f(t)=As(t)+n(t),式中: s(t)是纯语音信号, n(t)为噪声。
第2章独立分量分析原理2.1 引言ICA是20世纪90年代发展起来的一种新的信号处理技术,它是从多维统计数据中找出隐含因子或分量的方法。
从线性变换和线性空间角度,源信号为相互独立的非高斯信号,可以看作线性空间的基信号,而观测信号则为源信号的线性组合,ICA就是在源信号和线性变换均不可知的情况下,从观测的混合信号中估计出数据空间的基本结构或者说源信号。
目前ICA的研究工作大致可分为两大类,一是ICA的基本理论和算法的研究,基本理论的研究有基本线性ICA模型的研究以及非线性ICA、信号有时间延时的混合、卷积和的情况、带噪声的ICA、源的不稳定问题等的研究。
算法的研究可分为基于信息论准则的迭代估计方法和基于统计学的代数方法两大类,从原理上来说,它们都是利用了源信号的独立性和非高斯性。
各国学者提出了一系列估计算法。
如FastICA算法、Infomax 算法、最大似然估计算法、二阶累积量、四阶累积量等高阶累积量方法。
另一类工作则集中在ICA 的实际应用方面,已经广泛应用在特征提取、生物医学信号处理、通信系统、金融领域、图像处理、语音信号处理等领域,并取得了一些成绩。
这些应用充分展示了ICA的特点和价值。
本章首先了介绍了ICA原理;接着简单阐述了ICA的发展历史;因ICA涉及到很多数学知识,为更好地理解ICA的原理及算法,与ICA密切相关的概率、统计、信息论等数学知识亦得到了简要阐述;最后介绍了ICA中独立性度量的几种方法。
2.2 独立分量分析的定义2.2.1独立分量分析的线性模型因为ICA是伴随着盲信号分离(Blind Signal Separation, BSS)问题发展起来的,所以BSS问题的介绍,有助于对ICA的理解。
(1)盲信号分离问题[24][25]BSS问题是信号处理中一个传统而又极具挑战性的课题。
BSS是指仅从观测的混合信号(通常是多个传感器的输出)中恢复独立的源信号,这里的“盲”是指:1.源信号是不可观测的;2.混合系统是事先未知的。