当前位置:文档之家› 内燃机设计第二章

内燃机设计第二章

内燃机设计第二章
内燃机设计第二章

2-1.解:中心曲柄连杆机构活塞的运动规律表达式: )]2cos 1(4

1)cos 1[(αλα-+-=r x ; )2sin 2

(sin αλαω+=r v ; )2cos (cos 2αλαω+=r a .

用途:

1)活塞位移用于P-φ示功图与P-V 示功图的转换,气门干涉的校验及动力计算;

2)活塞速度用于计算活塞处于不同位置时与气缸套的磨损程度,一般以最大活塞速度max v 进行评价;

3)活塞加速度用于计算往复惯性力的大小和变化,进行平衡分析及动力计算。

2-2.自由力是指:在内燃机工作过程中机体内部存在的那些彼此不能相互抵消的力。

2-3.解:(1)气压力g F 是内燃机对外做功的主动力,只有转矩输出,同时也有由其产生的翻倒力矩作用在机体上,并传至机体支承上; 往复惯性力j F 总是存在,与加速度的变化规律相同,两者相差一个常数,方向相反。

(2)不同点:

① 气体作用力是做功的动力,产生输出转矩;

②气体作用力在机体内部平衡,没有自由力;往复惯性力没有平衡,有自由力产生,是发动机纵向振动的根源;

③从两者的最大值比较和作用时间比较,可以得出:max max g j F F <:j F 总是存在,在一个周期内其正负值相互抵消,做功为零;g F 呈脉冲性,一个周期内只有一个峰值。

2-4.解:(1)曲柄连杆受力图如右图所示:

各力的表达式:

侧向力: βtan F F N = 连杆力:β

cos F F L = 切向力:)sin(cos )sin(βαβ

βα+=+=F F F L t 径向力:)cos(cos )cos(βαβ

βα+=+=F F F L k (2)单缸转矩 r F

r F M t ββαc o s )s i n (+== 翻倒转矩 r F r F t g h F M N ββαββββαβs i n )s i n (c o s s i n s i n )](180sin['

+-=+--=-= M r F =+-=ββαc o s

)s i n ( 即翻倒力矩与输出力矩大小相等、方向相反。

2-5.解:曲柄的当量质量应换算到曲柄组的质心位置。

2-6.解:(1)求某一主轴颈的转矩,只要把从第一拐起到该主轴颈前一拐的各单缸转矩叠加起来即可。叠加时第一要注意各缸的工作相位,第二要遵循各缸转矩向后传递的原则。

(2)求连杆轴颈转矩,根据转矩向后传递的原则,qi M 应该是前一个主轴颈上的积累转矩zi M 与作用在本曲柄销上的切向力所引起单缸转矩的一半。

(3)各主轴颈所受转矩:

此四冲程四缸机的发火顺序为1-3-4-2,由此可得

第一主轴颈所受转矩01=z M

第二主轴颈所受转矩)(12αM M z =

第三主轴颈所受转矩)180(123 ++=αM M M z z

第四主轴颈所受转矩)540(134 ++=αM M M z z

第五主轴颈所受转矩)360(145 ++=αM M M z z =∑M

可知,第四主轴颈转矩为)540(134 ++=αM M M z z .

(4)各连杆轴颈所受转矩:

)(2

12111αM r F M t q == )180(2

1122 ++=αM M M z q )540(2

1133 ++=αM M M z q )360(2

1144 ++=αM M M z q 可知,第四拐连杆轴颈转矩为)360(2

1144 ++=αM M M z q .

2-7.解:当连杆轴颈承受负荷时,坐标系应固定在曲轴上;当连杆轴承受负荷时,坐标系应固定在连杆上。

2-8.解:轴颈负荷与轴承负荷互为反作用力,即大小相等,方向相反。

2-9.解:提高转矩均匀性的措施:

增加气缸数;点火要均匀;按质量公差带分组;增加飞轮惯量。

2-10.解:连杆轴颈负荷大于主轴颈负荷。

原因:对于每个曲拐而言,连杆轴颈是一个,主轴颈有两个;连杆轴颈承受着由连杆传来全部载荷,而每个主轴颈则只承担一半载荷,所以主轴颈载荷小于连杆轴颈载荷。

2-11.解:进行当量质量换算时依据的原则是保持当量系统与原机构动力学相等。 对连杆组,根据质量守恒和质心守恒原理,有

21''m m m +=

2211l m l m = 所以 ''21m l

l m =, ''12m l l m = 式中,1m 为连杆集中在小头的当量质量,2m 为连杆集中在大头的当量质量。

2-12.解:为了进行零件强度计算、轴承负荷计算和输出转矩估算,需要对曲柄连杆机构中进行力的计算,即为动力计算。动力计算可得到合成力、侧向力、连杆力、切向力、径向力、单缸转矩、翻转力矩等。

初中物理《内燃机》教学设计

作业题目: 经过这段时间的网络研修和教学实践,相信您在信息技术应用方面,一定有所提升、有所收获。请结合本次培训,完成一份信息技术应用成果(教学设计方案、微课、课堂实录三选一)并提交。 微课作品说明:可以针对某一知识点(重点、难点、疑点),可以针对某一个教学环节,也可以对应某一知识点的典型习题。 课堂实录说明:实时记录某一节课,形成课堂实录文字版或视频版以作业形式提交至平台。 作业要求: 1.教学设计方案请参照模板要求填写。 2.微课视频时长建议5—8分钟,最长不能超过10分钟。 3.课堂实录文字版要求把教学的过程原原本本记录下来;视频版要求画面稳定、清晰,教师讲授声音清晰、响亮。 《 4.所有作品必须原创,必须体现信息技术的应用,如出现雷同,视为不合格。 5.建议:所有作品请以附件形式上传至平台(注:由于视频上传需要一定时间,请确保其上传成功后,再点击“提交”按钮)。 教学设计方案模板

(答案:B) 例2下列流程图是用来说明单缸四冲程汽油机的一个工作循环及涉及的主要能量转化情况。关于对图中①②③④的补充正确的是( ) ! A.①做功冲程②内能转化为机械能 ③压缩冲程④机械能转化为内能 B.①压缩冲程②内能转化为机械能 ③做功冲程④机械能转化为内能 C.①做功冲程②机械能转化为内能 ③压缩冲程④内能转化为机械能 D.①压缩冲程②机械能转化为内能 ③做功冲程④内能转化为机械能 】

(答案:D) 例3一汽油机的转速是3 000 r/min,它1秒钟有 个冲程,对外做功 次,它完成吸气冲程时,吸入气缸里的物质 是 。 (答案:100;25;汽油和空气的混合物) 老师根据学生回答,进行纠正补充和讲解。 老师:除了汽油机,还有一种内燃机是柴油机。它的基本构造是怎样的它是如何工作的它与汽油机有哪些相同点和不同点呢这几个问题留给大家去思考,老师期待大家的思考结果。

内燃机教学设计 新课标沪科版九年级物理市级优质课

内燃机教学设计 【教学课时】 1课时。 【教材分析】 通过四冲程内燃机工作原理的学习,使学生了解内燃机的主要结构;大致了解内燃机工作时,能量的转化与转移情况;了解内燃机在现代生活特别是交通方面的应用。【教学目标】 1.常识性了解汽油机的基本构造和工作原理。 2.常识性了解柴油机与汽油机在构造和工作过程中的异同点。 3.常识性了解四冲程内燃机工作过程中的能量转化。 【教学重点】 内燃机的基本构造和工作原理。 【教学难点】 内燃机的工作过程。 【教学方法】 讲解与阅读指导并行。 【实验器材】 内燃机示教模型(带电灯指示),教学挂图。 【教学过程】 〖引入新课〗 复习提问: 1、改变物体内能的两种方式是什么? 2、内能有哪两方面的主要作用? 新课引入 热机是指把燃料燃烧时释放的内能转变为机械能的装置。热机应用历史上从蒸汽机到内燃机,内燃机有汽油机及柴油机等,大多数交通工具,都使用它们。我们有必要学习内燃机原理。 〖新课教学〗 内燃机:燃料直接在发动机气缸内燃烧产生动力的热机。

最常见的内燃机,以汽油或柴油为燃料,分别叫做汽油机和柴油机。 1.汽油机:指出汽油在汽油机汽缸内燃烧、生成高温高压燃气,燃气推动活塞而做功,燃气内能转化为活塞运动的机械能。 (1)构造。(出示模型或挂图。边指示边讲解)。进气门,排气门,火花塞,气缸,活塞,连杆,曲轴。(介绍名称的同时,介绍各部分的功能)冲程:活塞从气缸一端运动到另一端的单向运动叫做一个冲程。 (2)工作原理。 (边运转模型边讲解,并提醒学生注意观察活塞、气门、连杆、曲轴的动作情况) 内燃机的工作过程以一个循环为一个单元,一个循环又分为四个冲程。 1.〈吸气冲程〉开始工作前,活塞位于气缸上端,进、排气门军关闭。工作时,活塞由上向下运动,进气门打开,排气门仍关闭。由于缸内体积增大,压强减小,空气和汽油的混合气体被吸入气缸。这是第一个冲程。 2.〈压缩冲程〉活塞运动到最下端,就开始转为向上运动。这时进气门、排气门都关闭,混合气体被强行压缩,使气体的温度升高,压强增大。这是第二个冲程。 3.〈做功冲程〉压缩结束时虽然温度较高,但未能达到燃料的燃点。在压缩冲程结束的瞬间,火花塞产生电火花,使燃料猛烈燃烧,产生高温高压气体,高温高压燃气推动活塞向上向下运动,通过连杆带动曲轴转动。实现了内能向机械能的转化。这是第三个冲程。 4.〈排气冲程〉做功冲程结束,活塞继续向下向上运动,进气门关闭,排气门打开,燃烧后的废气被活塞推出缸外。这是最后一个冲程。 此后,活塞又由上向下运动,从此进入下一轮循环。在一个工作循环中有四个冲程,活塞往复两次,曲轴转两周,对外做一次功。 (3)能的转化:在做功冲程燃气对活塞做功,内能转化为机械能。其余三个冲程靠消耗飞轮的机械能来完成。 2.柴油机:用柴油作燃料的内燃机。

内燃机设计复试题目

1.10年笔试部分: 第一题是判断与选择混合的题目,即二选一。与往年差不多,但又加上了几个新题型。大体是以下内容。 (1)发动机气缸盖在什么时候受力最大? (2)为避免发生共振,应提高机体频率还是减低机体频率? 不好意思,记不起来了,呵呵。 第二题名词解释:系统误差和压电效应。 第三题是综合体:全新内容。 (1)测量发动机上止点位置时,通常使用哪几种方法,各有什么特点? (2)发动机和测功机的匹配问题,就是给出发动机的转速和功率(比如1000min/s,2000kw),再给出测功机的转速和功率(比如1000min/s,1800kw,也即测功机的各项数据都小于发动机的),问是否满足上述条件的任何测功机都适用于上述发动机。 (3)二缸,三缸,四缸,六缸发动机再曲轴上安装平衡重的作用是否相同,为什么。 (4)给出进排气门提前角和迟闭角四个数据,以及配气相位图,问同缸异门的凸轮轴中心线夹角是多少?(也不难,好好看看) 现代内燃机设计的流程是什么? 天津大学2009年硕士研究生复试面试题 一、专业题 1.汽油机在各种典型负荷下的过量空气系数为多少 2.柴油机的油耗为什么比汽油机低 3.发动机进、排气为何要早开晚闭 4.柴油机排放后处理的措施 5.提高充量系数的措施 6.汽油机为什么要精确控制过量空气系数 7.EGR是如何降低NOx的 8.增压中冷的作用 9.泵气损失包括哪些 10.柴油燃烧的两个必要因素:浓度和温度 11.作用在曲轴上的有害力矩 12.提高曲轴强度的措施 13.热力学三大定律

14.汽油机、柴油机的温熵图(一般问热能或热物理专业跨过来考的学生) 15.发动机的负荷、速度特性实验 16.雷诺数是用来干什么的 二、实践能力 1.做过哪些实验及某个实验的相关问题 2.拆装发动机的过程 3.去过什么工厂实习及其相关问题 4.金工实习相关问题 三、英语口语 1. 为何选择天津大学 2.毕业论文的课题是什么,你将如何展开进行 3.你对内燃机国家重点燃烧实验室有哪些了解 4.你来自哪个学校 5.你的兴趣爱好 6.与工作过的同学相比,你有哪些优势 08年的笔试题 一:填空: 1.内燃机滑动轴承的承载油膜是由油楔油膜和挤压油膜两种油膜组成。 2.内燃机常规实验中需要监控冷却水温度、机油温度、机油压力。 3.内燃机的耐久性通常用大修期来表示,一般取决于缸套以及曲轴轴颈的磨损速率。 4.内燃机启动方式有手启动和电启动以及空气启动。

车用内燃机复习题库汇总

车用内燃机 第一章 1、简述发动机、热力发动机、外燃机和内燃机的定义。 答:发动机:是汽车的动力源,它是将某一种形式的能量转化为机械能的装置。 热力发动机:将热能转化为机械能的装置。 内燃机:利用燃烧产物直接推动机械装置作功。 外燃机:利用燃料对中间物质加热,利用中间物质产生的气体推动机械装置作功。 2、名词解释 答:燃烧室容积:活塞在上止点时,其顶部以上与气缸盖平面之间的空间容积称燃烧室容积,以Vc表示。燃烧室容积是活塞在气缸中运动所能达到的最小容积。 气缸工作容积:活塞从上至点运动到下止点所扫过的容积称为气缸工作容积,以Vh表示。 气缸总容积:活塞在下止点时,其顶部以上与缸盖底平面之间的空间容积称为气缸总容积,以Va表示。是活塞在气缸中运动所能达到的最大体积。 压缩比:气缸总容积与燃烧室容积的比值称为压缩比。=Va/Vc=1+Vh/Vc. 3、内燃机工作循环由哪几个过程组成?简述四冲程汽油机、柴油机的工作原理。答:1.进气过程; 2.压缩过程;3. 燃烧与膨胀作功过程;4.排气过程四冲程汽油机柴油机:进气行程、压缩行程、作功行程、排气行程 4、阐述柴油机和汽油机工作原理的差别。 答:1.燃料特性及原理的差别 (1) 燃料粘度蒸发性燃点 汽油小好高(390~420℃) 柴油大差低(230℃) (2) 工作原理差别: a)燃料雾化及混合气形成方式不同; b)点火方法不同,汽油机点燃方式,柴油机压燃方式 c)功率调节方式不同: 汽油机:量调节(节气门) ;柴油机:质调节 5、简述内燃机的分类情况。 答:1)按燃料分:汽油机与柴油机等 2)按气体循环与曲柄连杆机构运动的对应关系分:四冲程与二冲程 3)按进气方式分——非增压与增压 4)按冷却方式分——水冷和风冷

第三节 内燃机教案

课题:第三节内燃机 课型:授新课课时:1 一、教材分析 教材利用图例说明了汽油机的结构,并用四个参考图详细分析了汽油机的四个冲程,指出汽油机实际工作时,是靠外力使曲轴和飞轮先转动起来,带动活塞运动后汽油机才自己工作。 柴油机教学比较简单,知识说明了其工作过程,并分析了和汽油机的区别,指出了柴油机的应用.教材最后还提出了问题,思考汽油机和柴油机在工作过程中的相同点和不同点。 二、教学目标 (一)、知识与技能 1、初步认识发动机的作用,体会现代交通工具对人们生活的影响。 2、了解汽油机的基本构造和工作原理。 (二)、过程与方法 1、能用文字或口头表述内燃机各冲程的工作状态和能量转化。 2、能用文字或口头表述内燃机各个冲程的工作状态

和能量转化。 (三)、情感态度与价值观 知道内燃机工作进有废气污染,树立环保意识。 三、学情分析(手写) 在学习本节内容之前学生已经学习了内能及改变物体内能的两种途径,知道了什么是内能。对物体做功物体的内能会增大以及物体对外做功内能会减小。学生已经知道了内能和机械能之间能够相互转化这些都为本节知识的教学奠定了知识基础。 四、教学策略(教学方法、教学手段。) 本节利用挂图分析,要注重培养学生的观察能力和分析总结能力,培养学生的比较能力,所以在教法上有演示、引导学生观察、分析讨论、比较、联系实际这些环节.“汽油机”利用挂图和实验仪器演示汽油机的四个冲程,使学生在理解工作过程的内在逻辑联系.体会到汽油机的发明是人们智慧的结晶,在技术应用领域人们可以充分发挥自己的聪明才智. “柴油机”要注意比较教学,学生自主分析汽油机和柴油机的相同点和不同点,提高学生的甄别、判断、比较能力,教师还可以提供一些关于内燃机的资料,学生阅读,增强信息处理能力. 五、教具准备

复习(内燃机设计)

第一章内燃机设计总论 1、内燃机主要设计指标有哪些?动力性指标、经济性指标、紧凑性指标、可靠性与耐久性指标、适应性指标、运转性能指标、低公害指标。 2、内燃机的动力性指标有哪些?标定功率,标定转速,活塞平均速度,平均有效压力及扭矩 3、经济性指标有哪些?生产成本,运转中的消耗,以及维修费用等,燃油消耗率作为主要指标。 4、内燃机设计工作中的“三化”?产品系列化,零部件通用化,零件设计标准化。 5、内燃机主要结构参数有哪些?内燃机的主要结构参数,是指决定内燃机总体尺寸的参数,这些参数为:活塞行程S与气缸直径D的比值S/D;曲柄半径R与连杆长度L的比值λ,λ=R/L;气缸中心距L0与气径直径D的比值L0/D;对于V型内燃机还包括气缸夹角γ。 6、活塞行程与气缸直径的比值活塞行程S与气缸直径D的比值S/D,是决定内燃机设计的基本条件,由此即可确定气缸直径D及活塞行程S这两个主要参数。同一气缸容积的值,可以由不同的活塞行程与气缸直径组合而成。要正确确定出活塞行程和气缸直径值,必须正确确定S/D值。 7、曲柄半径R与连杆长度L的比值λ曲柄半径R与连杆L的比值λ是决定内燃机连杆长度L的一个结构参数。在确定参数λ之后,即可决定连杆长度的大小。 8、分析曲柄半径R与连杆长度L的比值λ对内燃机结构的影响对于单列式内燃机,λ值越大,连杆长度越短,D、S相同的条件下,内燃机的高度或宽度也越小,可是内燃机的外形尺寸减小,重量减轻。同时,连杆缩短后,使连杆杆身具有较大的刚度和强度。虽然由于λ加大,使往复运动质量的加速度和连杆摆角也加大,但因连杆重量减轻,往复惯性力与侧压力并没有什么增加。所以在设计时,为了尽可能缩小内燃机的外形尺寸和减轻重量,一般尽可能选取较大的 值,以使连杆的长度尽量短一些。 9、连杆长度的缩短,受到什么条件的限制:(1)活塞在下止点时,裙部不应与平衡重相碰。(2)活塞在上止点时,曲柄臂不应与气缸套下部相碰。(3)连杆在气缸套内摆动时,连杆杆身不应与气缸套下部相碰。 10、气缸中心距Lo与气缸直径D的比值Lo/D Lo/D是决定内燃机长度的主要参数 第二章内燃机曲柄连杆机构 1、作用在曲柄连杆机构上的力运动质量产生的惯性力和作用在活塞上的气体力,这些力随着曲柄转角的不同而变化,在稳定情况下,曲柄每转二周为一个变化周期,实际上,内燃机的工况是不断变化的,因此作用在曲柄连杆机构上的力和力矩也是在不断变化的。通常在动力学分析中,只计算标定工况下的作用力和力矩。并认为曲柄是作等速旋转运动。 2、进行内燃机的动力学计算的步骤 在进行动力学计算之前,必须根据实测的示功图或对工作过程的循环模拟计算来确定气体作用力的变化情况再根据运动学求出的各运动件的加速度,由此求出惯性力的变化情况,从而得到总的作用力及力矩,在此基础上,进一步分析这些力和力矩对内燃机平衡与振动的影响。

内燃机设计考试要点

第一章内燃机设计总论 一、开发设计组成 答:1、产品开发计划阶段;2、设计实施阶段;3、产品试制检验阶段; 4、改进与处理阶段。 二、三化要求 答:1、产品系列化; 2、零部件通用化; 3、零件设计标准化。 三、汽油机的优点 答:1、空气利用率高,升功率高。 2、零部件强度要求较低,制造成本低。 3、低温起动性好,加速性好,工作柔和,噪声较小。 4、升功率高,最高燃烧压力低,机构轻巧,比质量小。 5、不冒黑烟,颗粒排放少。 柴油机的优点: 1、燃料经济性好。 2、工作可靠,耐久性好。 3、通过增压和扩缸,增加攻略。 4、防火安全性好。 5、CO和HC的排放比汽油机少。 四、内燃机评定参数 答:1、强化指标。平均有效压力Pme和活塞平均速度Vm的乘积。 2、比质量m/Pe。单位:kg/kW。工作过程的强化程度和结构设计的完善程度。 3、升功率kW/L。发动机工作的完善性。 五、气缸直径D和汽缸数Z 答: 气缸直径改变之后,除估算功率、转矩外,活塞直径、气门直径、气门最大升 程要重新确定,活塞环要重新选配,曲轴平衡要重新计算,要进行曲柄连杆机构动力计算和扭振计算,要进行压缩比验算、燃烧室设计、工作过程计算甚至重新设计凸轮型线等。 六、行程S 答:行程S改变后,在结构上要重新设计曲轴,要重新进行曲柄连杆机构动力计算、 平衡计算、机体高度改变或者曲轴中心移动、压缩比验算与修正、工作过程计算

O 1,6720°5,23,4 120°240°360° 480° 600° 536241M 0,1 M 1,2 M 1M 2,3M 3,4M 2 M 3M 4,5M 4 M 5,6M 5M 6 M 6,71] )sin 1([)( ) sin 1()sin (1 cos sin sin L r sin sin r sin L AOB )cos cos ()(21 2221 22212αλαλββλαλαββααβ--+=∴-=-===?+-+=-'='=l l r x r l l r AO O A A A x -连杆比= 有利用正弦定理,中,在 第二章、曲柄连杆受理机构分析 1、曲柄连杆中力的关系 答:P33,图2-5 2、多缸机扭矩(动力计算),多缸机曲柄图。合成扭矩计算。 第一主轴颈所受扭矩 M0,1=0 第二主轴颈所受扭矩 M1,2=M1(α) 第三主轴颈所受扭矩 M2,3= M1,2+M1(α+240) 第四主轴颈所受扭矩 M3,4= M2,3+ M1(α+480) 第五主轴颈所受扭矩 M4,5= M3,4+ M1(α+ 120) 第六主轴颈所受扭矩 M5,6= M4,5+ M1(α+600) 第七主轴颈所受扭矩 M6,7= M5,6+ M1(α+ 360) 3、中心曲柄连杆机构的运动规律 ∏ I ∏ I ∏I ++=++ =+-+-=-+-=+-=∴-≈---=-a a r a v v r v X X r r r x )2cos (cos )2sin 2 (sin x )]2cos 1(41 )cos 1[( )]2cos 2121(21)cos 1[( sin 21 )cos 1[( sin 211 sin 16 1sin 81sin 211)sin 1( 2222664422212 2==度和加速度求两次导数得到活塞速对=又αλαωαλ αωαλααλαα λααλαλαλαλαλ

内燃机的平衡

第三章 内燃机的平衡 第一节 概述 内燃机运转时产生往复惯性力,旋转惯性力及反扭矩等,这些力或力矩是曲柄转角的周期性函数。在内燃机一个运转周期中,惯性力及其力矩和反扭知的大小、方向在变化,或大小和方向都在变化,并通过曲柄轴承和机体传给支架,使之产生振动。所以,这些力或力矩就是使内燃机运转不平衡的原因。 静平衡和动平衡 曲柄旋转质量系统,不但要求静平衡,也要求动平衡。 静平衡:质量系统旋转时离心合力等于零,即系统的质心(重心)位于旋转轴线上。 动平衡:质量系统旋转是,旋转惯性力合力等于零,而且合力矩r M 也等于零。 第二节 单缸内燃机的平衡 一、旋转惯性力的平衡 单缸内燃机的总旋转惯性力,包括曲柄不平衡质量和连杆换算到大头处的质量所产生离心力之和。 2ωR m P r r -= 该离心力的作用线与曲柄重合,方向背离曲柄中心,因此,只需在曲柄的对方,装上平衡重,使其所产生的离心力与原有的总旋转惯性力大小相等、方向相反即可将其平衡。 通常平衡重是配置两块,每个曲柄臂上各一块,这样可以使曲柄及轴承的负荷状况较好。所加平衡重的大小B m '为: 2 22ωωR m r m r B B ='' r B B m r R m '='2 B m '——平衡重质量 B r '——平衡重质心与曲轴中心线之间的距离 为了减轻平衡重质量并充分利用曲轴箱空间,可尽量使平衡重的质心远离曲轴中心线。 二、往复惯性力的平衡 一次往复惯性力 αωcos 2R m P j jI -= 二次往复惯性力 αωλ2cos 2R m P j jII -= 令2ωR m C j -

从形式上看,j P 与离心力一样,但这是j m 的往复质量而不是旋转质量。 如果把C 假想看成是一个作用在曲柄上的离心力,则一次往复惯性力jI P ,就相当于该离心力在气缸中心线上的投影。因为这个离心力是假想的,只是形式上相当于一个离心力,故把它作为一次往复惯性力的当量离心力。 现把这个当量离心力的质量分成完全相等的两部分。即各等于 2 j m ,并使一部分内气缸中心线 开始,半径R 的圆上,以向速度顺时针方向旋转,另一部分以同样条件下反时针方向旋转,显然它 们的离心力分为2C 。正转部分离心力作为jI P 的正转矢量,A 1表示。反转部分离心力作为jI P 的反 转矢量,B 1表示。 在活塞位于止点时,此两当量重合于气缸中心线上。在任一曲轴转角时,正转矢量A 1与反转矢量B 1的合矢量都落在气缸中心线上,其方向及大小与一次往复惯性力的方向及大小一致。这是因为A 1、B 1在气缸中心上的投影为 ()jI P C C C B A ==+=-+αααααcos cos 2 cos 2cos cos 11 在垂直于气缸中心线方向,A 1与B 1的投影正好大小相等,方向相反,其和为零。 ()0sin 2 sin 2sin sin 11=-=-+ααααC C B A 同理,二次惯性力正、反转矢量,用A 2、B 2表示。两矢量重合于气缸中心线上,一正、一反,以2倍于曲轴角速度(ω2)旋转。在任一曲轴转角时,A 2+B 2的矢量合,都落在气缸中心线上,其方向及大小与二次往复惯性力jII P 的方向及大小相同。 用正、反转两个矢量来分析惯性力的作用,是平衡分析中行之有效的一种方法。 一次惯性力jI P 可用两个质量所产生的离心力矢量来代替,所以要想将jI P 全部平衡,只要平衡掉这两个离心力即可。具体的做法是采用两根旋转方向相反的平衡轴。 第三节 单列式多缸内燃机的平衡 多缸机,各缸产生的一、二次往复惯性力却是沿各自气缸中心线,因此是互相平等,且作用在同一平面内(气缸轴线平面);只是一次惯性力与二次惯性力变化频率不相同。各气缸的旋转惯性力沿各自曲柄方向作用在不同平面内。由于各气缸中心线之间有一距离,因此各缸的往复惯性力,和旋转惯性力对于与曲轴轴线垂直的某一参考平面(一般取通过曲轴中央的平面为参考平面),还将产生力矩,如互相抵消,本身就平衡了,如不能抵消,则是不平衡的。

内燃机设计课后复习题答案(袁兆成主编)u

第二章:曲柄连杆机构受力分析 2-1写出中心曲柄连杆机构活塞的运动规律表达式,并说出位移、速度和加速度的用途。答:X = r[(1-cosα)+ λ/4(1-cos2α)] = XⅠ+XⅡ; V = rω(sinα+sin2α*λ/2) = vⅠ+vⅡ; a = rω2(cosα+λcos2α) = aⅠ+aⅡ; 用途:1)活塞位移用于P-φ示功图与P-V示功图的转换,气门干涉的校验及动力计算;2)活塞速度用于计算活塞平均速度Vm= =18 m/s,用于判断强化程度及计算功率,计算最大素的Vmax,评价汽缸的磨损;3)活塞加速度用于计算往复惯性力的大小和变化,进行平衡分析及动力计算。 2-2气压力P g和往复惯性力P j的对外表现是什么?有什么不同? 答:气压力Fg的对外表现为输出转矩,而Fj的对外表现为有自由力产生使发动机产生的纵向振动。不同:除了上述两点,还有 ?Fjmax < Fgmax ?Fj总是存在,但在一个周期其正负值相互抵消,做功为零;Fg是脉冲性,一个周期只有一个峰值。 2-3 解:连杆力:;侧向力:; 曲柄切向力:;径向力:; 证明:输出力矩:; 翻倒力矩: ==. 所以翻倒力矩与输出力矩大小相等方向相反。 2-4 解:1,假设每一缸转矩都一样,是均匀的,仅仅是工作时刻即相位不同。 如果第一缸的转矩为,则第二缸的转矩为,; 第一主轴颈所受转矩; 第二主轴颈所受转矩; 第三主轴颈所受转矩; 第四主轴颈所受转矩; 2, 2.5 当连杆轴颈和连杆轴承承受负荷是,坐标系应该固定在哪个零件上? 2.6 轴颈负荷与轴承负荷有什么关系?

互为反作用力关系 2.7 什么叫做自由力? 答 2.8提高转矩均匀性的措施? 答 1,增加气缸数 2,点火要均匀 3,按质量公差带分组 4,增加飞轮惯量 2.9 3. 为什么说连杆轴颈负荷大于主轴颈负荷? 答主轴径主要承受往复惯性力和气压力,曲轴一般动平衡,旋转惯性力较小,主轴径较短弯曲应力也较小,连杆轴径要承受连杆传来的往复惯性力和气压力,还要承受连杆及曲柄销的旋转惯性力。 2.10 连杆的当量质量换算原理表达式 2.11 从设计的角度出发说明什么是动力计算,以及计算出那些结果 答为了进行零件强度的计算,轴承负荷计算和输出转矩计算,曲柄连杆机构中力的计算是必不可少的。 1合成力 2 侧向力 3 连杆力 4 切向力 5 径向力 6 单杠转矩 7 翻倒力矩 2010-12-08 第三章:燃机的平衡 3-1四冲程四缸机,点火顺序1-3-4-2,试分析旋转惯性力和力矩,第一阶、第二阶往复惯性力和力矩,如不平衡,请采取平衡措施。 答:解:点火间隔角为 A= =180° (1)作曲柄图和轴测图,假设缸心距为a。 一阶曲柄图二阶曲柄图轴测图

《内燃机设计》课后习题答案(袁兆成主编)

第一章:燃机设计总论 1-1根据公式 τ 2 785 .0ZD v p P m me e = ,可以知道,当设计的活塞平均速度V m 增加时,可 以增加有效功率,请叙述活塞平均速度增加带来的副作用有哪些?具体原因是什么? 答:①摩擦损失增加,机械效率ηm 下降,活塞组的热负荷增加,机油温度升高,机油承 载能力下降,发动机寿命降低。②惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。③进排气流速增加,导致进气阻力增加、充气效率ηv 下降。 1-2汽油机的主要优点是什么?柴油机主要优点是什么? 答:柴油机优点: 1)燃料经济性好。 2)因为没有点火系统,所以工作可靠性和耐久性好。 3)可以通过增压、扩缸来增加功率。 4)防火安全性好,因为柴油挥发性差。 5)CO 和HC 的排放比汽油机少。 汽油机优点: 1)空气利用率高,转速高,因而升功率高。 2)因为没有柴油机喷油系统的精密偶件,所以制造成本低。 3)低温启动性好、加速性好,噪声低。 4)由于升功率高,最高燃烧压力低,所以结构轻巧,比质量小。 5)不冒黑烟,颗粒排放少。 1-3假如柴油机与汽油机的排量一样,都是非增压或者都是增压机型,哪一个升功率高?为什么? 答:汽油机的升功率高,在相同进气方式的条件下, ①由PL=Pme*n/30τ可知,汽油机与柴油机的平均有效压力相差不多。但是由于柴油机后燃较多,在缸径相同情况下,转速明显低于汽油机,因此柴油机的升功率小。 ②柴油机的过量空气系数都大于1,进入气缸的空气不能全部与柴油混合,空气利用率低,在转速相同、缸径相同情况下,单位容积发出的功率小于汽油机,因此柴油机的升功率低,汽油机的升功率高。 1-4柴油机与汽油机的汽缸直径、行程都一样,假设D=90mm 、S=90mm ,是否都可以达到相同的最大设计转速(如n=6000r/min )?为什么? 答:.对于汽油机能达到,但是柴油机不能。因为柴油机是扩散燃烧形式,混合气的燃烧速度慢,达不到汽油混合气的燃烧速度,所以达不到6000r/min 的设计转速。缸径越大,柴油混合气完成燃烧过程的时间越长,设计转速越低。 1-5活塞平均速度提高,可以强化发动机动力性,请分析带来的副作用是什么? 答:①摩擦损失增加,机械效率ηm 下降,活塞组的热负荷增加,机油温度升高,机油承载能力下降,发动机寿命降低。 ② 惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。 ③进排气流速增加,导致进气阻力增加、充气效率ηv 下降。 1-6目前使发动机产生性能大幅度提高的新型结构措施有哪些?为什么? 答:新型燃烧室,多气门(提高ηv),可变配气相位VVT (提高ηv),可变进气管长度(提高ηv),可变压缩比,可变增压器VGT 、VNT (可根据需要控制进气量),机械-涡轮复合增压,顶置凸轮机构DOHC 、SOHC (结构紧凑,往复惯性力小)。

内燃机设计期末试题

内燃机设计试卷 、简答题(24 分) 1. 发动机的支承力有哪些?哪些是引起发动机振动的力? 2. 凸轮缓冲段的高度主要考虑了哪些因素?采用液压挺柱时是否还应该设计缓冲段? 3. 活塞环工作应力与装配应力之间是什么关系,写出表达式,并说明设计时如何选择? Z D 2 P e = 0.7854—p me V m^_—)4. 发动机转速提高,意味着活塞平均速度Vm高,根据公式100 可知,可以提高发动机的有效功率;请回答Vm增加带来的负面作用有哪些? 二、填空(20分) 1. 机体的设计原则为:在尽可能—的条件下,尽量提高机体的___________ 。 F i T= C COS Of 2. 往复惯性力「始终沿_________ 作用。 3. 发动机的主临界转速与发火次序的变化_______ 。 4. 如果需要在轴瓦上开油槽,应该开在主轴瓦的_______ ,连杆轴瓦的_____ 。 5. 从等刚度出发,主轴颈D1 ______ 连杆轴颈D2 ;从等强度出发,D1 ______ D2 ;实际设计时D1 ___ D2。 6. 润滑系机油循环量根据__________ 来确定。 三、分析(20分) 已知一单列四行程三缸发动机,发火次序1-3-2,请分析往复惯性力的平衡性,如必要,请 采取整体平衡措施,写出质径积表达式,在轴侧图上标出平衡重布置。 四、计算(16分) 已知一台单列四行程三缸发动机(1-3-2),进排气门在一条直线上,凸轮轴顶置,图中虚

线L与气门轴线平行,摆杆以及配气相位如附图 % = 58°他a = 20° 刑=⑷ g = 4沪

求: 1各缸排气凸轮相对于第一缸排气凸轮的夹角; 2?同缸异名凸轮夹角; 3?排气凸轮工作半包角; 4. 一缸活塞位于压缩上止点时,其排气凸轮桃尖相对于图中虚线L的夹角。 、叙述(12分) 1?请叙述气缸套产生穴蚀的原因,并说出减轻穴蚀的设计和结构措施。 2?请结合作图叙述活塞工作时销轴方向变形大的原因,并说明结构设计时怎样考虑。 内燃机设计试题标准答案A 、简答题(24) 1答:往复惯性力是由往复运动质量Mj高速运动产生的,它的运动加速度为 2 2 a=w(cosa +kcos2a),所以Fj = m j (co护+》cos/)。惯性力不参与做功 因为正负做功在一个循环内相抵消。(6分) 2答:气压力、侧向力、热变形。反椭圆设计、绝热槽、恒范钢片(6分) 3答:轴瓦的过盈量主要是保证工作可靠。有自由弹势、半圆周过盈量、余面高度。加标准力F0,检测余面高度(6分) 4答:结构改变:曲轴、集体高度或曲轴中心孔位置。计算:动力计算、曲轴平衡分析、 压缩比、工作过程、(6分) 二、分析计算(20分) 发火间隔角A = 720/3= 240 (2分);画出曲柄布置图(2分);一阶曲柄图、二阶曲柄图(2分) 一阶惯性力分析,等于零(2分)、二阶旋转惯性力分析,等于零(2分)。一阶惯性力 矩分析,等于3ac (4分),二阶惯性力矩比较小,不考虑(2分)。 考虑整体平衡对一阶惯性力矩进行平衡,平衡措施正确,质径积结果正确

内燃机设计》课后习题答案(袁兆成主编)

第一章:内燃机设计总论 1-1根据公式 τ2 785.0ZD v p P m me e = ,可以知道,当设计的活塞平均速度V m 增加时,可 以增加有效功率,请叙述活塞平均速度增加带来的副作用有哪些具体原因是什么 答:①摩擦损失增加,机械效率ηm 下降,活塞组的热负荷增加,机油温度升高,机油承 载能力下降,发动机寿命降低。②惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。③进排气流速增加,导致进气阻力增加、充气效率ηv 下降。 1-2汽油机的主要优点是什么柴油机主要优点是什么 答:柴油机优点: 1)燃料经济性好。 2)因为没有点火系统,所以工作可靠性和耐久性好。 3)可以通过增压、扩缸来增加功率。 4)防火安全性好,因为柴油挥发性差。 5)CO 和HC 的排放比汽油机少。 汽油机优点: 1)空气利用率高,转速高,因而升功率高。 2)因为没有柴油机喷油系统的精密偶件,所以制造成本低。 3)低温启动性好、加速性好,噪声低。 4)由于升功率高,最高燃烧压力低,所以结构轻巧,比质量小。 5)不冒黑烟,颗粒排放少。 1-3假如柴油机与汽油机的排量一样,都是非增压或者都是增压机型,哪一个升功率高为什么 答:汽油机的升功率高,在相同进气方式的条件下, ①由PL=Pme*n/30τ可知,汽油机与柴油机的平均有效压力相差不多。但是由于柴油机后燃较多,在缸径相同情况下,转速明显低于汽油机,因此柴油机的升功率小。 ②柴油机的过量空气系数都大于1,进入气缸的空气不能全部与柴油混合,空气利用率低,在转速相同、缸径相同情况下,单位容积发出的功率小于汽油机,因此柴油机的升功率低,汽油机的升功率高。 1-4柴油机与汽油机的汽缸直径、行程都一样,假设D=90mm 、S=90mm ,是否都可以达到相同的最大设计转速(如n=6000r/min )为什么 答:.对于汽油机能达到,但是柴油机不能。因为柴油机是扩散燃烧形式,混合气的燃烧速度慢,达不到汽油混合气的燃烧速度,所以达不到6000r/min 的设计转速。缸径越大,柴油混合气完成燃烧过程的时间越长,设计转速越低。 1-5活塞平均速度提高,可以强化发动机动力性,请分析带来的副作用是什么 答:①摩擦损失增加,机械效率ηm 下降,活塞组的热负荷增加,机油温度升高,机油承载能力下降,发动机寿命降低。 ② 惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。 ③进排气流速增加,导致进气阻力增加、充气效率ηv 下降。 1-6目前使发动机产生性能大幅度提高的新型结构措施有哪些为什么 答:新型燃烧室,多气门(提高ηv ),可变配气相位VVT (提高ηv ),可变进气管长度(提高ηv ),可变压缩比,可变增压器VGT 、VNT (可根据需要控制进气量),机械-涡轮复合增压,顶置凸轮机构DOHC 、SOHC (结构紧凑,往复惯性力小)。

(完整版)汽车设计复习重点整理

第一章汽车总体设计 1.开发流程:商品计划、概念设计、工程设计、样车试验、投产启动、销售 2.FF发动机前置前轮驱动的布置形式,如今在乘用车上得到广泛应用,其原因究竟是什么?而发动机后置后轮驱动的布置形式在客车上得到广泛应用,其原因又是什么? 答:⑴对于乘用车来说主要是因为①前桥轴荷大,有明显的不足转向性;②越过障碍的能力高;③动力总成结构紧凑,有利于提高乘坐舒适性;④提高汽车的机动性;⑤散热条件好;⑥行李箱空间大;⑦容易改装;⑧供暖效率高;⑨操纵机构简单;⑩整备质量减轻,降低制造难度;缺点:前轮驱动并转向需要采用等速万向节,结构制造工艺复杂;前桥负荷重,并且前轮是转向轮,工作环境恶劣,轮胎寿命短;上坡时驱动轮附着力小,爬坡能力低,驱动轮易打滑丧失操纵稳定性;后轮易抱死引起汽车侧滑;维修保养接近性差;发生正面碰撞,对发动机损坏大,维修费用高。 ⑵商用车:①较好地隔绝发动机的气味、热量、噪声和振动;②检修发动机方便;③轴荷分配合理,同时可改善车厢后部的乘坐舒适性;④车厢面积利用较好(发动机横置);⑤能够在地板下方设置体积很大的行李箱(城间客车);⑥降低地板高度(市内客车);⑦传动轴长度短。 3为什么要有五条基准线缺一不可?答:确定整车的零线、正负方向及标注方式,均应在汽车满载状态下进行,并且绘图时应将汽车前部绘在左侧。车架上平面线;前轮中心线;汽车中心线;地面线;前轮垂直线。 第二章离合器 1、离合器在传动系中的作用。 答:离合器的主要功用是切断和实现发动机对传动系的传递,保证汽车起步时将发动机与传动系平顺地接合,确保汽车平稳起步;在换挡时将发动机与传动系分离,减少变速器中换挡齿轮之间的冲击;在工作中收到较大的动载荷时,能限制传动系所承受的最大转矩,以防止传动系各零部件因过载而损坏;有效地降低传动系中的振动和噪声。 2、离合器设计要求:答:⑴在任何行驶条件下,既能可靠地传递发动机的最大转矩,并有适当的转矩储备,又能防止传动系过载;⑵接合时要完全、平顺、柔和、保证汽车起步时没有抖动和冲击;⑶分离时要彻底、迅速;⑷从动部分转动惯量要小,以减轻换挡时变速器齿轮间的冲击,便于换挡和减小同步器的磨损;⑸应有足够的吸热能力和良好的通风散热效果,以保证工作温度不致过高,延长其使用寿命;⑹应能避免和衰减传动系的扭转振动,并具有吸收振动、缓和冲击和降低噪声的能力;⑺操纵轻便、准确,以减轻驾驶员的疲劳;⑻作用在从动盘上的总压力和摩擦材料的摩擦因数在离合器工作过程中变化要尽可能小,以保证有稳定的工作性能;⑼具有足够的强度和良好的动平衡,以保证其工作可靠、使用寿命长;⑽结构应简单、紧凑,质量小,制造工艺性好,拆装、维修、调整方便等。 3、膜片弹簧有什么特点?影响弹性特性的主要因素是什么?工作点最佳位置应如何确定?答:(1)①膜片弹簧具有较理想的非线性弹性特性,弹簧压力在摩擦片的允许磨损范围内基本保持不变,因而离合器工作中能保持传递的转矩大致不变,相对圆柱螺旋弹簧,其压力大力下降,离合器分离时,弹簧压力有所下降,从而降低了踏板力。②兼起压紧弹簧和分离杠杆的作用,结构简单、紧凑,轴向尺寸小,零件数目少,质量小。③高速旋转时,弹簧压紧力降低很少,性能较稳定。④以整个圆周与压盘接触,使压力分布均匀,摩擦片接触良好,磨损均匀。⑤易于实现良好的通风散热,使用寿命长。⑥膜片弹簧中心与离合器中心线重合,平衡性好。(2)影响弹性特性的主要因素有:①比值H/h ②比值R/r 和R、r ③圆锥底角Q ④膜片弹簧工作点位置⑤分离指数目n ⑥膜片弹簧小端内半径r0及分离轴承作用半径rf ⑦切槽宽度δ1δ2及半径re的确定⑧压盘加载点半径R1和支承环加载点半径r1的确定(3)工作点位置的确定:新离合器在接合状态时,膜片弹簧工作点B一般取在凸点M和拐点H之间,且靠近或在H点处,一般λ1B=(0.8~1.0)λ1H,以保证摩擦片在最大磨损限度Δλ范围内的压紧力从F1B到F1A变化不大,当分离时,膜片弹簧工作点从B变到C,为最大限度的减小踏板力,C点应尽量靠近N点。

《内燃机设计》课后习题标准答案(袁兆成主编)

第一章:内燃机设计总论 1-1根据公式,可以知道,当设计的活塞平均速度V m增加时,可以增加有效功率,请叙述活塞平均速度增加带来的副作用有哪些?具体原因是什么?答:①摩擦损失增加,机械效率ηm下降,活塞组的热负荷增加,机油温度升高,机油承载能力下降,发动机寿命降低。②惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。③进排气流速增加,导致进气阻力增加、充气效率ηv下降。 1-2汽油机的主要优点是什么?柴油机主要优点是什么? 答:柴油机优点:?1)燃料经济性好。?2)因为没有点火系统,所以工作可靠性和耐久性好。3)可以通过增压、扩缸来增加功率。 4)防火安全性好,因为柴油挥发性差。 5)CO和HC的排放比汽油机少。?汽油机优点:?1)空气利用率高,转速高,因而升功率高。?2)因为没有柴油机喷油系统的精密偶件,所以制造成本低。 3)低温启动性好、加速性好,噪声低。?4)由于升功率高,最高燃烧压力低,所以结构轻巧,比质量小。 5)不冒黑烟,颗粒排放少。 1-3假如柴油机与汽油机的排量一样,都是非增压或者都是增压机型,哪一个升功率高?为什么? 答:汽油机的升功率高,在相同进气方式的条件下, ①由PL=Pme*n/30τ可知,汽油机与柴油机的平均有效压力相差不多。但是由于柴油机后燃较多,在缸径相同情况下,转速明显低于汽油机,因此柴油机的升功率小。 ②柴油机的过量空气系数都大于1,进入气缸的空气不能全部与柴油混合,空气利用率低,在转速相同、缸径相同情况下,单位容积发出的功率小于汽油机,因此柴油机的升功率低,汽油机的升功率高。 1-4柴油机与汽油机的汽缸直径、行程都一样,假设D=90mm、S=90mm,是否都可以达到相同的最大设计转速(如n=6000r/min)?为什么? 答:.对于汽油机能达到,但是柴油机不能。因为柴油机是扩散燃烧形式,混合气的燃烧速度慢,达不到汽油混合气的燃烧速度,所以达不到6000r/min的设计转速。缸径越大,柴油混合气完成燃烧过程的时间越长,设计转速越低。 1-5活塞平均速度提高,可以强化发动机动力性,请分析带来的副作用是什么? 答:①摩擦损失增加,机械效率ηm下降,活塞组的热负荷增加,机油温度升高,机油承载能力下降,发动机寿命降低。 ② 惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。 ③进排气流速增加,导致进气阻力增加、充气效率ηv下降。 1-6目前使发动机产生性能大幅度提高的新型结构措施有哪些?为什么? 答:新型燃烧室,多气门(提高ηv),可变配气相位VVT(提高ηv),可变进气管长度(提高ηv),可变压缩比,可变增压器VGT、VNT(可根据需要控制进气量),机械-涡轮复合增压,顶置凸轮机构DOHC、SOHC(结构紧凑,往复惯性力小)。 1-8某发动机为了提高功率,采用了扩大汽缸直径的途径,如果汽缸直径扩大比较多,比如扩大5mm,与之相匹配的还要改变那些机构的设计?还要进行哪些必要的计算? 答:气缸直径改变之后,除估算功率、转矩外,活塞直径、气门直径、气门最大升程要重新确定,活塞环要重新选配,曲轴平衡要重新计算,要进行曲轴连杆机构动力计算和扭振计算,要进行压缩比验算、燃烧室设计、工作过程计算深知重新设计凸轮型线等。 1-9某发动机由于某种原因,改变了活塞行程,与之相匹配的还要进行哪些结构更改设计

九年级物理全册内燃机教案新人教版

安徽省阜阳九中九年级物理全册《内燃机》教案新人教版 教学目标 知识目标 (1)知道热机中能量的转化 (2)知道四冲程内燃机的构造和工作原理 (3)了解汽油机和柴油机的主要区别 能力目标 通过分析汽油机和柴油机的构造个工作过程的异同,学习分析和比较的研究方法. 情感目标 了解这些内燃机在生产和生活中的应用,感受到技术进步在工业文明发展中的重要作用. 教学建议 教材分析 教材利用图例说明了汽油机的结构,并用四个参考图详细分析了汽油机的四个冲程,指出汽油机实际工作时,是靠外力使曲轴和飞轮先转动起来,带动活塞运动后汽油机才自己工作. 柴油机教学比较简单,知识说明了其工作过程,并分析了和汽油机的区别,指出了柴油机的应用.教材最后还提出了问题,思考汽油机和柴油机在工作过程中的相同点和不同点. 教法建议 本节利用挂图分析,要注重培养学生的观察能力和分析总结能力,培养学生的比较能力,所以在教法上有演示、引导学生观察、分析讨论、比较、联系实际这些环节.“汽油机”利用挂图和实验仪器演示汽油机的四个冲程,使学生在理解工作过程的内在逻辑联系.体会到汽油机的发明是人们智慧的结晶,在技术应用领域人们可以充分发挥自己的聪明才智.

“柴油机”要注意比较教学,学生自主分析汽油机和柴油机的相同点和不同点,提高学生的甄别、判断、比较能力,教师还可以提供一些关于内燃机的资料,学生阅读,增强信息处理能力. 教学设计方案 内燃机 【课题】内燃机 【重难点】内燃机的构造和工作原理;汽油机和柴油机的区别和联系. 【教学过程设计】 一.汽油机 方法1、教师简介汽油机,指出汽油在汽油机汽缸中燃烧,高温高压的燃气推动活塞做功,能量转化是内能转化为机械能.运用挂图表现汽油机的四个冲程,分析每个过程和四个冲程之间的逻辑联系,学生在观察和分析的过程中可以思考下面的问题:a.汽油机的结构主要有哪些;每部分的用途是什么. b.运动四个冲程,说明汽油机的曲轴能带动活塞连续转动. c.四个冲程的特点是什么. 学生理解了四个冲程后,教师可以讲解汽油机的应用,可以提供关于汽油机的资料,学生阅读,提高利用信息学习的能力. 方法2、对于基础和设备条件较好的班级,教师可以利用多媒体资料辅助学习,例如可以用电话展示,学生利用课件的交互功能,自主的学习汽油机的结构、作用、各个冲程的工作情况等.对于汽油机的应用,仍可以向学生提供资料,学生利用信息学习,提高采集信息和处理信息的能力. 二.柴油机 方法1、利用媒体资料辅助学生学习,可以有:柴油机的剖面图、柴油机四个冲程的挂图、柴油机的应用举例.可以组织学生小组讨论,对比柴油机和汽油机的冲程,找出汽油机和柴油机的相同点和不同点.柴油机的应用可以教师提供资料,学生阅读,自己从信息中学

内燃机、发动机课程设计必看--内燃机设计重点复习过程

第五章曲轴飞轮组设计 1 曲轴的工作条件和设计要求,曲轴的破坏主要发生在哪些部位 答:工作条件:曲轴是在不断周期性变化的气体压力、往复和旋转运动质量的惯性力以及它们的力矩(扭矩和弯矩)共同作用下工作的,使曲轴既扭转又弯曲,产生疲劳应力状态。 设计要求:①要使曲轴具有足够的疲劳强度,设法强化应力集中部位,缓和应力集中现象,用局部强化的方法解决曲轴强度不足的矛盾②要使曲轴各摩擦表面耐磨,各轴颈具有足够的承压面积同时给予尽可能好的工作条件③应保证曲轴有尽可能高的弯曲刚度和扭转刚度④曲轴应有轻的结构质量,注重材料和加工工艺 哪些部位:①疲劳裂纹发生于应力集中最严重的过渡圆角和油孔处②弯曲疲劳裂缝从轴颈根部表面的圆角处发展到轴颈上,基本上成45°折断曲柄③扭转疲劳破坏通常是从机械加工不良的油孔边缘开始,约成45°剪断曲柄销④磨料磨损发生在轴颈表面 2 曲轴的主要结构尺寸及设计要求 答:⑴曲柄销的直径D2和长度l2:①一般趋向于采用较大的D2值,以降低曲柄销比压,提高连杆轴承工作可靠性和曲轴刚度,但D2过大使不平衡离心力增大,对曲轴工作不力。汽油机D2/D比柴油机小;V型发动机的D2/D较小②曲柄销的长度l2是在选定D2的基础上考虑的。在薄油膜的条件下,l2/D2=0.4左右有最大的承载能力,为提高曲轴的刚度,l2/D2也有下降的趋势,最后由F2=0.01D2l2和F=πD2/400之比来校核。⑵主轴颈的直径D1和长度l1:为了最大限度地加强曲轴的刚度,加粗主轴颈是有好处的,但不可过粗,建议取D1=(1.05~1.25)D2。主轴颈的长度一般比曲柄销的长度短,但不能过短,滑动轴承最小宽度不能小于0.3倍轴颈。⑶曲柄:曲柄应选择适当的厚度h、宽度b,以使曲轴有足够的刚度和强度,抗弯断面模数Wσ=bh2/6,为提高曲柄的抗弯能力,增加曲柄的厚度h 要比增加曲柄的宽度要好得多,增加h要以缩短轴颈长度为代价,可见h的增加受到限制。⑷平衡重:设计平衡重时,应尽可能使平衡重的重心远离曲轴旋转中心。⑸油孔的位置和尺寸:最大应力值还与油道倾斜角θ有关,当θ>30°时,最大应力增加很快,因此θ应小于30°;其次可把油孔从主轴颈钻至曲轴销中部,然后在以直孔接通。曲柄销油孔多数选择在曲轴平面运转前方φ=45°~90°的范围内,当油孔在φ=90°的水平位置时具有很多优点,切应力最小,加工方便。⑹曲轴两端的结构:曲轴上带动辅助系统的驱动齿轮和皮革轮一般装在曲轴的前端。减振器应装在曲轴前端,曲轴后端设有法兰或加粗的轴颈,飞轮与后端用螺栓和定位销连接。⑺曲轴的止推:在曲轴与机体之间设置治推轴承,止推轴承只能设置一个,曲轴轴向间隙应保持Δa=0.05~0.2毫米。⑻曲轴的油封装置:反油螺栓与机体的间隙为0.25~0.30毫米。 3 圆角形状系数定义及其对曲轴工作的影响 答:形状系数表示圆角半径上最大实测应力与根据曲轴结构尺寸和载荷计算的名义应力之比。(一)圆角弯曲形状系数:在曲轴平面内受纯弯矩时,其圆角弯曲形状系数ασ等于圆角表面最大主应力σmax与圆角名义应力之比,ασ=σmax/σn,ασ=ασ0f1f2f3f4f5 其对曲轴工作的影响: ①ασ0—标准曲轴的弯曲形状系数:增大圆角半径R可使圆角处局部应力峰值下降,较大的圆角半径使曲轴的强度提高;又由Wσ=bh2/6可知,当曲柄的厚度h增大时,其Wσ成平方关系增长,从而大大提高曲柄的抗弯能力,使圆角处应力分布趋于平均。 ②f1—轴颈重叠度影响系数:A=(D1+D2)/2-r=0.5(D1+D2-S)毫米,当A>0时,由于曲柄实际厚度增加,使抗弯断面系数大于无重叠时的断面系数,曲柄刚度亦相应增加,截面变化比较缓和,改善了应力集中现象。 ③f2—曲柄宽度影响系数:Wσ=bh2/6,随曲柄加宽,曲柄抗弯断面系数Wσ相应增加,曲柄越宽,增加强度效果越小。随着b、h的增大,可以不同程度地缓和应力集中现象,圆角最大应力有所下降。 ④f3—曲柄销空心度影响系数:当主轴颈采用空心结构后,随空心度的增加,曲柄销圆角最大弯曲应力下降,但空心度过大对改善应力集中现象并无好处 ⑤f4—轴颈减重孔偏心距e的影响系数:当轴颈的空心度d/D较大时,偏心距e的影响较大。 ⑥f5—与圆角链接的曲柄销中减重孔至主轴颈的距离L的影响系数:对于一定重叠度的曲轴,存在

相关主题
文本预览
相关文档 最新文档