七年级平行线期末复习练习题
- 格式:doc
- 大小:93.50 KB
- 文档页数:4
2021年人教版七年级数学下册《第5章相交线与平行线》期末复习培优训练(附答案)1.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转45°,再左转45°B.先左转45°,再右转135°C.先左转45°,再左转45°D.先右转45°,再右转135°2.两个角的一组对应边同向平行,另一组对应边反向平行,且这两个角的度数比是5:31,则两个角的度数是()A.150°30°B.140°40°C.25°155°D.135°45°3.如图所示,将一张长方形纸片ABCD沿着直线EF折叠,A、B两点分别落在A′、B′处,若∠AEA′=70°,则∠BFE的角度为()A.40°B.35°C.45°D.30°4.如图,AB∥DE,BC⊥CD,则以下说法中正确的是()A.α,β的角度数之和为定值B.α,β的角度数之积为定值C.β随α增大而增大D.β随α增大而减小5.如图,E在线段BA的延长线上,∠EAD=∠D,∠B=∠D,EF∥HC,连FH交AD于G,∠FGA的余角比∠DGH大16°,K为线段BC上一点,连CG,使∠CKG=∠CGK,在∠AGK内部有射线GM,GM平分∠FGC,则下列结论:①AD∥BC;②GK平分∠AGC;③∠E+∠EAG+∠HCK=180°;④∠MGK的角度为定值且定值为16°,其中正确结论的个数有()A.4个B.3个C.2个D.1个6.某学生上学路线如图所示,他总共拐了三次弯,最后行车路线与开始的路线相互平行,已知第一次转过的角度,第三次转过的角度,则第二次拐弯角(∠1)的度数是()A.55°B.70°C.80°D.90°7.如图,要修建一条公路,从A村沿北偏东75°方向到B村,从B村沿北偏西25°方向到C村.从C村到D村的公路平行于从A村到B村的公路,则C,D两村与B,C两村公路之间夹角的度数为()A.100°B.80°C.75°D.50°8.如图所示,∠1=∠2=∠3=55°,则∠4的补角的度数为()A.55°B.75°C.105°D.125°9.如图,AB∥DC,∠ABD=30°,∠ADB=85°,求∠ADC和∠A的角度.10.如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.11.如图,AB∥DF,DE∥BC,∠1=65°,求∠2、∠3的度数.12.如图,AB∥CD,∠1=50°,∠2=110°,求∠3的度数.13.如图,CD平分∠ACB,DE∥BC,∠AED=46°,求∠CDE的度数.14.如图,AC∥ED,AB∥FD,∠A=64°,求∠EDF的度数.15.如图,AC∥DF,AB∥EF,点D,E分别在AB,AC上.若∠2=50°,求∠1的大小.16.如图,∠B、∠D的两边分别平行.(1)在图①中,∠B与∠D的数量关系是什么?为什么?(2)在图②中,∠B与∠D的数量关系是什么?为什么?(3)由(1)(2)可得结论;(4)应用:若两个角的两边两两互相平行,其中一个角比另一个角的2倍少30°,求这两个角的度数.17.直线AB∥CD,E、F分别是直线AB、CD上的点.(1)如图1,若G是在直线AB和直线CD内部,在EF的右侧一点,证明:∠G=∠GEB+∠GFD.(2)如图2,EF⊥AB,射线EI从射线EB位置出发,绕着点E以10度/秒的角速度顺时针旋转.射线FH从射线FD位置出发,绕着点F以15度/秒的角速度逆时针旋转.两条射线同时出发,当射线FH转完一周的时候两射线同时停止.请问在保证射线FH和射线EI有交点G的前提下,过几秒钟时,∠EGF=50°?18.如图,已知AM∥BN.C为直线BN上一点,且∠MAC=70°,∠ABC=80°.点P从A出发,沿AM方向运动,∠P AC与∠PBC的角平分线相交于点D.探究一:①当∠ABP=20°时,求角ADB的度数;聪明的小华看到这一问题,采用了如下解题方法:如图2,过点D作DE∥AM,于是,他很快就得到了正确答案,即∠ADB=.探究二:设∠ABP=α,∠ADB=β,试探究:①若β不小于α,求α的取值范围;②若点P运动的过程中,是否会出现α与β互补的情况?若会,请求出α与β的值;若不会,请说明理由.19.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°,∠E=∠B=45°).(1)若∠DCE=40°,则∠ACB的度数为;(2)如图1,∠ACE=∠;若点E在AC的上方,设∠ACB=α(90°<α<180°),则∠DCE的度数为.(用含α的式子表示)(3)当∠ACE<180°且点E在直线AC的上方时,将三角尺ACD固定不动,改变三角尺BCE的位置,但始终保持两个三角尺的顶点C重合①当BE∥AC(如图2)时,直接写出∠ACE的度数是度.②当BC∥DA时,直接写出∠ACE的度数是度.(4)在(3)的条件下,当∠ACE<180°且点E在直线AC的上方,(3)中的两种情况除外,这两块三角板是否还存在一组边互相平行,若存在请直接写出此时∠ACE所有可能的角度数值为度,若不能请说明理由.20.(1)如图1,AB∥CD,点P在AB、CD外部,若∠B=60°,∠D=30°,则∠BPD =°;(2)如图2,AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;(3)在图2中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图3,若∠BPD=86°,∠BMD=40°,求∠B+∠D的度数.参考答案1.解:如图,第一次拐的角是∠1,第二次拐的角是∠2,由于方向仍与原来相同,所以平行前进,可以得到∠1=∠2.故选:A.2.解:如图,BC∥ED,AB∥EF,∠B:∠E=5:31,∴∠B=∠1,∠1+∠E=180°,∴∠B+∠E=180°,∵∠B:∠E=5:31,设∠B=5x,∠E=31x,∴5x+31x=180°,解得:x=5,∴∠B=25°,∠E=155°,故选:C.3.解:由平行线的性质得,∠AEA'=∠1=70°,∵AD∥BC,∴∠1=∠BFB'=70°,由折叠性质得,∠BFE=∠EFB'=∠BFB'=35°,故选:B.4.解:过C点作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠α=∠BCF,∠β+∠DCF=180°,∵BC⊥CD,∴∠BCF+∠DCF=90°,∴∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,∴β随α增大而增大,故选:C.5.解:∵∠EAD=∠D,∠B=∠D,∴∠EAD=∠B,∴AD∥BC,故①正确;∴∠AGK=∠CKG,∵∠CKG=∠CGK,∴∠AGK=∠CGK,∴GK平分∠AGC;故②正确;延长EF交AD于P,延长CH交AD于Q,∵EF∥CH,∴∠EPQ=∠CQP,∵∠EPQ=∠E+∠EAG,∴∠CQG=∠E+∠EAG,∵AD∥BC,∴∠HCK+∠CQG=180°,∴∠E+∠EAG+∠HCK=180°;故③正确;∵∠FGA的余角比∠DGH大16°,∴90°﹣∠FGA﹣∠DGH=16°,∵∠FGA=∠DGH,∴90°﹣2∠FGA=16°,∴∠FGA=∠DGH=37°,设∠AGM=α,∠MGK=β,∴∠AGK=α+β,∵GK平分∠AGC,∴∠CGK=∠AGK=α+β,∵GM平分∠FGC,∴∠FGM=∠CGM,∴∠FGA+∠AGM=∠MGK+∠CGK,∴37°+α=β+α+β,∴β=18.5°,∴∠MGK=18.5°,故④错误,故选:B.6.解:如图,延长ED交BF于C,∵BA∥DE,∴∠BCD=∠B=120°,∠FCD=60°,又∵∠FDE是△CDF的外角,∴∠1=∠FDE﹣∠DCF=150°﹣60°=90°,故选:D.7.解:由题意可得:AN∥FB,DC∥BE,∴∠NAB=∠FBE=75°,∵∠CBF=25°,∴∠CBE=100°,则∠DCB=180°﹣100°=80°.故选:B.8.解:∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴a∥b,∴∠3=∠6=55°,∴∠4的补角的度数为55°,故选:A.9.解:∵AB∥DC,∠ABD=30°,∴∠BDC=∠ABD=30°,∵∠ADB=85°,∴∠ADC=∠ADB+∠BDC=115°,∠A=180°﹣(∠ADB+∠ABD)=65°.10.解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.11.解:∵DE∥BC∴∠1=∠2=65°∵AB∥DF∴∠2+∠3=180°,∴∠3=180°﹣65°=115°.故答案为∠2=65°,∠3=115°.12.解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠4=∠1,∠3+∠4=∠2,∴∠3=∠2﹣∠1=110°﹣50°=60°.13.解:∵DE∥BC,∠AED=46°,∴∠ACB=∠AED=46°,∵CD平分∠ACB,∴∠BCD=∠ACB=23°,∵DE∥BC,∴∠CDE=∠BCD=23°.14.解:∵AC∥ED,∴∠BED=∠A=64°,∵AB∥FD,∴∠EDF=∠BED=64°.15.解:∵AC∥DF,∴∠2=∠F,∵AB∥EF,∴∠1=∠F,∴∠1=∠2=50°16.解:(1)∠B=∠D.理由:∵AB∥CD,BE∥DF,∴∠B=∠1,∠1=∠D,∴∠B=∠D.(2)∠B+∠D=180°,理由:∵AB∥CD,BE∥DF,∴∠B=∠1,∠1+∠D=180°,∴∠B+∠D=180°.(3)由(1)(2)可得结论:若两个角的两边两两互相平行,则这两个角相等或互补.故答案为:若两个角的两边两两互相平行,则这两个角相等或互补.(4)设一个角为x°,则另一个角的(2x﹣30)°,若相等:x=2x﹣30,解得:x=30,则这两角分别为:30°,30°;若互补,则x+2x﹣30=180,解得:x=70,则这两角分别为:70°,110°;答:这两个角的度数分别为:30°,30°或70°,110°.17.解:(1)如图1,过G作GH∥AB,∵AB∥CD,∴GH∥AB∥CD,∴∠BEG=∠HGE,∠DFG=∠HGF,∴∠EGF=∠HGE+∠HGF=∠BEG+∠DFG;(2)设过t秒钟时,∠EGF=50°,由题可得∠BEG=10t°,∠DFG=15t°,如图2,当点G在EF右侧时,由(1)可得,∠EGF=∠BEG+∠DFG,即50°=10t°+15t°,解得t=2;如图3,当点G在EF的左侧时,过G作PG∥AB,∵AB∥CD,∴GP∥AB∥CD,∴∠AEG=∠PGE,∠CFG=∠PGF,∴∠EGF=∠PGE﹣∠PGF=∠AEG﹣∠CFG,又∵∠AEG=180°﹣10t°,∠CFG=15t°﹣180°,∴50°=(180°﹣10t°)﹣(15t°﹣180°),解得t=12.4,综上所述,过2秒或12.4秒时,∠EGF=50°.18.解:探究一:①如图2,∵AM∥BN,DE∥AM,∴BN∥DE,∴∠1=∠2,∠3=∠4,∵∠P AC与∠PBC的角平分线相交于点D,∴=35°,∠3=∠PBC=(80°﹣20°)=30°,∴∠ADB=∠2+∠4=∠1+∠3=65°,故答案为:65°;探究二:①如图2,∵AM∥BN,DE∥AM,∴BN∥DE,∴∠1=∠2,∠3=∠4,∵∠P AC与∠PBC的角平分线相交于点D,∴=35°,∠3=∠PBC=(80°﹣α)=40°﹣,∴∠ADB=∠2+∠4=∠1+∠3=75°﹣=β,∵β≥α,∴75°﹣≥α,∴0<α≤50,∴α的取值范围是:0<α≤50.②不会,理由:∵75°﹣=β,假设α+β=180°,则75°﹣+α=180°,解答α=210°>180°,∴不会出现α与β互补的情况.19.解:(1)由互余∠ACE=90°﹣∠DCE=90°﹣40°=50°,由角的和差得∠ACB=∠ACE+∠BCE=50°+90°=140°,故答案为:140°;(2)∵∠ACE+∠DCE=90°,∠DCB+∠DCE=90°,∴∠ACE=∠DCB;∴∠ACE=∠ACB﹣∠ECB=α﹣90°,∴∠DCE=90°﹣∠ACE=90°﹣(α﹣90°)=180°﹣α,故答案为:DCB,180°﹣α;(3)①当BE∥AC时,∵BE∥AC,∴∠ACE=∠E=45°;②当BC∥DA时,∵BC∥DA,∴∠BCD=∠D=30°,∴∠ACB=90°+30°=120°,∴∠ACE=∠ACB﹣∠BCE=120°﹣90°=30°.故答案为:①45;②30;(4)①当AD∥CE时,∵AD∥CE,∴∠DCE=∠D=30°,∴∠ACE=90°+30°=120°;②当BE∥CD时,∴∠ACE=90°+45°=135°;③当BE∥AD时,过点C作CF∥AD,∵BE∥AD,CF∥AD,∴BE∥AD∥CF,∴∠ECF=∠E=45°,∠DCF=∠D=30°,∴∠DCE=30°+45°=75°∴∠ACE=90°+75°=165°.故答案为:120或135或165.20.解:(1)如图1,∵AB∥CD,∠B=60°,∴∠BOD=∠B=60°,∴∠BPD=∠BOD﹣∠D=60°﹣30°=30°.故答案为:30°;(2)∠BPD=∠B+∠D.如图2,过点P作PE∥AB,∵AB∥CD,∴AB∥PE∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(3)延长BP交CD于点E,∵∠1=∠BMD+∠B,∠BPD=∠1+∠D,∴∠BPD=∠BMD+∠B+∠D,∵∠BPD=86°,∠BMD=40°,∴∠B+∠D=∠BPD﹣∠BMD=86°﹣40°=46°。
江苏省数学七年级下学期期末复习专题1 平行线姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2021八上·彭州开学考) 下列说法(1)两条不相交的直线是平行线;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内两条不相交的线段一定平行;(4)过一点有且只有一条直线与已知直线垂直;(5)两点之间,直线最短;其中正确个数是()A . 0个B . 1个C . 2个D . 3个2. (2分) (2021七下·曾都期末) 如图,下列说法不正确的是()A . ∠1与∠3是对顶角B . ∠2与∠6是同位角C . ∠3与∠4是内错角D . ∠3与∠5是同旁内角3. (2分)(2020·遵化期中) 如图,四个图形中,∠1 和∠2不是同位角的是()A .B .C .D .4. (2分) (2020七下·深圳期中) 如图,下列条件中不能判定AB∥CD的是()A . ∠1+∠4=180°B . ∠2=∠6C . ∠5+∠6=180°D . ∠3=∠55. (2分) (2020七下·硚口期中) 如图,点在的延长线上,下列条件中不能判定的是()A .B .C .D .6. (2分) (2019七下·江门期末) 下列命题错误的是()A . 如果,那么B . 如果,那么C . 如果,那么D . 如果,那么7. (2分)(2018·宣化模拟) 如图,直线∥ ,直线与、都相交,如果∠1=50°,那么∠2的度数是()A . 50°B . 100°C . 130°D . 150°8. (2分) (2019八上·桂林期末) 下列命题:①若,则;②两直线平行,内错角相等;③对顶角相等.它们的逆命题一定成立的有()A . 0个B . 1个C . 2个D . 3个9. (2分) (2021八上·杭州期末) 在下列命题中,为真命题的是()A . 相等的角是对顶角B . 平行于同一条直线的两条直线互相平行C . 同旁内角互补D . 垂直于同一条直线的两条直线互相平行10. (2分)(2021·禅城模拟) 如图,则的度数为()A .B .C .D .11. (2分)数轴上一点A表示的有理数为﹣2,若将A点向右平移3个单位长度后,A点表示的有理数应为()A . 3B . ﹣1C . 1D . ﹣512. (2分) (2020八下·余干期末) 将一次函数的图像沿轴向左平移4个单位长度后,得到的新的图像对应的函数关系式为()A .B .C .D .13. (2分)如图,直线a,b都与直线c相交,给出的下列条件:①∠1=∠7;②∠3=∠5;③∠1+∠8=180°;④∠3=∠6.其中能判断a∥b的是()A . ①③B . ②③C . ③④D . ①②③14. (2分)如图.已知直线a , b被直线c所截,且a∥b ,∠1=48°,那么∠2的度数为()A . 42°B . 48°C . 52°D . 132°15. (2分)(2018·遵义模拟) 如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内任意一点(点E 不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC的度数可能是()A . ①②③B . ①②④C . ①③④D . ①②③④二、填空题 (共5题;共5分)16. (1分) (2017七下·嵊州期中) 如图,请添加一个条件:,使DE∥BC.17. (1分)(2018·海陵模拟) 如图,AB∥CD, AF=EF,若∠C=62°,则∠A=度.18. (1分)(2020·青海) 如图,将周长为8的沿BC边向右平移2个单位,得到,则四边形的周长为.19. (1分)在同一平面内L1与L2没有公共点,则L1L2 .20. (1分)如图,与∠C是直线BC与被直线AC所截的同位角,与是直线AB与AC被直线DE所截的内错角,与∠A是直线AB与BC被直线所截的同旁内角.三、解答题 (共7题;共58分)21. (5分) (2019七下·金寨期末) 已知:如图所示,和的平分线交于,交于点,.(1)求证:;(2)试探究与的数量关系.22. (8分) (2020七下·北京期中) 动手操作题:如图,点A在∠O的一边OA上.按要求画图并填空:(1)过点A画直线AB⊥OA,与∠O的另一边相交于点B;(2)过点A画OB的垂线段AC,垂足为点C;(3)过点C画直线CD∥OA,交直线AB于点D;(4)∠CDB=°;(5)图中,与∠O相等的角有.23. (7分) (2019九上·南岗期中) 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形(顶点是网格线的交点).(1)先将竖直向上平移6个单位,再水平向右平移3个单位得到△ ,请画出△ ;(2)将△ 绕点顺时针旋转,得△ ,请画出△ ;(3)连接,直接写出的长.24. (10分) (2019七下·吉林期中) 如图,已知∠1=∠2,∠3+∠4=180°.求证:AB∥EF25. (5分) (2020八下·新蔡期末) 如图所示,已知点E,F在 ABCD的对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)AE∥CF.26. (10分) (2020七下·云梦期中) 如图,在平面直角坐标系xOy中,已知,将线段平移至,点D在x轴正半轴上,,且 .连接OC,AB,CD,BD.(1)写出点C的坐标为;点B的坐标为;(2)当的面积是的面积的3倍时,求点D的坐标;(3)设,,,判断、、之间的数量关系,并说明理由.27. (13分)如图所示,在∠AOB内有一点P.①过P画L1∥OA;②过P画L2∥OB;③用量角器量一量L1与L2相交的角与∠O的大小有怎样关系?参考答案一、单选题 (共15题;共30分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:二、填空题 (共5题;共5分)答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共7题;共58分)答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、答案:22-5、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:答案:27-1、考点:解析:。
亲爱的朋友,很高兴能在此相遇!欢迎您阅读文档平行线的判定练习题(有答案),这篇文档是由我们精心收集整理的新文档。
相信您通过阅读这篇文档,一定会有所收获。
假若亲能将此文档收藏或者转发,将是我们莫大的荣幸,更是我们继续前行的动力。
平行线的判定练习题(有答案)篇一:(913)平行线的判定专项练习60题(有答案)ok平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.平行线的判定---第1页共1页7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定---第2页共2页13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB 与点E,∠1=∠2,DF与AB是否平行?为什么?平行线的判定---第3页共3页19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF 吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.平行线的判定---第4页共4页26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.平行线的判定---第5页共5页篇二:七年级平行线的判定与性质练习题带答案平行线测试题姓名:一、选择题1.下列命题中,不正确的是____[]A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如图,可以得到DE∥BC的条件是______[](2题)(5题)(3题)(7题)(8题)A.∠ACB=∠BACB.∠ABC+∠BAE=180°C.∠ACB+∠BAD=180°D.∠ACB=∠BAD3.如图,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180°(4)∠5+∠8=180°,其中能判定a∥b的条件是_________[]A.(1)(3)B.(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4) 4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[]A.第一次向右拐40°,第二次向左拐40°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°5.如图,如果∠1=∠2,那么下面结论正确的是_________.[] A.AD∥BCB.AB∥CDC.∠3=∠4D.∠A=∠C6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()A.互相垂直B.互相平行C.相交D.无法确定7.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30°B.60°C.90°D.120°二、填空题9.如图,由下列条件可判定哪两条直线平行,并说明根据.(1)∠1=∠2,.(2)∠A=∠3,.(3)∠ABC+∠C=180°.10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是。
七年级数学(下)《相交线与平行线》复习测试题一、选择题(每小题3分,共30分)1.如图,直线AB、CD相交于点O,所形成的∠1,∠2,∠3,∠4中,属于对顶角的是( )A.∠1和∠2B.∠2和∠3C.∠3和∠4D.∠2和∠42.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠53.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是( )A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2D.无法确定4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是( )A.80°B.100°C.110°D.120°5.在下列图形中,哪组图形中的右图是由左图平移得到的?( )6.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个7.平面内三条直线的交点个数可能有( )A.1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个8.下列图形中,由AB∥CD,能得到∠1=∠2的是( )9.如图,直线a∥b,直线c分别与a、b相交于点A、B.已知∠1=35°,则∠2的度数为( )A.165°B.155°C.145°D.135°10.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )A.∠1=∠2B.∠3=∠4C.∠5=∠BD.∠B+∠BDC=180°二、填空题(每小题4分,共20分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是____________________.12.两条平行线被第三条直线所截,同旁内角的度数之比是2∶7,那么这两个角的度数分别是__________.13.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于__________.14.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=__________.15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=__________度.三、解答题(共50分)16.(7分)如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的位置关系,并说明你的理由.解:BE∥CF.理由:∵AB⊥BC,BC⊥CD(已知),∴∠__________=∠__________=90°(垂直的定义).∵∠1=∠2(已知),∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.∴BE∥CF(____________________).17.(9分)如图,直线AB、CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?18.(10分)如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数;(2)若∠AOD和∠DOE互余,且∠AOD=13∠AOE,请求出∠AOD和∠COE的度数.19.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?20.(12分)如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性.结论:(1)____________________;(2)____________________;(3)____________________;(4)____________________.选择结论:____________________,说明理由.参考答案变式练习1.C2.∵∠AOC=70°,∴∠BOD=∠AOC=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=223×70°=28°.∴∠AOE=180°-28°=152°.3.C4.121°5.C6.8 复习测试1.D2.B3.B4.B5.C6.C7.D8.B9.C 10.A11.如果两直线平行,那么同位角相等12.40°,140°13.52°14.42°15.8016.ABC BCD 内错角相等,两直线平行17.(1)(2)图略;(3)PE<PO<FO,依据是垂线段最短.18.(1)∵OD平分∠AOC,∠AOC=60°,∴∠AOD=12×∠AOC=30°,∠BOC=180°-∠AOC=120°.(2)∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°.∵∠AOD=13∠AOE,∴∠AOD=13×90°=30°.∴∠AOC=2∠AOD=60°.∴∠COE=90°-∠AOC=30°.19.(1)AE∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB=180°, ∴∠1=∠CDB.∴AE∥FC.(2)AD∥BC.理由:∵AE∥CF,∴∠C=∠CBE.又∠A=∠C,∴∠A=∠CBE.∴AD∥BC.(3)BC平分∠DBE.理由:∵DA平分∠BDF,∴∠FDA=∠ADB.∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD.∴∠CBE=∠CBD.∴BC平分∠DBE.20.(1)∠PAB+∠APC+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD(1)过P点作EF∥AB,∴EF∥CD,∠PAB+∠APF=180°.∴∠PCD+∠CPF=180°.∴∠PAB+∠APC+∠PCD=360°.。
第五章相交线与平行线类型一邻补角与对顶角巧分辨1.如图1所示的几个图形中,能构成对顶角的是( )图12.如图2,三条直线AB,CD,EF相交于点O,则∠1的邻补角为______________.图23.如图3,直线AB,CD交于点O,射线OM平分∠AOC.若∠BOD=76°,求∠AOM的度数.图3类型二区分同位角、内错角、同旁内角有原则4.如图4,与∠1构成内错角的是( )图4A.∠2 B.∠3 C.∠4 D.∠55.如图5,直线DE经过点C,则∠A的内错角是________,∠A的同旁内角是________________.图56.如图6,E是AB延长线上一点,指出下面各组中的两个角是由哪两条直线被哪一条直线所截形成的?它们是什么角?(1)∠A和∠D;(2)∠A和∠CBA;(3)∠C和∠CBE.图6类型三掌握相交的特殊情形——垂直7.如图7,已知AB,CD相交于点O,OE⊥CD,垂足为O,∠AOC=30°,则∠BOE等于( )图7A .30°B .60°C .120°D .130°8.如图8所示,在直角三角形ABC 中,∠ACB=90°,CD⊥AB 于点D ,则点A 到BC 的距离为线段______的长度;点A到CD 的距离为线段______的长度;点C 到AB 的距离为线段______的长度.图8类型四 平行线的判定和性质9.如图9,直线a ,b 被直线c 所截,下列说法正确的是( )A .当∠1=∠2时,一定有a∥bB .当a∥b 时,一定有∠1=∠2C .当a∥b 时,一定有∠1+∠2=90°D .当∠1+∠2=180°时,一定有a∥b10.如图10,已知AB∥CD,∠1=60°,则∠2=________°.图9图1011.如图11,不添加辅助线,请你写出一个能判定EB∥AC的条件:________________________.图1112.如图12,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,求∠2的度数.图1213.如图13,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并说明理由.图1314.如图14所示,已知OP∥QR∥ST,连接PR,SR,猜想∠1,∠2,∠3三个角之间的关系,并说明理由.图14类型五命题与定理须细辨15.下列语句不是命题的是( )A.若a<0,b<0,则ab>0B.用三角板画一个60°的角C.对顶角相等D.互为相反数的两个数的和为016.下列命题中,是真命题的是( )A.对顶角相等B.同位角相等C.若a2=b2,则a=bD.若a>b,则-2a>-2b17.将下列命题改写成“如果……那么……”的形式.(1)直角都相等;(2)末位数字是5的整数能被5整除;(3)三角形的内角和是180°.类型六平移平移的特征:图形的平移变换中,图形的形状、大小、方向都不发生改变,只是改变了图形的位置;平移前后图形的对应点的连线平行(或在同一条直线上)且相等.18.下列现象中,不属于平移的是( )A.钟表的指针转动B.电梯的升降C.火车在笔直的铁轨上行驶D.传送带上物品的运动19.如图15,将周长为8的三角形ABC沿BC方向向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为( )图15A.6 B.8 C.10 D.12类型七方程思想在几何中的应用20.如图16,已知a∥b,∠1=(3x+70)°,∠2=(5x+22)°,求∠1的补角的度数.图16类型八开放型问题21.给出下列三个论断:①∠B+∠D=180°;②AB∥CD;③BC∥DE.请你以其中两个论断作为已知条件,填入“已知”栏中,以一个论断作为结论,填入“结论”栏中,使之成为一道由已知可得到结论的题目,并说明理由.已知:如图17,________________________.结论:________________________.图17类型九探究型问题22.【阅读材料】在“相交线与平行线”的学习中,有这样一道典型问题:如图18①,AB∥CD,点P在AB与CD之间,可得结论:∠BAP+∠APC+∠PCD=360°.理由如下:过点P作PQ∥AB.∴∠BAP+∠APQ=180°.∵AB∥CD,PQ∥AB,∴PQ∥CD,∴∠PCD+∠CPQ=180°.∴∠BAP+∠APC+∠PCD=∠BAP+∠APQ+∠CPQ+∠PCD=180°+180°=360°.【问题解决】(1)如图②,AB∥CD,点P在AB与CD之间,可得∠BAP,∠APC,∠PCD间的等量关系是________________________________________________________________________;(2)如图③,AB∥CD,点P ,E 在AB 与CD 之间,AE 平分∠BAP,CE 平分∠DCP,写出∠AEC 与∠APC 间的等量关系,并写出理由;(3)如图④,AB∥CD,点P ,E 在AB 与CD 之间,∠BAE=13∠BAP,∠DCE=13∠DCP ,可得∠AEC与∠APC 间的等量关系是________________________.图18答案1.D2.∠BOE 和∠AOF 3.解:∵∠BOD=76°, ∴∠AOC=∠BOD=76°. ∵射线OM 平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°.4.B5.∠ACD ∠ACB,∠ACE 和∠B6.解:(1)∠A 和∠D 是直线AE ,DC 被直线AD 所截而成的同旁内角. (2)∠A 和∠CBA 是直线AD ,BC 被直线AE 所截而成的同旁内角. (3)∠C 和∠CBE 是直线DC ,AE 被直线BC 所截而成的内错角. 7.C 8.AC AD CD 9.D 10.12011.答案不唯一,如∠C=∠EBD 12.解:∵AB∥CD,∴∠2=∠BEG,∠BEF+∠1=180°. ∵∠1=50°,∴∠BEF=130°. ∵EG 平分∠BEF,∴∠BEG=12∠BEF=65°, ∴∠2=65°.13.解:∠ACB=∠DEB.理由:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE,∴AB∥EF,∴∠DEF=∠BDE.∵∠DEF=∠A,∴∠A=∠BDE,∴AC∥DE,∴∠ACB=∠DEB.14.解:∠2+∠3=180°+∠1.理由:∵OP∥QR,∴∠2+∠QRP=180°,∴∠QRP=180°-∠2.∵QR∥ST,∴∠3=∠QRS=∠1+∠QRP=∠1+180°-∠2.∴∠2+∠3=180°+∠1.15.B16. A17.解:(1)如果几个角是直角,那么它们都相等.(2)如果一个整数的末位数字是5,那么它能被5整除.(3)如果一个图形是三角形,那么它的内角和是180°.18.A19. C20.解:如图,因为a∥b,所以∠1=∠3.又因为∠1=(3x+70)°,∠2=(5x+22)°,∠2+∠3=180˚,所以(3x +70)°+(5x+22)°=180°,解得x=11,所以∠1=(3x+70)°=103°.又因为180°-103°=77°,所以∠1的补角的度数为77°.21.解:答案不唯一,符合题意的情况有3种,即①②→③;①③→②;②③→①,任选其中一种即可.已知:如图17,∠B+∠D=180°,AB∥CD.结论:BC∥DE.理由:因为AB∥CD,所以∠B=∠C(两直线平行,内错角相等).又因为∠B+∠D=180°,所以∠C+∠D=180°,所以BC∥DE(同旁内角互补,两直线平行).22.解:(1)如图②,作PE∥AB,得∠APE=∠BAP.∵AB∥CD,AB∥PE,∴CD∥PE,∴∠CPE=∠PCD,∴∠APC=∠APE+∠CPE=∠BAP+∠PCD.故答案为∠APC=∠BAP+∠PCD.(2)∠APC=2∠AE C.理由:设∠EAB=∠EAP=x,∠ECD=∠ECP=y.由(1)可知:∠AEC=x+y,∠APC=2x+2y,∴∠APC=2∠AE C.(3)设∠EAB=a,∠DCE=b,则∠BAP=3a,∠DCP=3b. 由题意得∠AEC=a+b,∠APC+3a+3b=360°,∴∠APC+3∠AEC=360°.故答案为∠APC+3∠AEC=360°.。
北师大版七年级数学下册第二章相交线与平行线期末证明题综合复习练习题1.如图,∠C=∠1,∠2 与∠D 互余,BE⊥DF,垂足为G.求证:AB∥CD.2.如图,已知,AB∥CD,∠1=∠2,AE 与DF 平行吗?为什么?3.完成下面的证明如图,BE 平分∠ABD,DE 平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.完成推理过程BE 平分∠ABD(已知),∴∠ABD=2∠α().∵DE 平分∠BDC(已知),∴∠BDC=2∠β ()∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°().∴AB∥CD().4.如图,已知:∠C=∠DAE,∠B=∠D,那么AB 平行于DF 吗?请说明理由.5.如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB 与EF 的位置关系,并说明理由.6.如图,四边形ABCD 中,AD∥BC,F 为AB 边上一点,且∠ADF=∠CDB,射线DF、CB 相交于点E,∠BFE =∠CBD,求证:AB∥CD.7.如图,直线AB 和直线BC 相交于点B,连接AC,点D、E、H 分别在AB、AC、BC 上,连接DE、DH,F 是DH 上一点,已知∠1+∠3=180°(1)求证:∠CEF=∠EAD;(2)若DH 平分∠BDE,∠2=α,求∠3 的度数.(用α表示).8.如图,已知∠1=∠BDC,∠2+∠3=180°,(1)问 AD 与 EC 平行吗?试说明理由;(2)若DA 平分∠BDC,CE⊥AE 于E,∠1=70°,试求∠FAB 的度数.9.如图,在四边形ABCD 中,分别取AB,CD 延长线上的一点E 和F,连接EF,分别交BC,AD 于点G 和H,若∠1=∠2,∠A=∠C,求证:∠E=∠F.10.如图,已知AB∥CD,∠A=40°.点P 是射线AB 上一动点(与点A 不重合),CE、CF 分别平分∠ACP 和∠DCP 交射线AB 于点E、F.(1)求∠ECF 的度数;(2)随着点 P 的运动,∠APC 与∠AFC 之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF 时,求∠APC 的度数.11.已知直线CD⊥AB 于点O,∠EOF=90°,射线OP 平分∠COF.(1)如图1,∠EOF 在直线CD 的右侧:①若∠COE=30°,求∠BOF 和∠POE 的度数;②请判断∠POE 与∠BOP 之间存在怎样的数量关系?并说明理由.(2)如图2,∠EOF 在直线CD 的左侧,且点E 在点F 的下方:①请直接写出∠POE 与∠BOP 之间的数量关系;②请直接写出∠POE 与∠DOP 之间的数量关系.12.如图,∠1+∠2=180°,∠A=∠C,DA 平分∠BDF.(1)A E 与FC 会平行吗?说明理由;(2)A D 与BC 的位置关系如何?为什么?(3)B C 平分∠DBE 吗?为什么.13.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C 的度数.14.如图,在三角形ABC 中,点D、G 分别为边BC、AB 上的点,DE⊥AC 于点E,BF⊥AC 于点F,连接FG,且∠BFG+∠BDE=180°.(1)求证:DE∥BF;(2)猜想∠AGF 与∠ABC 的数量关系,并证明你的猜想.15.思考:填空,并探究规律如图1,图2,OA∥EC,OB∥ED,∠AOB=30°,则图1 中∠CED=°;图2 中∠CED=°;用一句话概括你发现的规律证明:请利用图1,图 2 证明你发现的规律;应用:已知∠AOB=80°,∠CED=x°,OA∥CE,OB∥ED,则x 的值为(直接写出答案).16.如图1,BC⊥AF 于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P 从点A 出发,沿线段AF 运动到点F 停止,连接PB,PE.则∠ABP,∠DEP,∠BPE 三个角之间具有怎样的数量关系(不考虑点P 与点A,D,C 重合的情况)?并说明理由.17.如图1,已知l1∥l2,点A,B 在直线l1 上,点C,D 在l2 上,连接AD,BC.AE,CE 分别是∠BAD,∠BCD的平分线,∠1=70°,∠2=30°.(1)求∠AEC 的度数;(2)如图2,将线段AD 沿线段CD 方向平移,其他条件不变,求∠AEC 的度数.18.阅读下面材料:小明遇到这样一个问题:如图1,AC∥BD,点E 为直线AC 上方一点,连接CE、DE,猜想∠C、∠D、∠E 的数量关系,并证明.小明发现,可以过点E 作MN∥AC 来解决问题,如图2,请你完成解答;用学过的知识或参考小明的方法,解决下面的问题:如图3,AB∥CD,P 是平面内一点,连接AP、CP,使AP∥BD,∠APC=100°,BM、CM 分别平分∠ABD、∠DCP 交于点M,求∠M 的度数.19.如图,已知AB∥DC,BF 平分∠ABE,CF 平分∠DCE,BF 与CF 相交于F(1)如图①,若∠F=30°,求∠E 的度数;(2)如图②,若设∠F=α,∠E=β,请你猜想α与β之间的关系(直接写出结果不用说明理由);(3)在图③中,(2)中α与β之间的关系是否仍然成立?若成立说明理由,若不成立写出它们之间的关系,并说明理由.20.如图1,AB∥CD,点E 是直线AB、CD 之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=.②若∠A=25°,∠C=40°,则∠AEC=.③猜想图1 中∠EAB、∠ECD、∠AEC 的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN 把ABCD 这个封闭区域分为I、Ⅱ两部分(不含边界),点E 是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN 的关系.21.(1)如图①,若AB∥CD,求∠B+∠D+∠E1 的度数?(2)如图②,若AB∥CD,求∠B+∠D+∠E1+∠E2 的度数?(3)如图③,若AB∥CD,求∠B+∠D+∠E1+∠E2+∠E3 的度数?(4)如图④,若AB∥CD,猜想∠B+∠D+∠E1+∠E2+…+∠E n 的度数?22.如图 1,MN ∥PQ ,直线 AD 与 MN 、PQ 分别交于点 A 、D ,点 B 在直线 PQ 上,过点 B 作 BG ⊥AD ,垂足为点G .(1)求证:∠MAG +∠PBG =90°;(2)若点 C 在线段 AD 上(不与 A 、D 、G 重合),连接 BC ,∠MAG 和∠PBC 的平分线交于点 H ,请在图 2 中补全图形,猜想并证明∠CBG 与∠AHB 的数量关系;(3)若直线 AD 的位置如图 3 所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG 与∠AHB 的数量关系.1、最困难的事就是认识自己。
人教版七年级数学下册《相交线与平行线》专项练习题-附含答案一.选择题(共9小题满分18分每小题2分)1.(2分)(2022秋•丹东期末)若将一副三角板按如图所示的方式放置则下列结论正确的是()A.∠1=∠2 B.如果∠2=30°则有AC∥DEC.如果∠2=45°则有∠4=∠D D.如果∠2=50°则有BC∥AE解:∵∠CAB=∠DAE=90°∴∠1=∠3 故A错误.∵∠2=30°∴∠1=∠3=60°∴∠CAE=90°+60°=150°∴∠E+∠CAE=180°∴AC∥DE故B正确∵∠2=45°∴∠1=∠2=∠3=45°∵∠E+∠3=∠B+∠4∴∠4=30°∵∠D=60°∴∠4≠∠D故C错误∵∠2=50°∴∠3=40°∴∠B≠∠3∴BC不平行AE故D错误.故选:B.2.(2分)(2022春•宜州区期中)如图AB∥CD BF交CD于点E AE⊥BF∠CEF=35°则∠A是()A.35°B.45°C.55°D.65°解:∵AE⊥BF∴∠AEF=90°∴∠AEC=90°﹣∠CEF=90°﹣35°=55°∵AB∥CD∴∠A=∠AEC=55°.故选:C.3.(2分)(2022春•江汉区校级月考)如图给出了过直线外一点作已知直线的平行线的方法其依据是()A.同位角相等两直线平行B.内错角相等两直线平行C.同旁内角互补两直线平行D.对顶角相等两直线平行解:如图给出了过直线外一点作已知直线的平行线的方法其依据是同位角相等两直线平行.故选:A.4.(2分)(2022春•新罗区期中)如图将一个宽度相等的纸条沿AB折叠一下若∠1=140°则∠2的值为()A.100°B.110°C.120°D.130°解:如图:∵宽度相等的纸条沿AB折叠一下∴纸条两边互相平行∴2∠3=∠1 ∠2+∠3=180°∵∠1=140°∴∠3=∠1=70°∴∠2=180°﹣∠3=110°故选:B.5.(2分)(2022春•温江区期末)将一副直角三角板如图放置已知∠B=60°∠F=45°AB∥EF则∠CGD=()A.45°B.60°C.75°D.105°解:∵∠B=60°∴∠A=30°∵EF∥BC∴∠FDA=∠F=45°∴∠CGD=∠A+∠FDA=45°+30°=75°.故选:C.6.(2分)(2022春•牡丹江期中)如图AB∥CD F为AB上一点FD∥EH且FE平分∠AFG过点F作FG ⊥EH于点G且∠AFG=2∠D则下列结论:①∠D=30°;②2∠D+∠EHC=90°;③FD平分∠HFB;④FH平分∠GFD.其中正确结论的个数是()A.1个B.2个C.3个D.4个解:延长FG交CH于I.∵AB∥CD∴∠BFD=∠D∠AFI=∠FIH∵FD∥EH∴∠EHC=∠D∵FE平分∠AFG∴∠FIH=2∠AFE=2∠EHC∴3∠EHC=90°∴∠EHC=30°∴∠D=30°∴2∠D+∠EHC=2×30°+30°=90°∴①∠D=30°;②2∠D+∠EHC=90°正确∵FE平分∠AFG∴∠AFI=30°×2=60°∵∠BFD=30°∴∠GFD=90°∴∠GFH+∠HFD=90°可见∠HFD的值未必为30°∠GFH未必为45°只要和为90°即可∴③FD平分∠HFB④FH平分∠GFD不一定正确.故选B.7.(2分)(2019秋•淮阴区期末)如图将长方形ABCD沿线段EF折叠到EB'C'F的位置若∠EFC'=100°则∠DFC'的度数为()A.20°B.30°C.40°D.50°解:由翻折知∠EFC=∠EFC'=100°∴∠EFC+∠EFC'=200°∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°故选:A.8.(2分)(2021春•奉化区校级期末)如图AD∥BC∠D=∠ABC点E是边DC上一点连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB作∠FEH的角平分线EG交BH于点G若∠DEH =100°则∠BEG的度数为()A.30°B.40°C.50°D.60°解:设FBE=∠FEB=α则∠AFE=2α∠FEH的角平分线为EG设∠GEH=∠GEF=β∵AD∥BC∴∠ABC+∠BAD=180°而∠D=∠ABC∴∠D+∠BAD=180°∴AB∥CD∠DEH=100°则∠CEH=∠FAE=80°∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β在△AEF中 80°+2α+180﹣2β=180°故β﹣α=40°而∠BEG=∠FEG﹣∠FEB=β﹣α=40°故选:B.9.(2分)(2022春•大观区校级期末)如图AB∥CD P为AB上方一点H、G分别为AB、CD上的点∠PHB、∠PGD的角平分线交于点E∠PGC的角平分线与EH的延长线交于点F下列结论:①EG⊥FG;②∠P+∠PHB=∠PGD;③∠P=2∠E;④若∠AHP﹣∠PGC=∠F则∠F=60°.其中正确的结论有()个.A.1 B.2 C.3 D.4解:∵GF平分∠PGC GE平分∠PGD∴∠PGF=∠PGC∠PGE=∠PGD∴∠EGF=∠PGF+∠PGE=(∠PGC+∠PGD)=即EG⊥FG故①正确;设PG与AB交于M GE于AB交于N∵AB∥CD∴∠PMB=∠PGD∵∠PMB=∠P+∠PHM∴∠P+∠PHB=∠PGD故②正确;∵HE平分∠BHP GE平分∠PGD∴∠PHB=2∠EHB∠PGD=2∠EGD∵AB∥CD∴∠PMB=∠PGD∠ENB=∠EGD∴∠PMB=2∠ENB∵∠PMB=∠P+∠PHB∠ENB=∠E+∠EHB∴∠P=2∠E故③正确;∵∠AHP﹣∠PMC=∠P∠PMH=∠PGC∠AHP﹣∠PGC=∠F∴∠P=∠F∵∠FGE=90°∴∠E+∠F=90°∴∠E+∠P=90°∵∠P=2∠E∴3∠E=90解得∠E=30°∴∠F=∠P=60°故④正确.综上正确答案有4个故选:D.二.填空题(共10小题满分20分每小题2分)10.(2分)(2022秋•宁强县期末)将一张长方形纸片按如图所示的方式折叠BD、BE为折痕若∠ABE=20°则∠DBC为70 度.解:根据翻折的性质可知∠ABE=∠A′BE∠DBC=∠DBC′又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°∴∠ABE+∠DBC=90°又∵∠ABE=20°∴∠DBC=70°.故答案为:70.11.(2分)(2022春•新乐市校级月考)如图直线EF CD相交于点O OA⊥OB垂足为O且OC平分∠AOF.(1)若∠AOE=40°则∠DOE的度数为70°;(2)∠AOE与∠BOD的数量关系为∠AOE=2∠BOD.解:(1)∵OA⊥OB∴∠AOB=90°∵∠AOF+∠AOE=180°∠AOE=40°∴∠AOF=140°∵OC平分∠AOF∴∠AOC=∠COF=70°∵∠BOD+∠AOB+∠AOC=180°∴∠DOE=∠COF=70°.故答案为:70°;(2)∵∠AOE+∠AOF=180°∠AOC=∠COF∴∠AOC=(180°﹣∠AOE)=90°﹣∠AOE∵∠BOD+∠AOB+∠AOC=180°∴∠BOD=180°﹣90°﹣∠AOC=90°﹣(90°﹣∠AOE)=﹣∠AOE∴∠AOE=2∠BOD.故答案为:∠AOE=2∠BOD.12.(2分)(2022春•环翠区期末)如图AB∥EF∠C=90°则α、β和γ的关系是α+β﹣γ=90°.解:过点C作CM∥AB过点D作DN∥EF则:∠BCM=∠ABC=α∠EDN=∠DEF=γ∵AB∥EF∴CM∥DN∴∠DCM=∠CDN∵∠BCM+∠DCM=90°∠CDN+∠EDN=β∴α+(β﹣γ)=90°∴α+β﹣γ=90°.故答案为:α+β﹣γ=90°.13.(2分)(2022春•绍兴期末)如图已知直线AB∥CD点M、N分别在直线AB、CD上点E为AB、CD 之间一点且点E在MN的右侧∠MEN=128°.若∠BME与∠DNE的平分线相交于点E1∠BME1与∠DNE1的平分线相交于点E2∠BME2与∠DNE2的平分线相交于点E3……依此类推若∠ME n N=8°则n的值是 4 .解:过E作EH∥AB E1G∥AB∵AB∥CD∴EH∥CD E1G∥CD∴∠BME=∠MEH∠DNE=∠NEH∴∠BME+∠DNE=∠MEH+∠NEH=∠MEN=128°同理∠ME1N=∠BME1+∠DNE1∵ME1平分∠BME NE1平分∠DNE∴∠BME1+∠DNE1=(∠BME+∠DNE)=∠MEN∴∠ME1N=∠MEN同理∠ME2N=∠ME1N=∠MEN∠ME3N=∠ME2N=∠MEN•∴∠ME n N=∠ME n﹣1N=∠MEN若∠ME n N=8°则∠MEN=×128°=8°∴n=4.故答案为:4.14.(2分)(2022春•镜湖区校级期末)有长方形纸片E F分别是AD BC上一点∠DEF=x(0°<x<45°)将纸片沿EF折叠成图1 再沿GF折叠成图2.(1)如图1 当x=32°时∠FGD′=64 度;(2)如图2 作∠MGF的平分线GP交直线EF于点P则∠GPE=2x.(用x的式子表示).解:(1)由折叠可得∠GEF=∠DEF=32°∵长方形的对边是平行的∴∠DEG=∠FGD′∴∠DEG=∠GFE+∠DEF=64°∴∠FGD′=∠EGD=64°∴当x=32°时∠GFD′的度数是64°.故答案为:64;(2)∠GPE=2∠GEP=2x.由折叠可得∠GEF=∠DEF∵长方形的对边是平行的∴设∠BFE=∠DEF=x∴∠EGB=∠BFE+∠D′EF=2x∴∠FGD′=∠EGB=2x由折叠可得∠MGF=∠D′GF=2x∵GP平分∠MGF∴∠PGF=x∴∠GPE=∠PGF+∠BFE=2x∴∠GPE=2∠GEP=2x.故答案为:∠GPE=2x.15.(2分)(2022春•诸暨市期末)从汽车灯的点O处发出的一束光线经灯的反光罩反射后沿CO方向平行射出已知入射光线OA的反射光线为AB∠OAB=∠COA=72°.在如图中所示的截面内若入射光线OD经反光罩反射后沿DE射出且∠ODE=27°.则∠AOD的度数是45°或99°.解:∵DE∥CF∴∠COD=∠ODE.(两直线平行内错角相等)∵∠ODE=27°∴∠COD=27°.在图1的情况下∠AOD=∠COA﹣∠COD=72°﹣27°=45°.在图2的情况下∠AOD=∠COA+∠COD=72°+27°=99°.∴∠AOD的度数为45°或99°.故答案为:45°或99°.16.(2分)(2022春•九龙坡区校级期中)如图将长方形ABCD沿EF翻折再沿ED翻折若∠FEA″=105°则∠CFE=155 度.解:由四边形ABFE沿EF折叠得四边形A′B′FE∴∠A′EF=∠AEF.∵∠A′EF=∠A′ED+∠DEF∠AEF=180°﹣∠DEF.∴∠A′ED+∠DEF=180°﹣∠DEF.由四边形A′B′ME沿AD折叠得四边形A″B″ME∴∠A′ED=∠A″ED.∵∠A″ED=∠A″EF+∠DEF=105°+∠DEF∴∠A′ED=105°+∠DEF.∴105°+∠DEF+∠DEF=180°﹣∠DEF.∴∠DEF=25°.∵AD∥BC∴∠DEF=∠EFB=25°.∴∠CFE=180°﹣∠EFB=180°﹣25°=155°.故答案为:155.17.(2分)(2022春•东湖区校级月考)如图直线EF上有两点A、C分别引两条射线AB、CD∠DCF=60°∠EAB=70°射线AB、CD分别绕A点C点以1度/秒和3度/秒的速度同时顺时针转动在射线CD转动一周的时间内使得CD与AB平行所有满足条件的时间=5秒或95秒.解:∵∠EAB=70°∠DCF=60°∴∠BAC=110°∠ACD=120°分三种情况:如图①AB与CD在EF的两侧时∠ACD=120°﹣(3t)°∠BAC=110°﹣t°要使AB∥CD则∠ACD=∠BAC即120°﹣(3t)°=110°﹣t°解得t=5;②CD旋转到与AB都在EF的右侧时∠DCF=360°﹣(3t)°﹣60°=300°﹣(3t)°∠BAC=110°﹣t°要使AB∥CD则∠DCF=∠BAC即300°﹣(3t)°=110°﹣t°解得t=95;③CD旋转到与AB都在EF的左侧时∠DCF=(3t)°﹣(180°﹣60°+180°)=(3t)°﹣300°∠BAC=t°﹣110°要使AB∥CD则∠DCF=∠BAC即(3t)°﹣300°=t°﹣110°解得t=95∴此情况不存在.综上所述当时间t的值为5秒或95秒时CD与AB平行.故答案为:5秒或95秒.18.(2分)(2022春•沙坪坝区校级月考)已知如图AD∥BC BD∥AE DE平分∠ADB且ED⊥CD若∠AED+∠BAD=127.5°则∠BCD﹣∠EAB=37.5 度.解:设∠ADE=x∵DE平分∠ADB∴∠EDB=∠ADE=x又ED⊥CD∴∠EDC=90°∴∠BDC=90°﹣x∵AD∥BC∴∠DBC=∠ADB=2x∠BCD=180°﹣(90°﹣x+2x)=90°﹣x∵BD∥AE∴∠AED=∠EDB=x∵∠AED+∠BAD=127.5°∴∠BAD=127.5°﹣x∠EAB=180°﹣(127.5°﹣x+2x)=52.5°﹣x∴∠BCD﹣∠EAB=(90°﹣x)﹣(52.5°﹣x)=37.5°.故答案为:37.5.19.(2分)(2022春•渭滨区期末)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G D、C分别在M、N的位置上若∠EFG=49°则∠2﹣∠1=16°.解:∵AD∥BC∴∠2=∠DEG∠EFG=∠DEF=49°∵长方形纸片ABCD沿EF折叠后ED与BC的交点为G∴∠DEF=∠GEF=49°∴∠2=2×49°=98°∴∠1=180°﹣98°=82°∴∠2﹣∠1=98°﹣82°=16°.故答案为16°.三.解答题(共9小题满分62分)20.(6分)(2022秋•丹东期末)如图已知∠1=∠BDC∠2+∠3=180°.(1)求证:AD∥CE;(2)若DA平分∠BDC DA⊥FE于点A∠FAB=55°求∠ABD的度数.(1)证明:∵∠1=∠BDC∴AB∥CD∴∠2=∠ADC∵∠2+∠3=180°∴∠ADC+∠3=180°∴AD∥CE;(2)解:∵CE⊥AE于E∴∠CEF=90°由(1)知AD∥CE∴∠DAF=∠CEF=90°∴∠ADC=∠2=∠DAF﹣∠FAB∵∠FAB=55°∴∠ADC=35°∵DA平分∠BDC∠1=∠BDC∴∠1=∠BDC=2∠ADC=70°∴∠ABD=180°﹣70°=110°.21.(6分)(2019春•本溪期中)已知如图AB∥CD①由图(1)易得∠B、∠BED、∠D的关系∠BED=∠B+∠D(直接写结论).由图(2)易得∠B、∠BED、∠D的关系∠BED=360°﹣(∠B+∠D)(直接写结论).②从图(1)图(2)任选一个图形说明①中其中一个结论成立的理由.[延伸拓展]利用上面(1)(2)得出的结论完成下题③已知AB∥CD∠ABE与∠CDE两个角的角平分线相交于点F.若∠E=60°求∠BFD的度数.解:①由图(1)易得∠B、∠BED、∠D的关系∠BED=∠B+∠D.由图(2)易得∠B、∠BED、∠D的关系∠BED=360°﹣(∠B+∠D).故答案为:∠BED=∠B+∠D;∠BED=360°﹣(∠B+∠D);②如图(1)所示:过点E作EM∥AB∵AB∥CD EM∥AB∴EM∥CD∥AB∴∠B=∠BEM∠MED=∠D∴∠BED=∠BEM+∠MED=∠B+∠D∴∠BED=∠B+∠D;如图(2)所示:过点E作EM∥AB∵AB∥CD EM∥AB∴EM∥CD∥AB∴∠B+∠BEM=180°∠MED+∠D=180°∴∠BED=∠BEM+∠MED=360°﹣(∠B+∠D);③如图(3)过点E作EN∥AB∵BF、DF分别是∠ABE和∠CDE的平分线∴∠EBF=∠ABE∠EDF=∠CDE∵AB∥CD∴∠ABE+∠BEN=180°∵AB∥CD AB∥NE∴NE∥CD∴∠CDE+∠NED=180°∴∠ABE+∠E+∠CDE=360°∵∠E=60°∴∠ABE+∠CDE=300°∴∠EBF+∠EDF=150°∴∠BFD=360°﹣60°﹣150°=150°.22.(6分)(2022•衡东县校级开学)如图1 AB∥CD∠PAB=124°∠PCD=120°求∠APC的大小.小明的解题思路:过点P作PM∥AB通过平行线的性质来求∠APC.(1)按小明的解题思路可求得∠APC的大小为116 度;(2)如图2 已知直线m∥n直线a b分别与直线m n相交于点B、D和点A、C.点P在线段BD上运动(不与B、D两点重合)记∠PAB=α∠PCD=β问∠APC与αβ之间有何数量关系?判断并说明理由;(3)在(2)的条件下若把“线段BD”改为“直线BD”请求出∠APC与αβ之间的数量关系.解:(1)过P作PM∥AB如图:∴∠APM+∠PAB=180°∴∠APM=180°﹣124°=56°∵AB∥CD∴PM∥CD∴∠CPM+∠PCD=180°∴∠CPM=180°﹣120°=60°∴∠APC=56°+60°=116°;故答案为:116;(2)∠APC=∠α+∠β理由如下:过P作PE∥AB交AC于E如图:∵AB∥CD∴AB∥PE∥CD∴∠α=∠APE∠β=∠CPE∴∠APC=∠APE+∠CPE=∠α+∠β;(3)当P在线段BD延长线时∠APC=∠α﹣∠β;理由如下:过P作PE∥AB如图:∵AB∥CD∴AB∥PE∥CD∴∠α=∠APE∠β=∠CPE∵∠APC=∠APE﹣∠CPE∴∠APC=∠α﹣∠β;当P在DB延长线时∠APC=∠β﹣∠α;理由如下:过P作PE∥AB如图:∵AB∥CD∴AB∥PE∥CD∴∠α=∠APE∠β=∠CPE∵∠APC=∠CPE﹣∠APE∴∠APC=∠β﹣∠α综上所述当P在线段BD延长线时∠APC=∠α﹣∠β;当P在DB延长线时∠APC=∠β﹣∠α;当P在线段BD上时∠APC=∠α+∠β.23.(6分)(2022春•鹿邑县月考)如图已知AB∥CD∠ABE与∠CDE的平分线相交于点F.(1)如图1 若∠E=70°求∠BFD的度数;(2)如图2 若∠ABM=∠ABF∠CDM=∠CDF写出∠M和∠E之间的数量关系并证明你的结论.解:(1)如图1 过点E作EN∥AB∵EN∥AB∴∠ABE+∠BEN=180°∵AB∥CD AB∥NE∴NE∥CD∴∠CDE+∠NED=180°∴∠ABE+∠E+∠CDE=360°∵∠E=70°∴∠ABE+∠CDE=290°∵∠ABE与∠CDE的平分线相交于点F∴∠ABF+∠CDF=(∠ABE+∠CDE)=145°过点F作FG∥AB∵FG∥AB∴∠ABF=∠BFG∵AB∥CD FG∥AB∴FG∥CD∴∠CDF=∠GFD∴∠BFD=∠ABF+∠CDF=145°;(2)结论:∠E+6∠M=360°证明:∵设∠ABM=x∠CDM=y则∠FBM=2x∠EBF=3x∠FDM=2y∠EDF=3y由(1)得:∠ABE+∠E+∠CDE=360°∴6x+6y+∠E=360°∵∠M+∠EBM+∠E+∠EDM=360°∴6x+6y+∠E=∠M+5x+5y+∠E∴∠M=x+y∴∠E+6∠M=360°.24.(6分)(2022秋•绿园区期末)【问题情景】如图1 若AB∥CD∠AEP=45°∠PFD=120°.过点P 作PM∥AB则∠EPF=105°;【问题迁移】如图2 AB∥CD点P在AB的上方点E F分别在AB CD上连接PE PF过P点作PN∥AB问∠PEA∠PFC∠EPF之间的数量关系是∠PFC=∠PEA+∠FPE请在下方说明理由;【联想拓展】如图3所示在(2)的条件下已知∠EPF=36°∠PFA的平分线和∠PFC的平分线交于点G过点G作GH∥AB则∠EGF=18°.解:(1)∵AB∥PM∴∠1=∠AEP=45°∵AB∥CD∴PM∥CD∴∠2+∠PFD=180°∵∠PFD=120°∴∠2=180°﹣120°=60°∴∠1+∠2=45°+60°=105°.即∠EPF=105°故答案为:105°.(2)∠PFC=∠PEA+∠EPF.理由:∵PN∥AB∴∠PEA=∠NPE∵∠FPN=∠NPE+∠FPE∴∠FPN=∠PEA+∠FPE∵PN∥AB AB∥CD∴PN∥CD∴∠FPN=∠PFC∴∠PFC=∠PEA+∠FPE故答案为:∠PFC=∠PEA+∠FPE.(3)∵GH∥AB AB∥CD∴GH∥AB∥CD∴∠HGE=∠AEG∠HGF=∠CFG又∵∠PEA的平分线和∠PFC的平分线交于点G∴由(2)可知∠CFP=∠FPE+∠AEP∴∠HGF=(∠FPE+∠AEP)∴∠EGF=∠HGF﹣∠HGE=(36°+∠AEP)﹣∠HGE=18°.故答案为:18°.25.(8分)(2022春•富县期末)如图AD∥BC∠BAD的平分线交BC于点G∠BCD=90°.(1)求证:∠BAG=∠BGA;(2)如图②线段AG上有一点P满足∠ABP=3∠PBG过点C作CH∥AG.若在直线AG上有一点M使∠PBM=∠DCH求的值.(1)证明:∵AD∥BC∴∠GAD=∠BGA∵AG平分∠BAD∴∠BAG=∠GAD∴∠BAG=∠BGA;(2)解:有两种情况:①当M在BP的下方时如图设∠ABC=4x∵∠ABP=3∠PBG∴∠ABP=3x∠PBG=x∵AG∥CH∴∠BCH=∠AGB==90°﹣2x ∵∠BCD=90°∴∠DCH=∠PBM=90°﹣(90°﹣2x)=2x ∴∠ABM=∠ABP+∠PBM=3x+2x=5x∠GBM=2x﹣x=x∴∠ABM:∠GBM=5x:x=5;②当M在BP的上方时如图同理得:∠ABM=∠ABP﹣∠PBM=3x﹣2x=x ∠GBM=2x+x=3x∴∠ABM:∠GBM=x:3x=.综上的值是5或.26.(8分)(2022春•武汉期末)已知点E F分别在直线AB CD上点P在直线AB上方.问题探究:(1)如图1 ∠CFP+∠EPF=∠AEP证明:AB∥CD;问题拓展:(2)如图2 AB∥CD∠AEP的角平分线EK所在的直线和∠DFP的角平分线FR所在的直线交于Q点请写出∠EPF和∠EQF之间的数量关系并证明.问题迁移:(3)如图3 AB∥CD直线MN分别交AB CD于点M N若点H在线段MN上且∠MEF=α请直接写出∠HFE∠MEH和∠EHF之间满足的数量关系(用含α的式子表示).(1)证明:如图∵∠AEP是△PEH的外角∴∠AEP=∠EPF+∠EHP∵∠CFP+∠EPF=∠AEP∴∠EHP=∠CFP∴AB∥CD;(2)解:如图 2∠Q+∠P=180°理由如下:∵AB∥CD∴∠AEK=∠CME∠EHF=∠PFD∵EK平分∠AEP∴∠AEK=∠KEP∴∠AEK=∠KEP=∠CME设∠AEK=∠KEP=∠CME=x则∠QMF=x∠AEP=2x∴∠PEH=180°﹣2x∵FR平分∠PFD∴∠PFR=∠DFR设∠PFR=∠DFR=y则∠MFQ=y∠EHF=2y∴∠Q=180°﹣∠QMF﹣∠MFQ=180°﹣x﹣y∵∠EHF是△EHP的外角∴∠EHF=∠PEH+∠P∴∠P=∠EHF﹣∠PEH=2y﹣(180°﹣2x)=2x+2y﹣180°∴2∠Q+∠P=180°;(3)解:如图∵∠MEF=α∴∠HEF=α﹣∠MEH∵∠HEF+∠EHF+∠HFE=180°∴α﹣∠MEH+∠EHF+∠HFE=180°∴∠EHF+∠HFE﹣∠MEH=180°﹣α∴∠HFE∠MEH和∠EHF之间满足的数量关系是∠EHF+∠HFE﹣∠MEH=180°﹣α.27.(8分)(2022春•建邺区校级期末)【探究结论】(1)如图1 AB∥CD E为形内一点连结AE、CE得到∠AEC则∠AEC、∠A、∠C的关系是∠AEC =∠A+∠C(直接写出结论不需要证明):【探究应用】利用(1)中结论解决下面问题:(2)如图2 AB∥CD直线MN分别交AB、CD于点E、F EG1和EG2为∠BEF内满足∠1=∠2的两条线分别与∠EFD的平分线交于点G1和G2求证:∠FG1E+∠G2=180°.(3)如图3 已知AB∥CD F为CD上一点∠EFD=60°∠AEC=3∠CEF若8°<∠BAE<20°∠C的度数为整数则∠C的度数为42°或41°.(1)解:过点E作EF∥AB∴∠A=∠1∵AB∥CD EF∥AB∴EF∥CD∴∠2=∠C.∵∠AEC=∠1+∠2∴∠AEC=∠A+∠C(等量代换)故答案为:∠AEC=∠A+∠C;(2)证明:由(1)可知:∠EG2F=∠1+∠DFG2∵FG2平分∠MFD∴∠EFG2=∠DFG2∵∠1=∠2∴∠EG2F=∠2+∠EFG2∵∠EG1F+∠2+∠EFG2=180°∴∠FG1E+∠G2=180°;(3)由(1)知:∠AEF=∠BAE+∠DFE设∠CEF=x则∠AEC=3x∵∠EFD=60°∴x+3x=∠BAE+60°∴∠BAE=4x﹣60°又∵8°<∠BAE<20°∴8°<4x﹣60°<20°解得17°<x<20°又∵∠DFE是△CEF的外角∴∠C=∠DFE﹣∠CEF=∠DFE﹣x∵∠C的度数为整数∴x=18°或19°∴∠C=60°﹣18°=42°或∠C=60°﹣19°=41°故答案为:42°或41°.28.(8分)(2022春•颍州区期末)(1)问题背景:如图1 已知AB∥CD点P的位置如图所示连结PA PC试探究∠APC与∠A、∠C之间的数量关系并说明理由.解:(1)∠APC与∠A、∠C之间的数量关系是:∠APC=∠A+∠C.理由:如图1 过点P作PE∥AB∴∠APE=∠A∵AB∥CD∴PE∥CD∴∠CPE=∠C∴∠APE+∠CPE=∠A+∠C∴∠APC=∠A+∠C.总结:本题通过添加适当的辅助线从而利用平行线的性质使问题得以解决.(2)类比探究:如图2 已知AB∥CD线段AD与BC相交于点E点B在点A右侧.若∠ABC=40°∠ADC=80°求∠AEC的度数.(3)拓展延伸:如图3 若∠ABC与∠ADC的角平分线相交于点F请直接写出∠BFD与∠AEC之间的数量关系∠BFD=∠AEC.解:(2)如图2 过E点作EM∥AB∴∠BEM=∠ABC∵AB∥CD∴CD∥EM∴∠MED=∠ADC∴∠AEC=∠BED=∠BEM+∠MED=∠ABC+∠ADC=40°+80°=120°;(3)由(2)知:∠AEC=∠ABC+∠ADC如图3 过F点作FN∥AB∴∠ABF=∠BFN∵AB∥CD∴CD∥FN∴∠NFD=∠FDC∴∠BFD=∠ABF+∠FDC∵BF平分∠ABC DF平分∠ADC∴∠ABF=∠ABC∠FDC=∠ADC∴∠BFD=(∠ABC+∠ADC)=∠AEC.即∠BFD=∠AEC.故答案为∠BFD=∠AEC第31页共31。
1.填空(请补全下列证明过程及括号内的依据)已知:如图,12,B C ∠=∠∠=∠.求证:180B BFC︒∠+∠=证明:∵12∠=∠(已知)七年级下册数学平行线百题过关练习与答案,且1CGD ∠=∠(__________________________),∴2CGD ∠=∠(_______________________________),∴//CE BF (____________________________),∴∠___________C =∠(_________________________),又B C ∠=∠ (已知),∴∠_________________B =∠(等量代换),∴//AB CD (_________________),∴180B BFC︒∠+∠=(_________________________).【答案】对顶角相等;等量代换;同位角相等,则两直线平行;BFD;两直线平行,则同位角相等;BFD;内错角相等,则两直线平行;两直线平行,则同旁内角互补2.小红同学在做作业时,遇到这样一道几何题:已知:AB∥CD∥EF,∠A=110°,∠ACE=100°,过点E 作EH⊥EF,垂足为E,交CD 于H 点.(1)依据题意,补全图形;(2)求∠CEH的度数.小明想了许久对于求∠CEH 的度数没有思路,就去请教好朋友小丽,小丽给了他如图2所示的提示:请问小丽的提示中理由①是;提示中②是:度;提示中③是:度;提示中④是:,理由⑤是.提示中⑥是度;【答案】(1)补图见解析;(2)两直线平行,同旁内角互补,70,30,∠CEF,两直线平行,内错角相等,60.3.如图,AD BC ⊥于点D,EGBC ⊥于点G,若1E ∠=∠,试说明:23∠∠=.下面是推理过程,请将推理过程补充完整.∵AD BC ⊥于点D,EGBC ⊥于点G(已知),∴90ADCEGC ∠=∠=︒∴//AD EG ()∴12∠=∠()∵1E∠=∠(已知),∴E∠=_______(等量代换)又∵//AD EG (已证),∴______3=∠()∴23∠∠=(等量代换).【答案】见解析4.如图,已知:AD BC ⊥于D,EGBC ⊥于G,AD 平分BAC ∠.求证:1E ∠∠=.下面是部分推理过程,请你填空或填写理由.证明:∵AD BC EG BC ⊥⊥,(已知),∴ADC EGC 90∠∠==︒(垂直的定义),∴AD //EG ()∴21∠=∠(),3∠=().又∵AD 平分BAC ∠(已知),∴23∠∠=(),∴1E ∠∠=()【答案】同位角相等,两直线平行;两直线平行,内错角相等;∠E;两直线平行,同位角相等;角平分线的定义;等量代换.5.如图,//AB CD ,B D ∠=∠,试说明12∠=∠.请你完成下列填空,把解答过程补充完整.解://AB CD180BAD D ∴∠+∠=︒(__________).B D ∠=∠ ,BAD ∴∠+_______180=︒(等量代换).∴__________(同旁内角互补,两直线平行)12∠∠∴=(_________)【答案】两直线平行,同旁内角互补;∠B;//AD BC ;两直线平行,内错角相等.6.完成下列推理过程如图,M、F 两点在直线CD 上,AB∥CD,CB∥DE,BM、DN 分别是∠ABC、∠EDF 的平分线,求证:BM∥DN.证明:∵BM、DN 分别是∠ABC、∠EDF 的平分线∠1=12∠ABC,∠3=_________(角平分线定义)∵AB∥CD∴∠1=∠2,∠ABC=________()∵CB∥DE ∴∠BCD=________()∴∠2=________()∴BM∥DN()【答案】【答题空1】12∠EDF 【答题空2】∠BCD 【答题空3】两直线平行,内错角相等【答题空4】∠EDF【答题空5】两直线平行,同位角相等【答题空6】∠3【答题空7】等量代换【答题空8】同位角相等,两直线平行7.如图,//AB CD ,12∠=∠,34∠=∠,65B ︒∠=,求:BAD ∠的度数.请完成下面的推理和计算过程,并在括号内写明依据.∵//AB CD (已知)∴4∠=∠①(②)∵34∠=∠(已知)∴3∠=∠③∵12∠=∠(已知)∴12CAF CAF∠+∠=∠+∠∴BAE ∠=∠④∴3∠=∠⑤∴//AD BE (⑥)∴B ∠+∠⑦180︒=∵65B ︒∠=∴BAD ∠=⑧°.【答案】①BAF ∠②两直线平行,同位角相等③BAF ∠④CAD∠⑤CAD ∠⑥内错角相等,两直线平行⑦BAD ∠⑧115°.8.如图,//AD BC ,∠1=∠C ,∠B =60°,DE 平分∠ADC 交BC 于点E ,试说明//AB DE .请完善解答过程,并在括号内填写相应的理论依据.解:∵//AD BC ,(已知)∴∠1=∠=60°.()∵∠1=∠C ,(已知)∴∠C =∠B =60°.(等量代换)∵//AD BC ,(已知)∴∠C +∠=180°.()∴∠=180°-∠C =180°-60°=120°.(等式的性质)∵DE 平分∠ADC ,(已知)∴∠ADE =12∠ADC =12×120°=60°.()∴∠1=∠ADE .(等量代换)∴//AB DE .()【答案】B;两直线平行,同位角相等;ADC;两直线平行,同旁内角互补;ADC;角平分线性质;内错角相等,两直线平行.9.如图,点D 、E 分别为AB 、AC 上的点,点F 、G 为BC 上的点,连接DE ,连接DG 、EF 交于点H .已知12180∠+∠=︒,3B∠=∠,若66C ∠=︒,求DEC ∠的度数.请你将下面解答过程填写完整.解:∵12180∠+∠=︒∴//AB ________∴3ADE∠=∠(________________________)∵3B ∠=∠∴_______B =∠∴//DE BC (____________________________)∴180C DEC∠+∠=︒∵66C ∠=︒∴114DEC ∠=︒【答案】见解析.10.如图所示,点B ,E 分别在AC ,DF 上,BD ,CE 均与AF 相交,12∠=∠,C D ∠=∠,求证://AC DF .【答案】见详解11.如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.【答案】(1)DE∥BC;(2)72°12.如图,AD 平分BAC ∠,点E ,F 分别在边BC ,AB 上,且BFE DAC ∠=∠,延长EF ,CA 交于点G ,求证:G AFG ∠=∠.【答案】证明见解析.13.如图,已知点E、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H,C EFG ∠=∠,CED GHD ∠=∠,试判断AED ∠与D ∠之间的数量关系,并说明理由.【答案】∠AED+∠D=180°,理由见解析14.如图,//AB CD ,直线EF 分别交AB ,CD 于E、F 两点,且EG 平分BEF ∠,172∠=︒,求2∠的度数.【答案】54°15.如图,已知EF//BC,∠B=∠1.(1)AB 与CD 有怎样的位置关系?请说明理由;(2)若∠BAD+∠2=180 ,那么∠G 与∠3有怎样的数量关系?为什么?【答案】(1)AB∥CD,理由见解析;(2)∠G=∠3,理由见解析.16.如图,已知直线//AB CD ,E 在线段AD 上,点P 在射线DC 上,且F AEF ∠=∠.求证:BAD CPF ∠=∠.【答案】见解析17.已知:如图,1C ∠=∠,2∠和D ∠互余,1∠和D ∠互余,求证://AB CD .【答案】证明见详解18.如图//AB CD ,62B ∠=︒,EG 平分BED ∠,EG EF ⊥,求CEF ∠的度数.【答案】59°19.如图,已知12180∠+∠=︒,DEF A ∠=∠.(1)试判断ACB ∠与DEB ∠的大小关系;(2)对(1)的结论进行证明.【答案】(1)ACB DEB ∠=∠;(2)见解析20.如图,有三个论断:①12∠=∠;②B C ∠=∠;③A D ∠=∠,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.【答案】答案见解析21.(1)如图,//DE BC ,13∠=∠,CD AB ⊥,试说明FG AB ⊥;(2)若把(1)中的题设“//DE BC ”与结论“FG AB ⊥”对调,所得命题是否为真命题,试说明理由;(3)若把(1)中的题设“13∠=∠”与结论“FG AB ⊥”对调呢?【答案】(1)见解析;(2)成立,理由见解析;(3)成立,理由见解析22.如图,DE 平分∠ADF ,DF ∥BC ,点E ,F 在线段AC 上,点A ,D ,B 在一直线上,连接BF .(1)若∠ADF =70°,∠ABF =25°,求∠CBF 的度数;(2)若BF 平分∠ABC 时,求证:BF ∥DE .【答案】(1)∠CBF =45°;(2)见解析.23.已知EF⊥BC,∠1=∠C,∠2+∠3=180°.证明:(1)GD//AC;(2)∠ADC=90°.【答案】(1)见解析;(2)见解析24.如图,在△ABC 中,CD⊥AB,垂足为D,点E 在BC 上,EF⊥AB,垂足为F.(1)CD 与EF 平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B 的度数.【答案】(1)CD 与EF 平行.理由见解析;(2)∠B=35°25.如图,∠1=∠2,∠3=∠D,∠4=∠5,运用平行线性质和判定证明:AE∥BF,要求写出具体的性质或判定定理.【答案】证明见解析26.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2(1)求证:AB∥CD(2)若∠D=∠3+50°,∠CBD=70°,求∠C 的度数.【答案】(1)证明见解析;(2)30°27.已知,//BCOA ,108B A ∠=∠=°,试解答下列问题:(1)如图①,则O ∠=__________,则OB 与AC 的位置关系为__________(2)如图②,若点E 、F 在线段BC 上,且始终保持FOCAOC ∠=∠,BOE FOE ∠=∠.则EOC ∠的度数等于__________;(3)在第(2)题的条件下,若平行移动AC 到图③所示①在AC 移动的过程中,OCB ∠与OFB ∠的数量关系是否发生改变,若不改变,求出它们之间的数量关系;若改变,请说明理由.②当OCA OEB ∠=∠时,求OCA ∠的度数.【答案】(1)72°,平行;(2)36°;(3)①∠OCB=12∠OFB;②∠OCA=54°.28.如图,已知BCAE ⊥,DE AE ⊥,23180∠+∠=︒.(1)请你判断1∠与ABD ∠的数量关系,并说明理由;(2)若170∠=︒,BC 平分ABD ∠,试求ACF ∠的度数.【答案】(1)∠1=∠ABD,证明见解析;(2)∠ACF=55°.29.如图,已知直线l 1//l 2,l 3、和l 1、l 2分别交于点A、B、C、D,点P 在直线l 3或上且不与点A、B、C、D 重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P 在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P 在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P 在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;(4)若点P 在线段DC 延长线上运动时,请直接写出∠1、∠2、∠3之间的关系.【答案】(1)证明见详解;(2)∠3=∠2﹣∠1;(3)∠3=360°﹣∠1﹣∠2,证明见详解;(4)∠3=360°﹣∠1﹣∠2.30.已知:ABC 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF ∠与BAC ∠的数量关系,并说明理由;(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC ∠=∠.请判断DE 与BA 的位置关系,并说明理由.(3)如图3,点D 是ABC 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF ∠与BAC ∠的数量关系,并在图3中补全图形.【答案】(1)图见解析,EDF BAC ∠=∠,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDFBAC ∠=∠或180EDF BAC ∠+∠=︒.31.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E、F 点,90ACB ∠= .(1)将直角ABC 如图1位置摆放,如果46AOG ∠= ,则CEF ∠=______;(2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC∠= ,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论.【答案】(1)136°;(2)∠AOG +∠NEF =90°,理由见解析;(3)当点P 在GF 上时,∠OPQ =140°﹣∠POQ +∠PQF ;当点P 在线段GF 的延长线上时,140°﹣∠POQ =∠OPQ +∠PQF .32.已知:如图1直线AB 、CD 被直线MN 所截,12∠=∠.(1)求证://AB CD ;(2)如图2,点E 在AB ,CD 之间的直线MN 上,P 、Q 分别在直线AB 、CD 上,连接PE 、EQ ,PF平分BPE ∠,QF 平分EQD ∠,则PEQ ∠和PFQ ∠之间有什么数量关系,请直接写出你的结论;(3)如图3,在(2)的条件下,过P 点作//PH EQ 交CD 于点H ,连接PQ ,若PQ 平分EPH ∠,:1:5QPF EQF ∠∠=,求PHQ ∠的度数.【答案】(1)证明见解析;(2)2360PEQ PFQ∠+∠=︒,理由见解析;(3)30PHQ ∠=︒.33.已知△ABC 中,点D 是AC 延长线上的一点,过点D 作DE∥BC,DG 平分∠ADE,BG 平分∠ABC,DG 与BG 交于点G.(1)如图1,若∠ACB=90°,∠A=50°,直接求出∠G 的度数;(2)如图2,若∠ACB≠90°,试判断∠G 与∠A 的数量关系,并证明你的结论;【答案】(1)25º,(2)结论是:∠G=12∠A,证明见详解.34.如图1所示的是北斗七星的位置图,图2将北斗七星分别标为A ,B ,C ,D ,E ,F ,G ,并顺次首尾连接,若AF 恰好经过点G ,且//AF DE ,105D E ∠=∠=︒.(1)求F ∠的度数.(2)连接AD ,当ADE ∠与CGF ∠满足怎样的数量关系时,//BC AD ,并说明理由.【答案】(1)75°;(2)当∠ADE+∠CGF=180°时,BC∥AD.35.如图(1)所示,//AB EF ,说明:(1)BCF B F ∠∠∠=+;(2)当点 C 在直线 BF 的右侧时,如图()2所示,若//AB EF ,则BCF ∠与 B ∠,F ∠的关系如何?请说明理由【答案】(1)见详解;(2)∠B+∠F+∠BCF=360°,理由见详解.36.已知直线//EFMN ,点,A B 分别为EF ,MN 上的点.(1)如图1,若120FACACB ∠=∠=︒,12CAD FAC ∠=∠,12CBD CBN ∠=∠,求CBN ∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠,13CBD CBN ∠=∠,则ADB=∠_________︒;(3)若把(2)中“120FACACB ∠=∠=︒,13CAD FAC ∠=∠,13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠,1CBD CBN n∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)【答案】(1)120º,120º;(2)160;(3)()1360n m n-⋅-37.已知:AB∥DE.(1)如图1,点C 是夹在AB 和DE 之间的一点,当AC⊥CD 时,垂足为点C,你知道∠A+∠D 是多少吗?这一题的解决方法有很多,例如(i)过点C 作AB 的平行线;(ii)过点C 作DE 的平行线;(iii)联结AD;(iv)延长AC、DE 相交于一点.请你选择一种方法(可以不选上述四种),并说明理由.(2)如图2,点C1、C2是夹在AB 和DE 之间的两点,请想一想:∠A+∠C1+∠C2++∠D=度,并说明理由.(3)如图3,随着AB 与CD 之间点增加,那么∠A+∠C1+∠C2++…+∠Cn+1+∠D=度.(不必说明理由)【答案】(1)270︒;(2)540,理由见解析;(3)180n 38.综合与探究问题情境:如图,已知OC 平分AOB ∠,CD OA ⊥于点D ,E 为DC 延长线上一点,EF OB⊥于点F ,EG 平分DEF ∠交OB 于点G ,180DEFAOB ∠+∠=︒.问题发现:(1)如图1,当90AOB ∠=︒时,12∠+∠=____________°;(2)如图2,当AOB ∠为锐角时,1∠与2∠有什么数量关系,请说明理由;拓展探究(3)在(2)的条件下,已知直角三角形中两个锐角的和是90°,试探究OC 和GE 的位置关系,并证明结论;(4)如图3,当AOB ∠为锐角时,若点E 为线段DC 上一点,EF OB ⊥于点F ,EH 平分DEF∠交OA 于点H ,180DEFAOB ∠+∠=︒.请写出一个你发现的正确结论.【答案】(1)90;(2)1290∠+∠=︒,理由见解析;(3)//OC GE ,证明见解析;(4)答案不唯一,例如1290∠+∠=︒39.如图1,AB ∥CD ,直线AE 分别交AB 、CD 于点A 、E .点F 是直线AE 上一点,连结BF ,BP 平分∠ABF ,EP 平分∠AEC ,BP 与EP 交于点P .(1)若点F 是线段AE 上一点,且BF ⊥AE ,求∠P 的度数;(2)若点F 是直线AE 上一动点(点F 与点A 不重合),请直接写出∠P 与∠AFB 之间的数量关系.【答案】(1)45°;(2)当E 点在A 点上方时,∠BPE =12∠AFB ,当E 点在A 点下方时,∠BPE =90°﹣12∠AFB 40.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,1∠与2∠互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由;(2)如图2,BEF ∠与EFD ∠的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GHEG ⊥,求证://PF GH ;(3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使PHKHPK ∠=∠,作PQ 平分EPK ∠,问HPQ ∠的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【答案】(1)//AB CD ,理由见解析;(2)见解析;(3)不发生变化,=45HPQ ∠︒41.(1)已知:如图1,//AE CF ,易知APC ∠=______.(2)如图2,//AE CF ,1P ,2P是直线EF 上的两点,猜想,A ∠,12APP ∠,12PP C ∠,C∠这四个角之间的关系,写出以下三种情况中这四个角之间的关系,并选择其中之一进行说明.图2①图中四个角的关系:______②图中四个角的关系:______③图中四个角的关系:______【答案】(1)∠A+∠C;(2)①∠AP 1P 2+∠P 1P 2C-∠A-∠C=180°,②∠A+∠AP 1P 2+∠P 1P 2C-∠C=180°,③∠AP 1P 2+∠P 1P 2C-∠A+∠C=180°,理由见详解.42.根据所给图形及已知条件,回答下列问题:(1)①如图1所示,已知直线//AB CD ,68ABC ∠=︒,那么根据_________可得BCD ∠=________︒;②如图2,在①的条件下,如果CM 平分BCD ∠,则BCM ∠=________︒;③如图3,在①、②的条件下,如果CN CM ⊥,则BCN ∠=________︒.(2)尝试解决下列问题:如图4,已知//AB CD ,42ABC ∠=︒,CN是BCE ∠的平分线,CN CM ⊥,求BCM ∠的度数.【答案】(1)①两直线平行,内错角相等;68②34③56;(2)21°43.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA 、PB 与直线MN 重合,且三角板PAC ,三角板PBD 均可以绕点P 逆时针旋转.(1)①如图1,∠DPC =度.②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD 不动,三角板PAC 从图示位置开始每秒10°逆时针旋转一周(0°<旋转<360°),问旋转时间t 为多少时,这两个三角形是“孪生三角形”.(2)如图3,若三角板PAC 的边PA 从PN 处开始绕点P 逆时针旋转,转速3°/秒,同时三角板PBD 的边PB 从PM 处开始绕点P 逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC 转到与PM 重合时,两三角板都停止转动).设两个三角板旋转时间为t 秒,以下两个结论:①CPDBPN∠∠为定值;②∠BPN +∠CPD 为定值,请选择你认为对的结论加以证明.【答案】(1)①90;②t 为3s 或6s 或9s 或18s 或21s 或24s 或27s ;(2)①正确,②错误,证明见解析.44.下列各图中的MA 1与NA n 平行.(1)图①中的∠A 1+∠A 2=度,图②中的∠A 1+∠A 2+∠A 3=度,图③中的∠A 1+∠A 2+∠A 3+∠A 4=度,图④中的∠A 1+∠A 2+∠A 3+∠A 4+∠A 5=度,…,第⑩个图中的∠A 1+∠A 2+∠A 3+…+∠A 10=度(2)第n 个图中的∠A 1+∠A 2+∠A 3+…+∠A n =.【答案】(1)180;360;540;720;1620;(2)180°(n﹣1).45.如图1,四边形ABCD 中,AD∥BC,DE 平分∠ADB,∠BDC=∠BCD,(1)求证:∠DEC+∠DCE=90°;(2)如图2,若∠ABD 的平分线与CD 的延长线交于F,且∠F=58°,求∠ABC.【答案】(1)见解析;(2)64°46.(探究)如图①,//AB CD ,点E 在直线AB ,CD 之间.求证:AEC BAE ECD ∠=∠+∠.(应用)如图②,//AB CD ,点E 在直线AB ,CD 之间.若//CE FG ,90AEC ∠=︒,40BAE ∠=︒,AH 平分BAE ∠,FH平分DFG ∠,则AHF ∠的大小为_________.【答案】探究:见解析;应用:45︒47.完成下面的证明.已知:如图,BAC ∠与GCA ∠互补,1=2∠∠,求证:=E F∠∠证明:BAC ∠ 与GCA ∠互补即180BAC GCA ∠+∠=︒,(已知)∴//()=BAC ACD ∴∠∠.()又1=2∠∠ ,(已知)12BAC ACD ∴∠-∠=∠-∠,即EAC FCA ∠=∠.(等式的性质)∴//(内错角相等,两直线平行)E F ∴∠=∠.()【答案】见解析48.探究:如图1直线AB、BC、AC 两两相交,交点分别为点A、B、C,点D 在线段AB 上过点D 作//DE BC 交AC 于点E,过点E 作//EFAB 交BC 于点F.若50ABC ∠=︒,求∠DEF 的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解://DEBC ,DEF ∴∠=_________________.(_________________)//EF AB ,∴_____________ABC =∠.(_________________)DEF ABC ∴∠=∠.(等量代换)50ABC ∠=︒ ,DEF ∴∠=___________.应用:如图2,直线AB、BC、AC 两两相交,交点分别为点A、B、C,点D 在线段AB 的延长线上,过点D 作//DE BC 交AC 于点E,过点E 作//EFAB 交BC 于点F.若65ABC ∠=︒,则DEF ∠=_________.【答案】EFC ∠;两直线平行,内错角相等;EFC ∠;两直线平行,同位角相等;50︒;应用:115︒.49.如图,AC ,BC 分别平分∠MAB 和∠ABN ,∠ACB =90°.(1)AM 和BN 存在怎样的位置关系?并写出理由;(2)过点C 作一条直线,分别交AM ,BN 于点D ,E .则AB ,AD ,BE 三者间具有怎样的数量关系?并写出理由.【答案】(1)平行,理由见解析;(2)AD+BE=AB,理由见解析50.(1)如图1,要使//AB CD ,B ∠、P ∠、C ∠应满足的数量关系是_______________.(2)//AB CD ,直线MN 分别与AB 、CD 交于点M 、N ,平面内一点P 满足22AMP AMN ∠∠α==,①如图2,若NP MP ⊥于点P ,判断PNC ∠与PMB ∠的数量关系,并说明理由;②若040α<<︒,60MPN ∠=︒,求(PND ∠用含α的式子表示).【答案】(1)180P B C ∠+∠-∠=︒;(2)①90PNC PMB ∠-∠=︒;理由见解析;②1202PND α∠=︒-.51.已知:如图1,12180︒∠+∠=,∠=∠AEF HLN .(1)判断图中平行的直线,并给予证明;(2)如图2,2∠=∠PMQ QMB ,2∠=∠PNQ QND ,请判断P ∠与Q ∠的数量关系,并证明.【答案】(1)AB∥CD,EF∥HL,证明见解析;(2)∠P=3∠Q,证明解析.52.如图,AB∥CD,分别探讨下面四个图形中∠APC 与∠PAB、∠PCD 的关系,请你从所得到的关系中任选一个加以说明.........(适当添加辅助线,其实并不难)【答案】(1)∠APC=∠PAB+∠PCD;(2)∠APC+∠PAB+∠PCD=360°;(3)∠APC=∠PAB-∠PCD;(4)∠APC=∠PCD-∠PAB 证明见解析53.AB∥CD,C 在D 的右侧,BE 平分∠ABC,DE 平分∠ADC,BE、DE 所在直线交于点E.∠ADC=80°.(1)若∠ABC=50°,求∠BED 的度数;(2)将线段BC 沿DC 方向平移,使得点B 在点A 的右侧,其他条件不变,若∠ABC=120°,求∠BED 的度数.【答案】(1)65°;(2)160°54.问题情境1:如图1,AB ∥CD ,P 是ABCD 内部一点,P 在BD 的右侧,探究∠B ,∠P ,∠D 之间的关系?小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠B ,∠P ,∠D 之间满足关系.(直接写出结论)问题情境2如图3,AB ∥CD ,P 是AB ,CD 内部一点,P 在BD 的左侧,可得∠B ,∠P ,∠D 之间满足关系.(直接写出结论)问题迁移:请合理的利用上面的结论解决以下问题:已知AB ∥CD ,∠ABE 与∠CDE 两个角的角平分线相交于点F (1)如图4,若∠E =80°,求∠BFD 的度数;(2)如图5中,∠ABM =13∠ABF ,∠CDM =13∠CDF ,写出∠M 与∠E 之间的数量关系并证明你的结论.(3)若∠ABM =1n ∠ABF ,∠CDM =1n∠CDF ,设∠E =m °,用含有n ,m °的代数式直接写出∠M=.【答案】问题情境1:∠B +∠BPD +∠D =360°,∠P =∠B +∠D;(1)140°;(2)16∠E +∠M =60°(3)360m 2nM ︒︒-∠=55.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________.问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.【答案】(1)80︒;(2)①APEαβ∠=∠+∠,②APE βα∠=∠-∠,理由见解析;(3)1()2ANE αβ∠=∠+∠56.已知,点E、F 分别在直线AB,CD 上,点P 在AB、CD 之间,连结EP、FP,如图1,过FP 上的点G 作GH //EP,交CD 于点H,且∠1=∠2.(1)求证:AB //CD;(2)如图2,将射线FC 沿FP 折叠,交PE 于点J,若JK 平分∠EJF,且JK //AB,则∠BEP 与∠EPF 之间有何数量关系,并证明你的结论;(3)如图3,将射线FC 沿FP 折叠,将射线EA 沿EP 折叠,折叠后的两射线交于点M,当EM⊥FM 时,求∠EPF 的度数.【答案】(1)证明见解析;(2)∠BEP+23∠EPF=180º.证明见解析;(3)∠EPF=135º57.如图,已知//AB CD ,50A C ∠=∠=︒,线段AD 上从左到右依次有两点E 、F (不与A 、D 重合)(1)求证://AD BC ;(2)比较1∠、2∠、3∠的大小,并说明理由;(3)若:1:4FBD CBD ∠∠=,BE 平分ABF ∠,且1BDC ∠=∠,判断BE 与AD 的位置关系,并说明理由.【答案】(1)见解析;(2)∠1>∠2>∠3,理由见解析;(3)BE⊥AD,理由见解析58.如图,直线PQ ∥MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)若∠1与∠2都是锐角,如图甲,请直接写出∠C 与∠1,∠2之间的数量关系;(2)若把一块三角尺(∠A =30°,∠C =90°)按如图乙方式放置,点D ,E ,F 是三角尺的边与平行线的交点,若∠AEN =∠A ,求∠BDF 的度数;(3)将图乙中的三角尺进行适当转动,如图丙,直角顶点C 始终在两条平行线之间,点G 在线段CD 上,连接EG ,且有∠CEG =∠CEM ,求GENBDF∠∠值.【答案】(1)∠C=∠1+∠2,理由见解析;(2)60°;(3)259.问题情境(1)如图1,已知AB∥CD,∠PBA=125°,∠PCD=155°,求∠BPC的度数.佩佩同学的思路:过点P作PG∥AB,进而PG∥CD,由平行线的性质来求∠BPC,求得∠BPC=问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB=90°,DF∥CG,AB与FD相交于点E,有一动点P在边BC上运动,连接PE,PA,记∠PED=∠α,∠PAC=∠β.①如图2,当点P在C,D两点之间运动时,请直接写出∠APE与∠α,∠β之间的数量关系;②如图3,当点P在B,D两点之间运动时,∠APE与∠α,∠β之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P在C,D两点之间运动时,若∠PED,∠PAC的角平分线EN,AN相交于点N,请直接写出∠ANE与∠α,∠β之间的数量关系.【答案】(1)80°;(2)①∠APE=∠α+∠β;②∠APE=∠β﹣∠α,理由见解析;(3)∠ANE=1 2(∠α+∠β)60.(1)问题发现:如图1,已知点F,G分别在直线AB,CD上,且AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF的度数为;(2)拓展探究:∠GEF,∠BFE,∠CGE之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=.证明:过点E作EH∥AB,∴∠FEH=∠BFE(),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(),∴∠HEG=180°-∠CGE(),∴∠FEG=∠HFG+∠FEH=.(3)深入探究:如图2,∠BFE的平分线FQ所在直线与∠CGE的平分线相交于点P,试探究∠GPQ 与∠GEF之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE(3)∠GPQ+12∠GEF=90°61.已知:如图所示,直线MN∥GH,另一直线交GH于A,交MN于B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C在点A右边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC的度数;(2)如图2,当点C在点A右边且点D在点B右边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC的度数;(3)当点C在点A左边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线所在直线交于点P,请直接写出∠BPC的度数,不说明理由.【答案】(1)∠BPC=65°;(2)∠BPC=155°;(3)∠BPC=155°62.如图1,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.(1)求证:∠DEC +∠ECD =90°;(2)如图2,BF 平分∠ABD 交CD 的延长线于F 点,若∠ABC =100°,求∠F 的大小.(3)如图3,若H 是BC 上一动点,K 是BA 延长线上一点,KH 交BD 于M ,交AD 于O ,KG 平分∠BKH ,交DE 于N ,交BC 于G ,当H 在线段BC 上运动时(不与B 重合),求BAD DMHDNG∠∠∠+的值.【答案】(1)证明见解析;(2)40°;(3)2.63.已知//AB CD ,点E、F 分别在AB 、CD 上,点G 为平面内一点,连接EG 、FG .(1)如图,当点G 在AB 、CD 之间时,请直接写出AEG ∠、CFG ∠与G ∠之间的数量关系__________.(2)如图,当点G 在AB 上方时,且90EGF ︒∠=,求证:90︒∠-∠=BEG DFG;(3)如图,在(2)的条件下,过点E 作直线HK 交直线CD 于K,FT 平分DFG ∠交HK 于点T,延长GE 、FT 交于点R,若ERT TEB ∠=∠,请你判断FR 与HK 的位置关系,并证明.(不可以直接用三角形内角和180°)【答案】(1)∠G=∠AEG+∠CFG;(2)见解析;(3)FR⊥HK,理由见解析64.(1)问题情境:如图1,//AB CD ,130PAB ∠= ,120PCD ∠= .求APC ∠度数.小明的思路是:如图2,过点P 作//PE AB ,通过平行线性质,可得5060110APC ∠=+= .(2)问题迁移(1)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,BCP β∠=∠.猜想CPD ∠、α∠、β∠之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请写出CPD ∠、α∠、β∠之间的数量关系.选择其中一种情况画图并证明.【答案】(1)CPD αβ∠=∠+∠,证明见解析;(2)当点P 在,A M两点之间时,CPD βα∠=∠-∠;当点P 在,B O 两点之间时,CPD αβ∠=∠-∠,证明见解析.65.已知AB //CD ,点M ,N 分别在直线AB 、CD 上,E 是平面内一点,∠AME 和∠CNE 的平分线所在的直线相交于点F .(1)如图1,当E 、F 都在直线AB 、CD 之间且∠MEN =80°时,∠MFN 的度数为;(2)如图2,当E 在直线AB 上方,F 在直线CD 下方时,探究∠MEN 和∠MFN 之间的数量关系,并证明你的结论;(3)如图3,当E 在直线AB 上方,F 在直线AB 和CD 之间时,直接写出∠MEN 和∠MFN 之间的数量关系.【答案】(1)45°;(2)∠MEN =2∠MFN ,证明见解析;(3)11802E MFN ∠+∠=︒66.已知:如图1,AB∥CD,点E,F 分别为AB,CD 上一点.(1)在AB,CD 之间有一点M(点M 不在线段EF 上),连接ME,MF,试探究∠AEM,∠EMF,∠MFC 之间有怎样的数量关系.请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明;(2)如图2,在AB,CD 之间有两点M,N,连接ME,MN,NF,请选择一个图形写出∠AEM,∠EMN,∠MNF,∠NFC 存在的数量关系(不需证明).【答案】(1)∠EMF=∠AEM+∠MFC,∠AEM+∠EMF+∠MFC=360°;(2)第一图数量关系:∠EMN+∠MNF-∠AEM-∠NFC=180°;第二图数量关系:∠EMN-∠MNF+∠AEM+∠NFC=180°.67.阅读下面材料:彤彤遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D .彤彤是这样做的:过点E作EF//AB,则有∠BEF=∠B.∵AB//CD,∴EF//CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D.请你参考彤彤思考问题的方法,解决问题:如图乙.已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.(1)如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;(2)如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,直接写出∠BED的度数(用含有α,β的式子表示).【答案】(1)65°;(2)11 18022αβ︒-+68.对于平面内的∠M和∠N,若存在一个常数k>0,使得∠M+k∠N=360°,则称∠N为∠M的k系补周角.如若∠M=90°,∠N=45°,则∠N为∠M的6系补周角.(1)若∠H=120°,则∠H的4系补周角的度数为;(2)在平面内AB∥CD,点E是平面内一点,连接BE,DE.①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数;②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P点运动过程中,请你确定一个点P的位置,使得∠BPD 是∠F 的k 系补周角,并直接写出此时的k 值(用含n 的式子表示).【答案】(1)60°;(2)①75°,②当BG 上的动点P 为∠CDG 的角平分线与BG 的交点时,满足∠BPD 是∠F 的k 系补周角,此时k=2n,推导见解析.69.阅读下面材料,完成(1)~(3)题.数学课上,老师出示了这样—道题:如图1,已知//,AB CD 点,E F 分别在,AB CD 上,,160EP FP ⊥∠=︒.求2∠的度数.同学们经过思考后,小明、小伟、小华三位同学用不同的方法添加辅助线,交流了自己的想法:小明:“如图2,通过作平行线,发现13,24∠=∠∠=∠,由已知,EPFP ⊥可以求出2∠的度数.”小伟:“如图3这样作平行线,经过推理,得234,∠=∠=∠也能求出2∠的度数.”小华:∵如图4,也能求出2∠的度数.”(1)请你根据小明同学所画的图形(图2),描述小明同学辅助线的做法,辅助线:______;(2)请你根据以上同学所画的图形,直接写出2∠的度数为_________°;老师:“这三位同学解法的共同点,都是过一点作平行线来解决问题,这个方法可以推广.”请大家参考这三位同学的方法,使用与他们类似的方法,解决下面的问题:(3)如图,//AB CD ,点,E F 分别在AB CD ,上,FP 平分,,EFD PEF PDF ∠∠=∠若,EPD a ∠=请探究CFE ∠与PEF ∠的数量关系((用含α的式子表示),并验证你的结论.【答案】(1)过点Р作//PQ AC ;(2)30;(3)2180CFE PEFa ∠-∠=- .70.如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;(问题迁移)(2)如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;(问题应用):(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.【答案】(1)110°;(2)∠APC=∠α+∠β,理由见解析;(3)∠CPA=∠α-∠β或∠CPA=∠β-∠α71.如图,AD 平分∠BAC 交BC 于点D,点F 在BA 的延长线上,点E 在线段CD 上,EF 与AC 相交于点G,∠BDA+∠CEG=180°.(1)AD 与EF 平行吗?请说明理由;(2)若点H 在FE 的延长线上,且∠EDH=∠C,则∠F 与∠H 相等吗,请说明理由.【答案】见解析72.如图①,已知AB ∥CD ,一条直线分别交AB 、CD 于点E 、F ,∠EFB =∠B ,FH ⊥FB ,点Q 在BF 上,连接QH .(1)已知∠EFD =70°,求∠B 的度数;(2)求证:FH 平分∠GFD .(3)在(1)的条件下,若∠FQH =30°,将△FHQ 绕着点F 顺时针旋转,如图②,若当边FH 转至线段EF 上时停止转动,记旋转角为α,请直接写出当α为多少度时,QH 与△EBF 的某一边平行?【答案】(1)35°;(2)见解析;(3)30°或65°或175°或210°73.一、问题情境:在综合与实践课上,老师让同学们以“两条平行线AB,CD 和一块含60︒角的直角三角尺()90,60EFGEFG EGF ∠=∠= ”为主题开展数学活动.二、操作发现:(1)如图1,小明把三角尺的60 角的顶点G 放在CD 上,若221∠=∠,求1∠的度数;(2)如图2,小颖把三角尺的两个锐角的顶点E、G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠之间的数量关系;三、结论应用:(3)如图3,小亮把三角尺的直角顶点F 放在CD 上,30 角的顶点E 落在AB 上.若AEG α∠=,求CFG ∠的度数(用含α的式子表示).【答案】(1)140∠=︒;(2)+=90AEF FGC ∠∠︒,见解析;(3)60CFG α∠=︒-74.(1)如图1,已知直线AB∥CD,点P 为平行线AB,CD 之间的一点.若∠ABP=50°,∠CDP=60°,BE 平分∠ABP,DE 平分∠CDP,求∠BED 的度数.(2)探究:如图2,当点P 在直线AB 的上方时,若∠ABP=α,∠CDP=β,∠ABP 和∠CDP 的平分线交于点E 1,∠ABE 1与∠CDE 1的角平分线交于点E 2,∠ABE 2与∠CDE 2的角平分线交于点E 3,…以此类推,请直接写出∠E n 的度数.(3)变式:如图3,∠ABP 的角平分线的反向延长线和∠CDP 的补角的角平分线交于点E,请直接写出∠P 与∠E 的数量关系.【答案】(1)55°;(2)12n (β-α);(3)∠DEB=90°-12∠P.75.在平面直角坐标系中,D (0,﹣3),M (4,﹣3),直角三角形ABC 的边与x 轴分别相交于O 、G 两点,与直线DM 分别交于E 、F 点,∠ACB =90°.(1)将直角三角形如图1位置摆放,如果∠AOG =46°,则∠CEF =;(2)将直角三角形ABC 如图2位置摆放,N 为AC 上一点,∠NED +∠CEF =180°,请写出∠NEF 与∠AOG 之间的等量关系,并说明理由.(3)将直角三角形ABC 如图3位置摆放,若∠GOC =140°,延长AC 交DM 于点Q ,点P 是射线GF 上一动点,探究∠POQ ,∠OPQ 与∠PQF 的数量关系,请直接写出结论(题中的所有角都大于0°小于180°).。
人教版七年级数学下册第五章平行线的性质复习试题(含答案)如图,已知直线a、b被直线l所截,且a∥b,∠1=85º,那么∠2 =_________度;【答案】95【解析】【分析】先根据邻补角的定义求出∠1的邻补角,再根据两直线平行,同位角相等解答即可.【详解】如图,∵∠1=85°,∴∠3=180°-∠1=180°-85°=95°,∵a∥b,∴∠2=∠3=95°.故答案是:95.【点睛】考查了平行线的性质,平角的定义,熟记性质是解题的关键.52.如果一个角的两边分别平行于另一个角的两边,且其中一个角是另一个角的4倍,则这个两个角的度数分别是__________【答案】36°,144°.【解析】【分析】如果两个角的两边互相平行,那么这两个角相等或互补,又因为其中一个角是另一个角的3倍,故这两个角应互补,根据题意,列方程求解即可.【详解】解:由题意知,这两个角互补,设这两个角分别为x,4x,则x+4x=180°,解得x=36°,4x=144°.故答案为36°,144°.【点睛】本题考查了平行线的性质,注意根据平行线的性质证明的一个结论:如果两个角的两边互相平行,那么这两个角相等或互补.显然此题中,不可能相等.53.如图,直线a∥b,点A、B位于直线a上,点C、D位于直线b上,且AB:CD=1:3,若△ABC的面积为5,则△BCD的面积为__________________【答案】15【分析】由已知得:△BCD 和△ABC 的高相等,面积之比就是他们的底边之比.【详解】解:根据题意△BCD 和△ABC 的高相同,可设为h ,12ABC S AB h ∆=• 12BCD S BD h ∆=• 又因为AB :CD=1:3,则:3BCD ABC S S ∆∆==15【点睛】本题主要考查平行线间的距离相等,即即△BCD 和△ABC 的高相等是解答本题的关键.54.如图,折叠宽度相等的长方形纸条,若248∠=,则1∠=______.【答案】66°【解析】【分析】根据平行线与折叠的性质即可求解.【详解】根据平行线与折叠的性质,∠1=(180°-∠2)÷2=66°此题主要考查度数的求解,解题的关键是熟知两直线平行,内错角相等.55.如图,直线a∥b,直线l与a,b分别交于A,B两点,过点B作BC⊥AB 交直线a于点C,若∠1=35°,则∠2=_____度.【答案】55【解析】【分析】先根据两直线平行,同旁内角互补,得出∠1+∠ABC+∠2=180°,再根据BC∠AB,∠1=35°,即可得出∠2的度数.【详解】∵直线a∠b,∠∠1+∠ABC+∠2=180°,又∵BC∠AB,∠1=35°,∠∠2=180°﹣90°﹣35°=55°,故答案为55.【点睛】本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.本题也可以根据∠ACB的度数,得出∠2的度数.三、解答题56.已知AD∥EF,∠1=∠2.试说明:AB∥DG【答案】见解析【解析】【分析】由AD与EF平行,利用两直线平行同位角相等得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【详解】证明:∵AD∥EF,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴AB∥DG.【点睛】考查平行线的判定与性质,掌握平行线的判定方法是解题的关键.57.如图,已知∠1=∠2,∠3+∠4=180°,证明AB∥EF.【答案】答案见解析【解析】【分析】根据∠1=∠2利用“同位角相等,两直线平行”可得出AB∥CD,再根据∠3+∠4=180°利用“同旁内角互补,两直线平行”可得出CD∥EF,从而即可证出结论.【详解】∵∠1=∠2,∴AB∥CD.∵∠3+∠4=180°,∴CD∥EF,∴AB∥EF.【点睛】本题考查了平行线的判定,解题的关键是分别找出AB∥CD、CD∥EF.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的直线是关键.58.如图,已知AB∥CD,EF∥MN,∥1=115°.(1)求∥2和∥4的度数;(2)本题隐含着一个规律,请你根据(1)的结果进行归纳:如果一个角的两边分别平行于另一个角的两边,那么这两个角___________.【答案】(1) ∠ 2=115°,∠4=65°;(2)相等或互补【解析】【分析】(1)由平行线的性质可求得∠2,再求得∠4;(2)由(1)的结果可得到这两个角相等或互补.【详解】(1)∵AB∥CD,∴∠2=∠1=115°.∵EF∥MN,∴∠4+∠2=180°,∴∠4=180°﹣∠2=65°.(2)由(1)可知:如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.故答案为:相等或互补.【点睛】本题考查了平行线的性质,掌握平行线的性质和判定是解题的关键,解题时注意:①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.59.如图1,AB,BC被直线AC所截,点D是线段AC上的点,过点D 作DE//AB,连接AE,∠B=∠E=70°.(1)请说明AE//BC的理由.(2)将线段AE沿着直线AC平移得到线段PQ,连接DQ.①如图2,当DE⊥DQ时,求∠Q的度数;②在整个运动中,当∠Q=2∠EDQ时,则∠Q= .【答案】(1)详见解析;(2)①20°;②1403【解析】【分析】(1)由DE//AB,可得∠BAE+∠E=180°,从而可证∠BAE+∠B=180°,根据从旁内角互补,两直线平行可证AB//DE;(2)∠过D点作DF//AE,由平行线的性质可得∠EDF=70°,由DE∠DQ,可得∠FDQ=20°,进而可的求出∠Q=20°;②如图,作DF//AE,根据平行线的性质解答即可.【详解】(1)证明:∠DE//AB,∠∠BAE+∠E=180°.又∠∠B=∠E,∠∠BAE+∠B=180°,∠AB//DE;(2)∠过D点作DF//AE,∠PQ//AE ,∠DF//PQ,∠∠E=70°,∠∠EDF=70°.∠DE∠DQ,∠∠EDQ=90°,∠∠FDQ=90°-70°=20°,∠∠Q=∠FDQ=20°;∠如图,作DF//AE,∠PQ//AE ,∠DF//PQ,∴∠Q=∠QDF,∠E=∠EDF=70°,∴∠EDQ+∠Q=70°,∵∠Q=2∠EDQ,∴12∠Q+∠Q=70°,∴∠Q=(1403)°.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.也考查了平行公理的推论:平行于同一直线的两条直线互相平行.60.如图,已知直线AC∥BD,且直线AB和AC、BD分别交于A、B两点,直线CD和AC、BD分别交于C、D两点,点P在直线AB上.(1)如果点P在A、B两点之间运动时(如图1),试找出∠PCA、∠PDB、∠CPD之间的关系,并说出理由;(2)如果点P在A、B两点外侧运动时(如图2,图3),问∠PCA、∠PDB、∠CPD之间的关系是否发生变化?试分别利用图2,图3探究∠PCA、∠PDB、∠CPD之间的关系(点P和A、B不重合).【答案】∠CPD=∠PCA+∠PDB,理由见解析;(2)①当点P在线段AB 的延长线上运动时,∠CPD=∠PCA-∠PDB;②当点P在线段BA的延长线上运动时,∠CPD=∠PDB-∠PCA.【解析】【分析】(1)过点P作a的平行线,根据平行线的性质进行求解;(2)①当点P在线段AB的延长线上运动时,过点P作b的平行线PE,由平行线的性质可得出a∥b∥PE,由此即可得出结论;②当点P在线段BA的延长线上运动时,设直线AC与DP交于点F,由三角形外角的性质可得出∠1+∠3=∠PFA,再由平行线的性质即可得出结论.【详解】(1)如图1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2,即∠CPD=∠PCA+∠PDB;(2)①当点P在线段AB的延长线上运动时,∠CPD=∠PCA-∠PDB.理由:如图2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠EPC,∵∠3=∠EPC-∠EPD,∴∠3=∠1-∠2,即∠CPD=∠PCA-∠PDB;②当点P在线段BA的延长线上运动时,∠CPD=∠PDB-∠PCA.证明:如图3,设直线AC与DP交于点F,∵∠PFA是△PCF的外角,∴∠PFA=∠1+∠3,∵a∥b,∴∠2=∠PFA,∴∠2=∠1+∠3,∴∠3=∠2-∠1,即∠CPD=∠PDB-∠PCA.【点睛】本题考查的是平行线的性质,根据题意作出平行线,利用两直线平行,内错角相等进行推导是解答此题的关键.。
A组:基础训练
⑴如1,用吸管吮吸易拉罐内饮料时,吸管与易拉罐下部夹角∠1=74°,那么吸管与易拉罐下部夹角∠2____度.
⑵如图2,设AB∥CD,截线EF与AB、CD分别相交于M、N两点.请你从中选出两个你认为相等的一对角____________.
⑶如图3,给出了过直线外一点作已知直线的平行线的方法,其依据是()
A、同位角相等,两直线平行
B、内错角相等,两直线平行
C、同旁内角互补,两直线平行
D、两直线平行,同位角相等
⑷如图,a//b,是的3倍,求的度数。
⑸如图,,点在的延长线上,若,求的度数
通过练习,说说你的收获与不足
B组:巩固提高
⑴如图,∠1=∠2,则∠2与∠3的关系是,∠1与∠3的关系是 .
⑵如图,DE∥BC,EF∥AB,图中与∠BFE互补的角共有()
A.、3个
B.、2个
C.、5个
D.、4个。
⑶如果两个角的两条边互相平行,那么这两个角()
A.一定相等 B.一定互补 C.相等或互补 D.可能既不相等也不互补
⑷如图,把矩形沿对折,若,则等于()
A、 B、 C、 D、
⑸如图,已知∠ABC=40°,∠ACB=60°,BO,CO平分∠ABC和∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.
通过练习,写下你的收获与不足
C组:拓广探索
⑴如图a//b,∠1=70°,∠2=35°,则∠3=∠4
=
⑵如图,AB∥CD,∠1=110°,∠ECD=70°,则∠E的大小是()
A、30°
B、40°
C、50°
D、60°
⑶如图,E是DF上一点,B是AC上一点,∠1=∠2,∠C=∠D,求证:∠A=∠F。
说出你的收获与不足
4、课堂小测
1、如图,已知AB∥CD,EF交AB,CD于G, H, GM, HN分别平分,试说明GM ∥HN.
2、已知AB∥CD,BC∥DE.试说明.。