(word完整版)分子生物学总结完整版,推荐文档
- 格式:doc
- 大小:130.51 KB
- 文档页数:10
分子生物学1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。
2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。
3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。
4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。
甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。
真核生物中的DNA甲基化则在基因表达调控中有重要作用。
真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’.5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。
“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。
6.DNA双螺旋结构模型要点:(1)DNA是反向平行的互补双链结构。
(2)DNA双链是右手螺旋结构。
螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA 双链说形成的螺旋直径为2 nm。
每个碱基旋转角度为36度。
DNA双螺旋分子表面存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。
(3)疏水力和氢键维系DNA双螺旋结构的稳定。
DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。
7.核小体的组成:染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。
各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。
核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。
8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。
9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。
分子生物学总结分子生物学总结1.分子生物学的三大原则根据“序列假说”、“中心法则”这两个基本原则,分子生物学作为所有生命物质的共性学科遵循“三大原则:其一,构成生物大分子的单体是相同的。
在动物、植物、微生物3大系统的所有生物物种间都具有共同的核酸语言,即构成核酸大分子的单体均是A、T(U)、C、G。
所有生物物种间都具有共同的蛋白质语言,即构成蛋白质大分子的单体均是20种基本氨基酸。
其二,生物大分子单体的排列决定了不同生物性状的差异和个性特征。
其三,所有遗传信息表达的中心法是相同的。
2.简述Morgan基因论经典基因概念:即基因是孤立的排列在染色体上的实体,是具有特定功能的,能独立发生突变和遗传交换的,“三位一体”的、最小的遗传单位。
3.简述“顺反子假说”的主要内容顺反子理论认为:基因(即顺反子)是染色体上的一个区段,在一个顺反子内有若干个交换单位,最小的交换单位被称为交换子。
在一个顺反子中有若干个突变单位,最小的突变单位被称为突变子。
在一个顺反子结构区域内,若果发生突变就会导致功能丧失,所以顺反子即基因只是一个具有特定功能的、完整的、不可分割的最小的遗传单位。
4.名词解释:等位基因、全同等位基因、非全同等位基因等位基因(allele):同一座位存在的两个不同状态的基因全同等位基因(homoallele):在同一基因座位(locus)中,同一突变位点(site)向不同方向发生突变所形成的等位基因非全同等位基因(heteroallele):在同一基因座位(locus)中,不同突变位点(site)发生突变所形成的等位基因5.简述DNA作为遗传物质的优点(自然选择的优势)DNA作为主要的遗传物质的优点在于:1)储存遗传信息量大,在1kb DNA序列中,就可能编码出41000种遗传信息2)以A / T, C / G 互补配对形成的双螺旋,结构稳定,利于复制,便于转录,可以突变以求不断进化,方便修复以求遗传稳定;3)核糖的2’ – OH 脱氧,使其在水中的稳定性高于RNA,DNA 中有T无U,消除了C突变为U带来进化中的负担和潜在危险。
分子生物学课程总结分子生物学课程总结范文(精选7篇)分子生物学课程总结1三天的分子生物学实习,我能认真听老师的讲解和很好的按照老师的安排完成实验。
期间,接触和学习到了很多有关分子生物学实验的方法、仪器的使用、技术,而且对分子生物学实验有一个大致的了解,学习到很多以前没有接触过的知识。
这几天来做的不足的地方有:1、预习不够充分。
只是浏览了实验报告上的原理、操作等内容,并没有深入了解每一个步骤的操作会对实验有什么的作用和影响。
实验失败了,不能自主找到原因。
2、实验操作过程不够细心。
实验要求十分细心,严谨和专注。
实验中很多细小的地方还是没有很好的注意到。
3、遇到不懂的没有及时发问。
实验就是一个让我们实操的过程,一边操作一边巩固书本上的知识。
过程中,遇到不明白的地方应该及时问别人活着自己翻阅资料,力求把实验弄透彻。
但是我还是有很多收获的:1、对分子生物学实验有了了解。
例如实验的基本的流程和操作,常用的方法等基础知识已经有了一定了解,对以后的实验会有一定的帮助。
2、最基本的移液枪、离心机、涡旋器等的使用还有实验中的PCR 仪、电泳等有一定的认。
3、学会了严谨和细心。
实验所用的材料都是比较昂贵的,而且实验只要一步错了,就得重做。
所以需要非常严谨。
不仅仅是分子生物学实验,其他实验也要求,所以培养这个有点对以后的实验非常有好处。
4、学会了坚持。
很多次因为实验做的时间很长,大家都会很累,但是,还是要坚持,一点点累都受不了是不能把实验做好的。
开始慢慢了解到做科研的人员的辛酸,长时间整天呆在实验室做实验,这需要很大的毅力。
5、把握实验机会,让自己学得更多。
实验过程中,只要有实操的机会,我都会去操作。
因为说和做是不一样的。
而且在操作中能加深巩固知识和学得更加深入。
三天的分子生物学实习虽然很累,因为要天天去院楼,而却实验时间都比较长。
但是还是很有意义的,因为学习到很到东西,收获了很多。
老师也为我们准备了很多的材料和准备,实验才做得那么快和顺利,其实,实验室简化了很多了,而且我们所做的实验都是已经设计好的,按照操作做就行了。
分子生物学总结(一)引言概述:分子生物学是现代生物学研究的重要分支领域,通过研究生物体内的生物大分子(如核酸、蛋白质等)的结构、功能和相互作用等问题,揭示生物体内生命活动的分子基础。
本文将对分子生物学的核心概念进行总结,包括DNA、RNA、蛋白质、基因调控以及分子遗传学等五个方面。
正文:一、DNA1. DNA的结构:双螺旋结构、碱基配对、磷酸二酯桥、五碱基2. DNA复制:半保留复制、DNA聚合酶、起始子、复制泡3. DNA修复:直接修复、错配修复、碱基切除修复4. DNA重组:同源重组、非同源重组、错配修复5. DNA技术:PCR、DNA测序、基因工程二、RNA1. RNA的功能:信息传递、信息储存、酶催化、调控基因表达2. mRNA的合成:转录、RNA聚合酶、启动子、转录因子3. rRNA和tRNA:核糖体、蛋白质合成、翻译、启动子、终止子4. RNA修饰:剪接、剪切体、甲基化、翻译后修饰5. RNA干扰:siRNA、miRNA、RNA干涉三、蛋白质1. 蛋白质的结构:氨基酸序列、一级、二级、三级结构、蛋白质域2. 蛋白质的合成:翻译、核糖体、启动子、终止子3. 蛋白质的修饰:磷酸化、乙酰化、甲基化、糖基化4. 蛋白质的折叠:分子伴侣、伽马泡沫5. 蛋白质的功能:结构蛋白、酶、激素、抗体四、基因调控1. 转录的调控:启动子、转录因子、转录抑制因子2. 转录后调控:剪接、RNA降解、RNA干涉、翻译调控3. 染色质的结构:DNA甲基化、组蛋白修饰、染色体构象4. 染色质的调控:修饰酶、组蛋白翻译因子、染色质重塑5. 表观遗传调控:组蛋白甲基化、组蛋白乙酰化、DNA甲基化五、分子遗传学1. 遗传信息的传递:基因、等位基因、基因型、表型2. 突变:点突变、重组、演化3. 基因家族:同源基因、家族扩张、功能分化4. 基因表达调控:转录因子、miRNA、表观遗传调控5. 分子进化:基因演化、分子钟、系统发育总结:通过对分子生物学核心概念的总结,我们了解到DNA、RNA和蛋白质在生物体内起着重要的功能和调控作用,而基因调控和分子遗传学则是揭示生物体内分子基础和发展演化的重要研究领域。
四个阶段:一、以导致遗传病的基因突变位点为靶标,以DNA分子杂交为核心二、以PCR技术为核心三、以生物芯片为核心四、以DNA测序技术为核心广义:分子标志物包括基因组DNA、各种RNA、蛋白质和各种代谢物临床分子生物学检验靶标主要以核酸(DNA和RNA)为主基因组DNA是临床分子生物学检验中最常用的分子靶标病原生物基因1。
菌种鉴定:PCR—测序和PCR—DNA探针杂交;缩短检测时间2。
确定病毒感染和病毒载量:明确感染源,判断病情,监测疗效3.病毒分析:基因型变异产生不同临床症状4。
细菌耐药监测和分子流行病学调查 :随机扩增多态性DNA;指导选择治疗方案,控制病原菌的感染传播基因变异1。
致病基因的分子缺陷 2.线粒体基因突 3。
肿瘤相关基因单基因病1。
致病基因结构发生了改变,影响了编码产物量和质的改变,如血红蛋白病、血友病、Duchenne肌营养不良等。
2。
致病基因中核苷酸三联体重复序列发生高度扩展,如脆性X综合征、亨廷顿病、强直性肌营养不良等。
基因多态性用于:1.基因定位和疾病相关性分析2。
疾病诊断和遗传咨询3。
多基因病的研究4。
器官移植配型和个体识别循环游离核酸检测(包括游离DNA和游离RNA)用于:产前诊断、恶性肿瘤早期诊断、病例检测临床分子生物学检验技术以分子杂交技术、PCR技术和DNA测序技术、芯片技术、双向电泳技术、生物信息学技术为主要技术分子生物学检验技术可用于微生物感染的确诊、感染性病原体的分型、耐药监测。
分子生物学检验技术有利于临床上对遗传性疾病的早期预防、早期诊断、早期治疗。
重要国际生物信息中心:1.美国国立生物技术信息中心(NCBI)2.欧洲生物信息学研究所(EBI) 3。
日本国立遗传研究所(DDBJ)一级核酸数据库有GenBank、EMBL和DDBJ;蛋白质序列数据库有SWISS-PROT、PIR、UNIPRO T等。
蛋白质X射线晶体三维结构数据库有PDB等.蛋白质数据库常用的有SWISS—PROT、 PIR、 PDB数据库。
第一章遗传物质基础1.2 DNA的结构DNA一级结构:定义:指DNA 分子中四种脱氧核苷酸按照一定的排列顺序,通过磷酸二酯键连接形成的多核苷酸。
方向性:5’→3’5’-端:C5’没有和其他核苷酸相连的末端残基,含磷酸,又称5’磷酸端3’-端:C3’没有和其他核苷酸相连的末端残基,含有-OH,又称3’羟基端通常用bp、kb或Mb的数目表示大小生理pH下,核酸是多聚阴离子化合物DNA的二级结构:DNA双螺旋结构的研究背景:碱基组分分析(Chargaff 规则):不同来源DNA:[A] = [T],[G] = [C]。
不同物种DNA:A+T/G+C不同。
A+G = T+C DNA双螺旋结构模型要点:主链:1由脱氧核糖和磷酸基通过酯键交替连接而成。
2二条主链相互平行而走向相反形成右手双螺旋构型3主链处于螺旋外侧,亲水性4螺旋直径为2nm,形成大沟及小沟相间碱基对:1 碱基位于螺旋的内侧,同一平面的碱基在二条主链间形成碱基对(A=T 和G=C),以氢键维系。
2碱基平面取向与螺旋轴垂直。
螺距3.4nm,螺旋周期含10碱基对,相邻碱基平面间距0.34nm。
作用力:碱基堆积力:在水相中,轴向平行相邻的碱基平面将自发地相互靠近,从而形成碱基堆积,它的实质是疏水相互作用和范德华引力。
DNA双螺旋结构的多态性:DNA的分子结构是动态的,在不同的条件下可以有所不同。
A构象B构象C构象D构象Z构象DNA的三级结构:定义:双螺旋DNA进一步扭曲盘绕则形成其三级结构,是一种比双螺旋更高层次的空间构象。
超螺旋是DNA三级结构的主要形式。
超螺旋按其方向分分类正超螺旋:形成超螺旋时的旋转方向与DNA双螺旋方向相同,结果加大了DNA分子内部张力,有紧旋效应。
负超螺旋:形成超螺旋时旋转方向与DNA双螺旋方向相反,旋转结果使DNA分子内部张力减小,称为松旋效应。
在自然条件下共价封闭环状DNA呈负超螺旋结构。
DNA超螺旋的特点:1环状DNA分子:双螺旋扭曲而形成麻花状的超螺旋结构。
第一章绪论分子生物学分子生物学的基本含义(p8)分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
分子生物学与其它学科的关系分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同学科专长的科学家的共同努力。
它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。
生物化学与分子生物学关系最为密切:生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物分子的结构、转变与新陈代谢。
传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。
分子生物学则着重阐明生命的本质----主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。
细胞生物学与分子生物学关系也十分密切:传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。
探讨组成细胞的分子结构比单纯观察大体结构能更加深入认识细胞的结构与功能,因此现代细胞生物学的发展越来越多地应用分子生物学的理论和方法。
分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成分的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层次组织和相互作用,尤其是细胞整体反应的分子机理,这在某种程度上是向细胞生物学的靠拢。
第一章序论1859年发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。
指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。
达尔文第一个认识到生物世界的不连续性。
意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的贡献。
细胞学说建立及其意义德国植物学家施莱登和动物学家施旺共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。
一1、分子生物学:研究核酸等生物大分子的功能、形态结构等特征及其重要性和规律性的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动的适应自然界转向主动地改造和重组自然界的基础学科2、基因:是合成一种功能蛋白或RNA分子所必需的全部DNA序列。
一个典型的真核基因包括:编码序列-外显子;内含子;5’端和3’端非翻译区UTR;调控序列3、基因组:某一特定生物体的整套遗传物质的综合。
基因组的大小用全部的DNA的碱基对总数表示5、分子生物学发展史1869年Miesher首次从莱茵河鲑鱼精子中提取了DNA。
1910年,德国科学家Kossel第一个分离了腺嘌呤、胸腺嘧啶和组氨酸。
1953年,Watson和Crick提出DNA反向平行双螺旋结构模型,为充分解释遗传信息的传递规律铺平了道路。
1961年,法国科学家Jacob和Monod提出并证实了操纵子作为调节细菌细胞代谢的分子机制。
此外,他们还首次提出存在一种与染色体DNA序列相互补、能将编码在染色体DNA上的遗传信息带到蛋白质合成场所并翻译产生蛋白质的信使核糖核酸。
这一学说对分子生物学的发展起到了十分重要的作用。
1968年,美国科学家Nirenberg由于在破译DNA遗传密码方面的贡献,与Holley和Khorana 等人分享了诺贝尔生理医学奖。
Holley的功绩在于阐明了酵母丙氨酸tRNA的核苷酸序列,并证实所有tRNA 具有相似结构,而Khorana第一个合成了核苷酸分子,并且人工复制了酵母基因6、中心法则内容DNA是自身复制的模板DNA通过转录作用将遗传信息传递给中间物质RNARNA通过翻译作用将遗传信息表达成蛋白质在某些病毒中,RNA也可以自我复制,并且还发现在一些病毒蛋白质的合成过程中,RNA可以在逆转录酶的作用下合成DNA.7、分子生物学的3条基本原理:构成生物体各类有机大分子的单体在不同生物中都是相同的;生物体内一切有机大分子的构成都遵循共同的规则;某一特定生物体所拥有的核酸及蛋白质分子决定了它的属性。
分子生物学第一章绪论分子生物学研究内容有哪些方面?1、结构分子生物学;2、基因表达的调节与控制;3、DNA重组技术及其应用;4、结构基因组学、功能基因组学、生物信息学、系统生物学第二章DNA and Chromosome1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。
2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。
3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度)4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。
以Ψ来表示。
6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。
7、转座:可移动因子介导的遗传物质的重排现象。
8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。
特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H512、核小体组成:由组蛋白和200bp DNA组成13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。
复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。
非复制型转座:原始转座子作为一个可移动的实体直接被移位。
第三章DNA Replication and repair1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱基配对规律,合成与模板互补的子链。
子代细胞的DNA,一股单链从亲代完整地接受过来,另一股单链则完全从新合成。
两个子细胞的DNA都和亲代DNA碱基序列一致。
这种复制方式称为半保留复制。
2、复制子:生物体内能独立进行复制的单位3、前导链:以复制叉移动的方向为标准,一条模板链的走向是3’→5’,子代链复制时以5’→3’方向连续合成,这一条链称为前导链4、滞后链:另一条模板链的走向是5’→3’,子代链通过不连续的5ˊ-3ˊ聚合而成,称为滞后链(lagging strand)。
5、冈崎片段:滞后链的合成是一段一段的。
DNA复制时,由滞后链所形成的子代DNA短链称为冈崎片段6、端粒:是真核生物线性染色体末端的特殊结构,含物种特异性(species-specific)的DNA 重复序列。
7、逆转录:以RNA为模板, 按照RNA中的核苷酸顺序合成DNA的过程,称为反转录(reverse transcription, RT)。
该过程由逆转录酶催化进行,亦称反转录8、DNA复制的主要特征:半保留复制、双向复制、半不连续复制、保真性9、DNA复制的几种方式:10、DNA polymerases(DNA聚合酶)in E. Coli及其主要功能DNA Pol Ⅳ:din B编码DNA Pol Ⅴ:umc C, umc D编码两者涉及DNA的错误倾向修复(error-prone repair)。
当DNA受到较严重损伤时,即可诱导产生这两个酶,使修复缺乏准确性(accuracy),因而出现高突变率。
高突变率虽会杀死许多细胞,但至少可以克服复制障碍,使少数突变的细胞得以存活。
11、单链DNA结合蛋白(SSB):在复制中维持模板处于单链状态并保护单链的完整。
其作用是保证被解链酶解开的单链在复制完成之前能保持单链结构。
12、常见的真核细胞DNA聚合酶及其功能13、原核生物DNA复制的过程(课本P50-P52)1)复制的起始:识别起始点,合成引发体:在E.coli,DnaA蛋白识别并结合ori,DnaC 协助DnaB 蛋白(解链酶, helicase)结合于ori ,DNA双链局部被打开,引物酶及其他蛋白加入,形成引发体。
形成单链:促旋酶(II型拓扑异构酶)解开DNA超螺旋,解链酶解开双链,单链结合蛋白SSB结合于处于单链状态模板链上。
合成引物:前导链的引物由RNA聚合酶合成,滞后链的引物由引发酶合成。
引物提供3’-OH,复制进入延伸阶段2)复制的延伸:按照与模板链碱基配对的原则,在DNA聚合酶III的作用下,逐个加入脱氧核糖核酸,使链延长。
DNA聚合酶的即时校读和碱基选择功能,确保复制的保真性。
由于DNA双链走向相反,DNA聚合酶只能催化核苷酸从5’→3’方向合成,前导链的复制方向与解链方向一致,可以连续复制,而另一模板链沿5’→3’方向解开,随从链(滞后链)的复制方向与解链方向相反,复制只能在模板链解开一定长度后进行,因此随从链的合成是不连续的,形成的是若干个岗崎片段。
DNA聚合酶I的3’-5’核酸外切酶活性去除RNA引物。
DNA聚合酶I填补DNA间隙。
连接酶使相邻两个DNA片段的3’-OH末端和5’-P末端形成3’,5’磷酸二酯键。
3)复制的终止:两个复制叉的汇合点就是复制的终点。
两个复制叉向前推移,在终止区相遇而停止复制,复制体解体14、DNA复制过程中后随链的合成:后随链开始合成DNA时,需要一段RNA引物、后随链的引发过程引发体来完成引发体像火车头一样在后随链分叉的方向上前进,并在模板上断断续续地引发生成后随链的引物RNA短链,再由DNA聚合酶III作用合成DNA,直到遇到下一个引物或冈崎片段为止。
由RNaseH降解RNA引物并由DNA聚合酶I将缺口补齐,再由DNA连接酶将两个冈崎片段连接在一起形成大分子DNA。
15、与原核生物相比真核生物DNA复制的特点:DNA复制发生在细胞周期的S期;染色体DNA有多个复制起点,为多复制子;冈崎片段长约100—200 bp。
每个复制子在染色体DNA全部复制完成前,不能再开始新一轮复制;而在快速生长的原核中,起点可以连续发动复制。
真核生物快速生长时,往往采用更多的复制起点。
复制叉移动速度较原核生物慢(1/20);真核生物线性染色体两端有端粒结构,防止染色体间的末端连接和核酸酶降解。
由端粒酶负责新合成链5端RNA引物切除后的填补,保持端粒的一定长度。
16、几种修复机制:1)直接修复2)错配修复3)切除修复4)重组修复5)SOS修复第四章转录概念:模板链与编码链:DNA双链中按碱基配对规律能指引转录生成RNA的一股单链,称为模板链(template strand),也称作有意义链或Watson链。
相对的另一股单链是编码链(coding strand),也称为反义链或Crick链。
启动子:RNA聚合酶识别、结合和开始转录的一段DNA序列。
终止子(terminator):提供转录终止信号的DNA序列。
终止因子(termination factor) :协助RNA聚合酶识别终止信号的辅助因子(蛋白质)。
外显子&内含子:不编码的插入序列,称内含子;编码的序列称外显子。
断裂基因:大多数真核生物基因的核苷酸顺序不全部反映到蛋白质一级结构上。
基因的编码序列被不编码的插入序列分割成几段,这样的基因称为断裂基因。
RNA编辑:mRNA分子由于核苷酸的缺失、插入或置换导致序列发生了不同于模板DNA的变化,这种现象称为RNA编辑。
RNA聚合酶组成: 1)原核生物——2个α亚基、1个β亚基、1个次β亚基、1个ω亚基、1个σ亚基构成RNA聚合酶的全酶。
2)真核生物——一般有8-16个亚基,有两个分子质量超过100000的大亚基,同种生物3类聚合酶(聚合酶Ⅰ、Ⅱ、Ⅲ)有共享小亚基的倾向即有几个小亚基是3类或2类聚合酶所共有的。
σ70 识别的启动子:E. coli中σ70 识别的启动子包含2个保守的核心序列-10 区和-35 区:-10 区(TATA box, Pribnow box)中心位于转录起始位点上游10bp处,一致序列(Consensus sequence)为T80A95T45A60A50T96, 所以称-10区。
(右下角的数字表示该碱基在这个位置出现的百分率)功能:与RNA聚合酶紧密结合;形成开放启动子复合体;使RNA聚合酶定向转录-35 区(Sextama box)中心位于转录起始位点上游35bp处,一致序列为T82T84G78A65C54A45。
功能:RNA聚合酶的识别位点,为转录选择模版;-10 区和-35 区距离相当稳定,过大过小会影响转录活性转录的基本过程:起始(initiation)、延伸(elongation)、终止(termination)。
终止子的2个类型:强终止子(内部终止子)——不依赖于ρ因子弱终止子——依赖于ρ因子真核生物中的三种RNA聚合酶存在部位及作用酶位置转录产物相对活性对α-鹅膏蕈碱的敏感性RNA聚合酶Ⅰ核仁rRNA 50-70% 不敏感RNA聚合酶Ⅱ核质hnRNA 20-40% 敏感RNA聚合酶Ⅲ核质tRNA 约10% 存在物种特异性真核生物mRNA 加工5’capping(5’加帽)3’polyadenylation(3’加poly A尾巴)splicing(拼接)primary product(原初产物): hnRNA ( intron, exon)RNA editing(编辑)modification(修饰)原核和真核细胞的 mRNA 的异同同:功能相同,即通过三联密码子翻译生成蛋白质异:1)真核细胞5'端存在帽子结构;绝大多数具有多尾巴;2)原核细胞:mRNA半衰期短;许多原核生物mRNA可能以多顺反子的形式存在;5'端无帽子结构,3’端没有或只有较短的多(A)结构第五章翻译密码子:在mRNA的开放阅读框架区,以每3个相邻的核苷酸为一组,代表一种氨基酸(或其他信息),这种三联体形式的核苷酸序列称为密码子。