2011年上海市各区中考数学二模压轴题图文解析
- 格式:pdf
- 大小:1.55 MB
- 文档页数:59
2011年各地中考数学压轴题精选11-20解析版2011 福建三明22.解:∵抛物线y =ax 2-4ax +c 过A (0,-1),B (5,0)∴⎩⎨⎧c =-125a -20a +c =0 解得:⎩⎪⎨⎪⎧a =15c =-1(2)∵直线AB 经过A (0,-1),B (5,0) ∴直线AB 的解析式为y =15x -1由(1)知抛物线的解析式为:y =15x 2-45x -1∵点P 的横坐标为m ,点P 在抛物线上,点Q 在直线AB 上,PQ ⊥x 轴 ∴P (m ,15m 2-45m -1),Q (m ,15m -1) ∴S =PQ =(15m -1)-(15m 2-45m -1) 即S =-15m 2+m (0<m <5) (3)抛物线的对称轴l 为:x =2以PQ 为直径的圆与抛物线的对称轴l 的位置关系有: 相离、相切、相交三种关系相离时:0<m <15-1452或 -5+1052 <m <5; 相切时:m =15-1452 m =-5+1052; 相交时:15-1452<m <-5+10522011 福建三明23.解:(1)在矩形ABCD 中,∠A =∠D =90°,AP =1,CD =AB =2,则PB =5. ∴∠ABP +∠APB =90° 又∵∠BPC =90° ∴∠APB +∠DPC =90° ∴∠ABP =∠DPC ∴△APB ∽△DCP∴AP CD =PB PC 即 12 =5PC ∴PC =2 5(2)tan ∠PEF 的值不变(第23题 图①)理由:过F 作FG ⊥AD ,垂足为G , 则四边形ABFG 是矩形∴∠A =∠PFG =90°,GF =AB =2 ∴∠AEP +∠APE =90° 又∵∠EPF =90° ∴∠APE +∠GPF =90° ∴∠AEP =∠GPF ∴△APE ∽△GPF ∴PF PE =GF AP =21 =2∴Rt △EPF 中,tan ∠PEF =PFPE =2 ∴tan ∠PEF 的值不变(3)线段EF 的中点经过的路线长为 5(第23题 图④)(第23题 图③)O 2O 1FPCDB AE2011福建宁德 25.(满分13分)解:⑴小颖摆出如图1所示的“整数三角形”:…………3分小辉摆出如图2所示三个不同的等腰“整数三角形”:…………8分⑵①不能摆出等边“整数三角形”.理由如下: 设等边三角形的边长为a ,则等边三角形面积为243a . 因为,若边长a 为整数,那么面积243a 一定非整数. 所以不存在等边“整数三角形”.…………10分;②能摆出如图3所示一个非特殊“整数三角形”:…………13分2011福建宁德 26.(满分13分)解:⑴①直线6-=x y 与坐标轴交点坐标是A (6,0),B (0,-6);…………1分②如图1,四边形DCEF 即为四边形ABEF 沿EF 折叠后的图形;…………3分 ⑵∵四边形DCEF 与四边形ABEF 关于直线EF 对称, 又AB ∥EF , ∴CD ∥EF .∵OA =OB ,∠AOB =90°, ∴∠BAO =45°. ∵AB ∥EF , ∴∠AFE =135°. ∴∠DFE =∠AFE =135°.∴∠AFD =360°-2×135°=90°,即DF ⊥x 轴. ∴DF ∥EH ,5图14 46 6图24 5121513图3∴四边形DHEF 为平行四边形. …………5分 要使□DHEF 为菱形, 只需EF =DF ,∵AB ∥EF ,∠FAB =∠EBA , ∴FA =EB . ∴DF =FA =EB =t . 又∵OE =OF =6-t , ∴EF =()t -62. ∴()t -62=t . ∴2126+=t .∴当2126+=t 时,□DHEF 为菱形. …………7分⑶分两种情况讨论:①当0<t ≤3时,…………8分四边形DCEF 落在第一象限内的图形是△DFG ,∴S =221t . ∵S =221t ,在t >0时,S 随t 增大而增大,∴t =3时,S 最大=29;…………9分②当3<t <6时,…………10分四边形DCEF 落在第一象限内的图形是四边形DHOF , ∴S 四边形DHOF =S △DGF —S △HGO . ∴S =()22622121--t t =1812232-+-t t =()64232+--t .∵a =23-<0,∴S 有最大值.∴当t =4时,S 最大=6.…………12分综上所述,当S =4时,S 最大值为6. …………13分2011 福建南平25、(2011•南平)(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.考点:翻折变换(折叠问题);全等三角形的判定与性质;角平分线的性质;平行四边形的性质;矩形的性质。
例 2011年上海市崇明县中考模拟第24题
已知抛物线①经过点A (-1,0)、B (4,5)、C (0, -3),其对称轴与直线BC 交于点P .
(1)求抛物线①的表达式及点P 的坐标;
(2)将抛物线①向右平移1个单位后再作上下平移,得到的抛物线②恰好过点P ,求上下平移的方向和距离;
(3)设抛物线②的顶点为D ,与y 轴的交点为E ,试求∠EDP 的正弦值.
动感体验
请打开几何画板文件名“11崇明24”,可以看到,抛物线①的对称轴是直线x =1,抛物线②的对称轴是直线x =2.拖动点D 在直线x =2上运动,可以体验到,当抛物线②经过点P 时,点E 的位置随之确定,△OEQ 是等腰直角三角形,在Rt △DEQ 中可以求∠EDP 的正弦值(如图1).双击按钮“抛物线②经过P ”可以准确显示.
请打开超级画板文件名“11崇明24”,
满分解答
(1)抛物线①为223y x x =--,点P 的坐标为(1,-1).
(2)抛物线①向右平移1个单位后,再向上平移平移2个单位得到抛物线②.
(3)抛物线②的表达式是2(2)2y x =--,D (2, -2),E (0,2).
sin ∠EDP =21010
25EH DE ==.
图1。
2011年上海市中考数学试卷一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A.B.C.D.2.(2011•上海)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.3.(2011•上海)下列二次根式中,最简二次根式是()A.B.C.D.4.(2011•上海)抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)5.(2011•上海)下列命题中,真命题是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等6.(2011•上海)矩形ABCD中,AB=8,,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD 为半径的圆,那么下列判断正确的是()A.点B、C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B、C均在圆P内二、填空题(本大题共12题,每题4分,共48分)7.(2011•上海)计算:a2•a3=_________.8.(2011•上海)因式分解:x2﹣9y2=_________.9.(2011•上海)如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m=_________.10.(2011•上海)函数的定义域是_________.11.(2011•上海)如果反比例函数(k是常数,k≠0)的图象经过点(﹣1,2),那么这个函数的解析式是_________.12.(2011•上海)一次函数y=3x﹣2的函数值y随自变量x值的增大而_________(填“增大”或“减小”).13.(2011•上海)有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是_________.14.(2011•上海)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.15.(2011•上海)如图,AM是△ABC的中线,设向量,,那么向量=_________(结果用、表示).16.(2011•上海)如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=_________.17.(2011•上海)如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC= _________.18.(2011•上海)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D 逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_________.三、解答题(本大题共7题,满分78分)19.(2011•上海)计算:.20.(2011•上海)解方程组:.21.(2011•上海)如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若tan∠C=,求弦MN的长.22.(2011•上海)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).(1)图2中所缺少的百分数是_________;(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是_________(填写年龄段);(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是_________;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有_________名.23.(2011•上海)如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证:四边形ABFC是矩形.24.(2011•上海)已知平面直角坐标系xOy(如图),一次函数的图象与y轴交于点A,点M在正比例函数的图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标.25.(2011•上海)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.2011年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A.B.C.D.考点:有理数的除法。
上海江苏浙江2011年中考数学试题分类解析汇编专题12:押轴题锦元数学工作室 编辑解答题1.(上海14分)在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,12sin EMP 13∠=.(1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.【答案】解:(1)∵∠ACB=90°,∴AC=2222AB BC 503040--= 。
∵CP ⊥AB ,∴ △ABC ∽△CPB 。
∴AB AC BCCP= ,即504030CP=。
∴CP=24。
∴CM=CP 242612sin EMP13==∠。
(2)∵ 12sin EMP 13∠=,∴设EP=12a ,则EM=13a ,PM=5a 。
∵EM=EN ,∴EN=13a ,PN=5a 。
∵△AEP ∽△ABC ,∴ PE BC APAC=,即 123040a x=。
∴x =16a ,16xa =,∴BP=50-16a ,∴y=50-21a ,=50-21·16x ,=50-2116x 。
由(1),当点E 与点C 重合时,AP=2222AC CP 402432-=-=, ∴函数的定义域是:0<x <32。
(3)①当点E 在AC 上时,如图2,由(2)知,AP=16a , BN= y=50-()2116502116a a =-, EN=EM=13a ,AM=AP -MP=16a -5a =11a 。
∵△AME ∽△ENB ,∴ AM ME ENNB=,即1113135021a a aa=-。
2011年上海市长宁区中考数学二模试卷一、选择题(共6小题,每小题4分,满分24分)1.已知42=6×7,6和7都是42的()A.素因数B.合数C.因数D.倍数2.(2010•广州)若a<1,化简﹣1=()A.a﹣2 B.2﹣a C.a D.﹣a3.(2010•南宁)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D 到BC的距离是()A.3 B.4 C.5 D.64.(2010•深圳)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.5.(2010•深圳)升旗时,旗子的高度h(米)与时间t(分)的函数图象大致为()A.B.C.D.6.已知下列命题:①对角线互相平分的四边形是平行四边形;②对角线互相垂直平分的四边形是菱形;③对角线相等的四边形是矩形;④对角线相等的梯形是等腰梯形.其中真命题有()A.1个B.2个C.3个D.4个二、填空题(共12小题,每小题4分,满分48分)7.(2010•广州)因式分解:3ab2+a2b=_________.8.计算:(m﹣1)(m+2)=_________.9.已知点A(﹣3,2)与点B关于y轴对称,若反比例函数的图象经过点B,则的图象在x<0时y随x的增大而_________.(填“增大”或“减小”)10.2010年以“城市让生活更美好”为主题的上海世博会成功举办.在2010年10月16日上海世博会单日入园人数1032700人,刷新世博会单日入园人数的历史记录.将1032700用科学记数法表示为_________.11.已知在Rt△ABC中,在斜边BC上取一点D,使得BD=CD,则BC:AD的比值为_________.12.(2009•广州)已知函数y=,当x=1时,y的值是_________.13.如图所示,一块正八边形的游戏板,用纸板沿着正八边形的边做一围栏,随意投掷一个骰子.规定:如果骰子_________.落在分界线上,则算落在其逆时针方向的区域.骰子落在黑色区域的概率是14.已知平行四边形ABCD(AB>BC),分别以点A、B、C、D为起点或终点的向量中,与向量的模相等的向量是_________.15.已知△ABC中,D是BC 边上的点,AD恰是BC边上的垂直平分线,如果,则tanC=_________.16.如图,在直角坐标系中,以点P为圆心的圆弧与x轴交于A、B两点,已知P(4,2)和A(2,0),则点B _________.的坐标是17.长度为2的线段AB被点P分成AP和BP两段,已知较长的线段BP是AB与AP的比例中项,则较短的一条线段AP的长为_________.18.(2010•厦门)如图,将矩形纸片ABCD(AD>DC)的一角沿着过点D的直线折叠,使点A落在BC边上,落点为E,折痕交AB边交于点F.若BE=1,EC=2,则sin∠EDC=_________;若BE:EC=m:n,则AF:FB= _________(用含有m、n的代数式表示).三、解答题(共7小题,满分78分)19.计算:.20.(2002•曲靖)解方程:21.2010年9月起,长宁区为推进课程改革,落实“减负增效”,在部分学校六年级实施“阅读领航计划”试点研究.为了解在数学课堂内“阅读”指导对学生学习方法改进的程度,在社会实践阅读活动组织内容的受欢迎程度.在试点学校六年级随机抽取200名学生,对“学习方法改进”情况与“社会实践阅读活动组织内容”受欢迎程度两项作了调查.根据统计数据分别绘制成了下面扇形统计图与条形统计图.(1)对“学生学习方法改进”程度的调查反馈中回答“显著改进”的学生有多少名?(2)请将“社会实践阅读活动组织内容”受欢迎程度条形统计图补完整;(3)若参加“社会实践阅读”试点学校的六年级学生约有1600名,根据上述统计数据,请你估计试点学校对“社会实践阅读活动组织内容”表示非常喜欢、喜欢及比较喜欢的学生共有多少名?22.为缓解交通压力,节约能源减少大气污染,上海市政府推行“P+R”模式(即:开自驾车人士,将车开到城郊结合部的轨道车站附近停车,转乘轨道交通到市中心).市郊某地正在修建地铁站,拟同步修建地下停车库.如图,是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D、F,坡道AB的坡度i=1:3,AD=9米,C在DE上,DC=0.5米,CD是限高标志牌的高度(标志牌上写有:限高_2.3____米).如果进入该车库车辆的高度不能超过线段CF的长,计算该停车库限高多少米.(结果精确到0.1米)(提供可选用的数据:)23.如图,在平面直角坐标系中,等腰梯形OABC,CB∥OA,且点A在x轴正半轴上.已知C(2,4),BC=4.(1)求过O、C、B三点的抛物线解析式,并写出顶点坐标和对称轴;(2)经过O、C、B三点的抛物线上是否存在P点(与原点O不重合),使得P点到两坐标轴的距离相等?如果存在,求出P点坐标;如果不存在,请说明理由.24.如图,AD∥BC,点E、F在BC上,∠1=∠2,AF⊥DE,垂足为点O.(1)求证:四边形AEFD是菱形;(2)若BE=EF=FC,求∠BAD+∠ADC的度数;(3)若BE=EF=FC,设AB=m,CD=n,求四边形ABCD的面积.25.如图,在平面直角坐标系中,抛物线y=﹣2x2+4x+6与x轴交于A、B两点(A点在B点左侧),与y轴交于C 点,顶点为D.过点C、D的直线与x轴交于E点,以OE为直径画⊙O1,交直线CD于P、E两点.(1)求E点的坐标;(2)连接PO1、PA.求证:△BCD∽△PO1A;(3)①以点O2(0,m)为圆心画⊙O2,使得⊙O2与⊙O1相切,当⊙O2经过点C时,求实数m的值;②在①的情形下,试在坐标轴上找一点O3,以O3为圆心画⊙O3,使得⊙O3与⊙O1、⊙O2同时相切.直接写出满足条件的点O3的坐标(不需写出计算过程).2011年上海市长宁区中考数学二模试卷参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分) 1.已知42=6×7,6和7都是42的( ) A .素因数 B .合数 C .因数 D .倍数 考点:有理数的乘法。
例 2011年上海市奉贤区中考模拟第25题如图1,在边长为6的正方形ABCD的两侧作正方形BEFG、正方形DMNK,恰好使得N、A、F三点在同一条直线上,联结MF交线段AD于点P,联结NP,设正方形BEFG的边长为x,正方形DMNK的边长为y.(1)求y关于x的函数关系式及自变量x的取值范围;(2)当△NPF的面积为32时,求x的值;(3)以P为圆心,AP为半径的圆能否与以G为圆心,GF为半径的圆相切,若能请求x的值,若不能,请说明理由.图1动感体验请打开几何画板文件名“11奉贤25”,拖动点E运动,观察图形的变化和函数的图像,可以体验到,y是x的一次函数,△NKA与△AEF保持全等,AP是△FMN的中位线.可以看到,两圆能够外切,不存在内切的情况.请打开超级画板文件名“11奉贤25”,思路点拨1.根据题意,保持正方形ABCD的大小不变,改变x的值,画两三个图形观察研究.2.因为三个正方形的位置关系,存在很多直角三角形相似,选择便于标记边长的,就可以得到y关于x的函数关系式.3.抓住y=x+6的几何意义是NK=AE,思路一下子就灵活了.4.罗列两圆的半径和圆心距,分外切与内切两种情况列方程,探求两圆相切的存在性.满分解答(1)如图2,由正方形ABCD、正方形BEFG、正方形DMNK,可知∠E=∠K,KD//EF.所以∠AFE=∠NAK.因此△AFE∽△NAK.于是A E N KE F K A=,即66x yx y+=-.由此得到y关于x的函数关系式为y=x+6,自变量x的取值范围是0<x≤6.(2)如图2,y=x+6的几何意义是NK=AE,即△AFE≌△NAK.因此A、P分别为NF、MF的中点,AP为△FMN的中位线.所以△NPF与△NPM是等底同高的三角形.所以2211(6)3222N P F M N P S S y x ∆∆===+=.解得x =2.图2 图3(3)如图3,联结PG ,延长FG 交AD 于H ,则GH ⊥AD .在Rt △PG H 中,GH =6,2y P H A P A H x =-=-,所以PG =.对于⊙P ,2P y r AP ==;对于⊙G ,G r G F x ==.①当两圆外切时,P G r r PG +=.所以2y x +=解得3x =-±(负值舍去).②当两圆内切时,P G r r PG -=.所以2y x -=.此方程无解.综合①、②,当3x =时,这两个圆外切(如图3).考点伸展第(3)题探求两圆相切,可以不用计算,说理两圆不可能内切: 如图3,如果两圆内切,那么P G r r PG -=.而P G r r -的几何意义是AP AH PH -=,在Rt △PGH 中,直角边不可能等于斜边. 因此两圆不可能内切.。
2002年-2011年上海市中考数学试题分类解析汇编专题11:选择填空解答的押轴题专辑锦元数学工作室编辑一、选择题1.(上海市2002年3分)下列命题中,正确的是【】(A)正多边形都是轴对称图形;(B)正多边形一个内角的大小与边数成正比例;(C)正多边形一个外角的大小随边数的增加而减少;(D)边数大于3的正多边形的对角线长相等.【答案】A,C。
【考点】正多边形和圆,命题与定理。
【分析】根据正多边形的性质,以及正多边形的内角和.外角和的计算方法即可求解:A、所有的正多边形都是轴对称图形,故正确;B、正多边形一个内角的大小=(n-2)×180n,不符合正比例的关系式,故错误;C、正多边形的外角和为360°,每个外角=360n,随着n的增大,度数将变小,故正确;D、正五边形的对角线就不相等,故错误。
故选A,C。
2.(上海市2003年3分)已知AC平分∠PAQ,如图,点B、B’分别在边AP、AQ上,如果添加一个条件,即可推出AB=AB’,那么该条件可以是【】(A)BB’⊥AC (B)BC=B’C (C)∠ACB=∠AC B’ (D)∠ABC=∠AB’ C 【答案】A,C,D。
【考点】全等三角形的判定和性质。
【分析】首先分析选项添加的条件,再根据判定方法判断:添加A选项中条件可用ASA判定△ACB≌△ACB’,从而推出AB=AB’;添加B选项中条件无法判定△ACB≌△ACB’,推不出AB=AB’;添加C选项中条件可用ASA判定△ACB≌△ACB’,从而推出AB=AB’;添加D 选项以后是AAS 判定△ACB ≌△ACB’,从而推出AB =AB’。
故选A ,C ,D 。
3.(上海市2004年3分)在函数y k xk =>()0的图象上有三点Ax y 111(),、A x y A x y 222333()(),、,,已知x x x 1230<<<,则下列各式中,正确的是【 】 A. y y 130<< B. y y 310<< C. y y y213<< D. y y y 312<< 【答案】 C 。
上海十年中考数学压轴题与答案解析学然教育学然教育培训中心LearnWell Education and Training Center上海十年中考数学压轴题解析2001 年上海市数学中考27.已知在梯形ABCD中,AD∥ BC, AD< BC,且 AD=5,AB=DC=2.( 1)如图 8,P为AD上的一点,满足∠BPC=∠ A.图 8①求证;△ ABP∽△ DPC②求 AP 的长.( 2)如果点P 在 AD 边上移动(点P 与点 A、 D 不重合),且满足∠ BPE=∠ A, PE交直线 BC于点 E,同时交直线DC于点 Q,那么①当点Q在线段DC的延长线上时,设AP x CQ y,求y关于x的函数解析式,并写出函数的定义域;=,=②当 CE=1时,写出 AP 的长(不必写出解题过程).27.( 1)①证明:∵∠ ABP=180°-∠ A-∠ APB,∠ DPC=180°-∠ BPC-∠ APB,∠ BPC=∠ A,∴∠ ABP=∠ DPC.∵在梯形ABCD 中,AD∥ BC,AB= CD,∴∠ A=∠ D.∴△ ABP∽△ DPC.②解:设 AP= x,则 DP=5- x,由△ ABP∽△ DPC,得ABPD,即25 x,解得1=1,x2= 4,则AP的长AP DC x2x为1或4.( 2)①解:类似( 1)①,易得△ABP∽△DPQ,∴ABAP .即2x,得y125 2 ,<<.PD DQ 5 x2yx x1x422AP AP5②=2或=3-.(题 27 是一道涉及动量与变量的考题,其中( 1)可看作( 2)的特例,故( 2)的推断与证明均可借鉴( 1)的思路.这是一种从模仿到创造的过程,模仿即借鉴、套用,创造即灵活变化,这是中学生学数学应具备的一种基本素质,世上的万事万物总有着千丝万缕的联系,也有着质的区别,模仿的关键是发现联系,创造的关键是发现区别,并找到应付新问题的途径.)学然教育上海市 2002 年中等学校高中阶段招生文化考试学然教育培训中心LearnWell Education and Training Center27.操作:将一把三角尺放在边长为1 的正方形 ABCDP在对角线 AC上滑动,直角的一边始终上,并使它的直角顶点经过点 B ,另一边与射线DC 相交于点 Q .图1图2 图3探究:设 A 、 P 两点间的距离为 x .( 1)当点 Q 在边 CD 上时,线段 PQ 与线段 PB 之间有怎样的大小关系?试证明你观察得到结论;( 2)当点 Q 在边 CD 上时,设四边形 PBCQ 的面积为 y ,求 y 与 x 之间的函数解析式,并写出函数的定义域;(3)当点P在线段 AC上滑动时,△PCQPCQ是否可能成为等腰三角形?如果可能,指出所有能使△成为等腰三角形的点 Q 的位置,并求出相应的 x 的值;如果不可能,试说明理由.五、(本大题只有 1 题,满分 12 分,( 1)、( 2)、( 3)题均为 4 分)27.图 1图 2图 3( 1)解: PQ = PB( 1 分)证明如下:过点P作 MN BCAB 于点 M ,交 CD 于点NAMND和四边形 BCNM都是矩形,∥ ,分别交,那么四边形△ AMP 和△ CNP 都是等腰直角三角形(如图1).NP NC MB.( 1 分)∴==∵ ∠ BPQ =90°,∴ ∠QPN +∠ BPM =90°.而∠ BPMPBM°,∴ ∠QPNPBM( 1 分)+∠= 90 =∠.又∵QNPPMBQNPPMB( 1 分)∠=∠=90°,∴△≌△.∴PQ = PB .(2)解法一由( 1)△≌△.得= MP .QNPPMBNQ∵=,∴AM = MP ===2 x , BM ===1- 2 x , AP xNQDN2 PNCN2∴=-=1-2·2 x = 1- 2x . CQ CD DQ2得S △=1BC · BM =1×1×( 1-2x )= 1- 2 x .( 1 分)PBC22224S △=1CQ ·PN = 1 ×( 1-2 x )(1-2x )= 1-3 2x + 1x 2(1 分)PCQ222242=S △+S △= 122x +1 .x -S四边形PBCQPBC PCQ 222 x + 1(0≤ x < 2). 1 分,1 分)即 y = 1x -(22解法二作PT ⊥ BC , T 为垂足(如图 2),那么四边形 PTCN 为正方形.∴PT = CB = PN .又∠ PNQ =∠ PTB =90°, PB =PQ ,∴△ PBT ≌△ PQN .S=S △+ S = S+S △= S( 2 分)四边形PBCQ四边形PBT四边形PTCQ四边形PTCQPQN正方形PTCN22 21 2=CN =( 1-2 x )= 2x - 2 x + 122 x + 1(0≤ x <2).1 分)( 3)△ PCQ 可能成为等腰三角∴y = 1 x -(22形①当点P与点 A重合,点 Q与点 D重合,这时PQ QCPCQ=,△是等腰三角形,此时 x = 0( 1 分)②当点 Q 在边 DC 的延长线上,且CP =CQ 时,△ PCQ 是等腰三角形(如图 3)(1 分)解法一此时,== 2 x ,= 2 -,=2 2 .CP=1-xQN PM2 CPxCN22∴ =-=2 x -( 1- 2 x )= 2x - 1. CQ QN CN2 2当 2 - x = 2x - 1 时,得 x = 1.( 1 分)解法二此时∠ CPQ 1 ∠ PCN °,∠ APB°=67.5 °,== 22.5 =90°- 22.52∠ABP =180°-(45°+67.5 °)=67.5 °,得∠ APB =∠ ABP ,AP ABx( 1 分)∴==1,∴= 1.上海市2003年初中毕业高中招生统一考试27.如图,在正方形ABCD 中, AB = 1,弧AC 是点B 为圆心,AB 长为半径的圆的一段弧。
例 2011年上海市奉贤区中考模拟第24题已知: 在直角坐标系xOy 中,将直线y =kx 沿y 轴向下平移3个单位长度后恰好经过B (-3,0)及y 轴上的C 点.若抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点(点A 在点B的右侧),且经过点C .(1)求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P 的坐标.动感体验请打开几何画板文件名“11奉贤24”,拖动点P 在抛物线对称轴上运动,可以体验到,∠APD =∠ACB 的时刻有两个,这两个点关于x 轴是对称的.请打开超级画板文件名“11奉贤24”,思路点拨1.准确描出点A 、B 、C 、D 的位置,标注确定的角度和能够求出的线段的长.2.探求∠APD =∠ACB ,设法构造直角三角形,把这两个角置于直角三角形之中.3.注意点P 存在两种情况,两个点关于x 轴对称.满分解答(1)直线线y =kx 向下平移3个单位与y 轴的交点C 的坐标为(0,-3).设直线BC 的解析式为y =kx +b ,代入点B (-3,0),C (0,-3),解得k =-1. 因此直线BC 的解析式为y =-x -3.因为抛物线y =-x 2+bx +c 经过点B (-3,0),C (0,-3),所以930,3.b c c --+=⎧⎨=-⎩ 解得43b c =-⎧⎨=⎩,.因此抛物线的解析式为y =-x 2-4x -3.(2)如图1,如图2,由y =-x 2-4x -3=-(x +3) (x +1)=-(x +2) 2+1, 得顶点D 的坐标为(-2,1),点A 的坐标为(-1,0).在Rt △OBC 中,OB =OC =3,所以∠OBC =45°,BC =.过点A 作AE ⊥BC 于点E ,那么△ABE 是等腰直角三角形.所以BE AE ==CE BC BE =-=因此1tan 2A EA CBC E ∠===.设抛物线的对称轴与x 轴交于点F ,那么112AF AB ==. 当∠APD =∠ACB 时,1tan 2AFAPD PF ∠==.所以PF=2AF=2.因此点P的坐标为(-2,2)或(-2,-2).图1 图2考点伸展在解答第(2)题时,马虎同学把条件“∠APD=∠ACB”错误地看作“∠ADP=∠ACB”,然后他的解题思路如下:如图3,因为AD//BC,∠ADP=∠ACB,根据两直线平行,同位角相等,因此在点D 上方符合条件的点P在直线AC上,这样得到点P的坐标为(-2,3).马虎认为,点D下方符合条件的点P′与点P关于点D中心对称,这样得到点P′的坐标为(-2,-1).如果条件真的是“∠ADP=∠ACB”,你认为马虎的解题思路对吗?求点P1的思路是对的,求点P2的思路是错的.图3。
2011年上海市初中毕业统一学业考试数学卷数学注意事项:1. 本试卷共4页,全卷满分150分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2. 请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上. 3. 答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共6题,每题4分,共24分)1.下列分数中,能化为有限小数的是( )(A) 13; (B) 15; (C) 17; (D) 19 .2.如果a >b ,c <0,那么下列不等式成立的是( ).(A) a +c >b +c ; (B) c -a >c -b ; (C) ac >bc ; (D) a b c c > . 3.下列二次根式中,最简二次根式是( ).(A)(B) ;(C)(D).4.抛物线y =-(x +2)2-3的顶点坐标是( ).(A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) . 5.下列命题中,真命题是( ).(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等; (C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等. 6.矩形ABCD 中,AB =8,BC =P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内; (C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内.二、填空题(本大题共12题,每题4分,共28分)12.一次函数y =3x -2的函数值y 随自变量x 值的增大而_____________(填“增大”或“减小”).13.有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是__________.14.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.15.如图1,AM 是△ABC 的中线,设向量AB a =,BC b =,那么向量AM =____________(结果用a 、b 表示).16. 如图2, 点B 、C 、D 在同一条直线上,CE //AB ,∠ACB =90°,如果∠ECD =36°,那么∠A =_________.17.如图3,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC =_________.18.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(图4).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC 的边上,那么m=_________.图1 图2 图3 图4三、解答题(本大题共4题,满分48分)21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图5,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD 平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若1tan2C∠=,求弦MN的长.图523.(本题满分12分,每小题满分各6分)如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE 至F,使EF=DE.联结BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE·CE,求证四边形ABFC是矩形.24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(如图1),一次函数33 4y x=+的图像与y轴交于点A,点M在正比例函数32y x=的图像上,且MO=MA.二次函数y=x2+bx+c的图像经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数334y x=+的图像上,且四边形ABCD是菱形,求点C的坐标.图125.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,12sin13EMP∠=.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.图1 图2 备用图2011年上海市初中毕业统一学业数学卷答案及评分参考(满分150分,考试时间100分钟)一、选择题 (本大题共6题,每题4分,满分24分) 题号 1 2 3 4 5 6答案 B A C D D C 二、填空题 (本大题共12题,每题4分,满分48分)题号 7 8 9 10 11 12 13 14 15 16 17 18 答案a 5(x +3y )(x -3y )1x ≤3y = -x2 增大85 20%a +21b 54680或120三、解答题 (本题共30分,每小题5分) 19. (本题满分10分)[解] (-3)0-27+|1-2|+231+=1-33+2-1+3-2= -23。