当前位置:文档之家› 三角网构造原理

三角网构造原理

三角网构造原理
三角网构造原理

VB环境下不规则三角网的算法设计与实现

江剑霞1,刘少华1,2,

(1北京建筑工程学院,北京100044;2江西省数字国土重点实验室江西抚州344000;)摘要:本文对不规则三角网生长算法实现的研究,利用了VB强大的可视化用户界面及其编程语言的灵活性及简单易懂特点,基于各行业对于DEM的需要,从而开发出一种利用VB6.0语言生成基于生长算法的不规则三角网,结合数据库强大的数据库存取,编辑,查询功能,共同实现离散点的管理和三角网的构成。

关键词:不规则三角网;Delaunay三角网;VB环境;算法

Algorithm designing and realizing of TIN In VB

JIANG Jian-xia1,LIU Shao-hua1,2

(1BeiJing Institute of Civil Engineering And Architecture,BeiJing,100044;2Digital Land Key Lab of JiangXi Province,Fuzhou344000)

Abstract:the paper discuss the algorithm of the TIN which takes advantage of VB’s powerfully visible interface of user and flexibility and knowing easily of compiling procedure.On the basis of demanding for DEM for all professions,the author uses the VB language to develop a kind of TIN based on the growth-algorithm,in combination with the powerful function of the data base’s data accessed,edited and inquired about,achieving the management of the dispersed points and the construction of TIN

Key words:TIN,Delaunay,VB,algorithm

1引言

地球表面高低起伏,呈现一种连续变化的曲面,这种曲面无法用平面地图来确切表示。于是我们就利用一种全新的数字地球表面的方法——数字高程模型的方法,这种方法已经被普遍广泛采用。数字高程模型即DEM(Digital Elevation Model),是以数字形式按一定结构组织在一起,表示实际地形特征空间分布的模型,也是地形形状大小和起伏的数字描述。

由于地理信息系统的普及,DEM作为数字地形模拟的重要成果已经成为国家空间数据基础设施(NSDI)的基本内容之一,并被纳入数字化空间框架(DGDF)进行规模化生产,已经成为独立的标准基础产品[5]。DEM有三种主要的表示模型:规则格网模型,等高线模型和不规则三角网。格网(即GRID)DEM在地形平坦的地方,存在大量的数据冗余,在不改变格网大小情况下,难以表达复杂地形的突变现象,在某些计算,如通视问题,过分强调网格的轴方向。不规则三角网(简称TIN,即Triangulated Irregular Network)是另外一种表示数字高程模型的的方法(Peuker等,1978),它既减少了规则格网带来的数据冗余,同时在计算(如坡度)效率方面又优于纯粹基于等高线的方法。不规则三角网能随地形起伏变化的复杂性而改变采样点的密度和决定采样点的位置,因而它能够避免地形起伏平坦时的数据冗余,又能按地形特征点如山脊,山谷线,地形变化线等表示数字高程特征。

基于三角形的表面建模可适合所有的数据结构,且三角形在形状和大小方面有很大灵活性,能很容易地融合断裂线,生成线或其他任何数据,因此基于三角形的方法在地形表面建模中得到了越来越多的注意,已经成为表面建模的主要方法之一。VB语言简洁易学,对于学习GIS的学生来说无疑是接受很容易而且较快的一门计算机编程和开发语言,也是大多数学生最熟悉和了解的语言。正是基于对生成不规则三角网算法的研究和满足学GIS的学

基金项目:湖北省高等学校优秀中青年团队计划项目资助(T200602);;江西省数字国土重点实验室开发研究基金资助

(DLLJ200501);;长江大学发展基金资助(2004Z0115)

生对VB语言的喜爱和熟悉的情况下,本文就主要介绍用三角网生长算法生成不规则三角网及其在VB6.0环境下的实现。

2TIN的算法种类及各算法特点

在介绍构成TIN各种算法之前我们要来了解认识一下一个重要法则——Delaunay三角网法则。通常构建三角网并不考虑地性线(山脊线,山谷线)的骨架作用,但是,由于用等高线数据构建三角网时,由于地形的复杂多样,有的地区存在因地形突变而形成的断裂线等特殊地貌。另外一些地区存在大面积水域等内部不需要构网的区域,因此,在精度要求较高的TIN中,必须考虑以上问题。因此此时应顾及地性线,断裂线,水域线等特殊情况,也就是应构建约束—Delaunay三角网。约束法是基于约束图计算约束D—三角剖分[1,9](简称CDT,即Constrained Delaunay Triangulation)构造算法[8],这种Delaunay三角网满足这样的法则:Delaunay三角网为相互邻接且互不重叠的三角形的集合,每一个三角形的外接圆内不包含其他点。Delaunay三角网由对应Voronoi多边形的点连接而成。Delaunay三角形有三个相邻点连接而成,这三个相邻顶点对应的Voronoi多边形有一个公共的顶点,此顶点是Delaunay三角形外接圆的圆心(如图1)。

根据构建三角网的步骤,可将三角网生成算法分为三类:(1)分而治之算法(由Shmaos 和Hoey提出),其基本思路是使问题简化,把点集划分到足够小,使其易于生成三角网,然后把子集中的三角网合并生成最终的三角网,用局部优化(LOP,即Local Optimization Procedure)算法保证其成为Delaunay三角网[3],它的优点是时间效率高,但需要大量递归运算,因此占用内存空间较多,如果计算机没有足够的内存,这一方法就无法使用[2];(2)数据点渐次插入算法(由Lawson提出),其思路很简单,先在包含所有数据点的一个多边形中建立初始三角网,然后将余下的点逐一插入,用LOP算法保证其成为Delaunay三角网[3]。此算法虽然容易实现,但效率极低;(3)三角网生长算法,在这三种算法中,三角网生长算法在80年代以后的文献中已很少见,较多的是前两种算法[3],三角网生长算法目前较少人研究,笔者在这里讨论的就是这一算法,该算法是由Michael J.McCullagh,Charles G.Ross 提出的,本文对原有的三角网生长算法作了进一步优化。

2.1三角网生长算法步骤:(过程如图2)

(1)在所采集的离散点中任意找一点,然后查找距此点最近的点,连接后作为初始基线。

(2)在初始基线右侧运用Delaunay法则搜寻第三点,具体的做法是:在初始基线右侧的离散点中查找距此基线距离最短的点,做为第三点。

(3)生成Delaunay三角形,再以三角形的两条新边(从基线起始点到第三点以及第三点到基线终止点)作为新的基线。

(4)重复步骤(2),(3)直至所有的基线处理完毕。

也有人称此算法为“炸弹法”。

图1delaunay三角形与Voronoi多边形偶图图2三角网生长算法过程

2.2在VB环境中的数据结构

为了对离散数据进行有效管理,作者在构建TIN时采用的数据结构为点结构,边(或线)结构,三角形(或面)结构。数据结构定义如下(图3是对应于图4的不规则三角网的表示方法[6]):

(1)类模块

a.三角形数据结构

Triangle(Triangle.cls)

Public pnt1As New POINT‘三顶点

Public pnt2As New POINT

Public pnt3As New POINT

Public NO As Long‘三角形编号

Public triNO1,triNO2,triNO3As Long‘三角形的相邻三角形号

Public EdgeNO1,EdgeNO2,EdgeNO3As Long‘三角形的三条边号

b.点的数据结构

Point(Point.cls)

Public x As Double

Public y As Double

Public z As Double

Public pntNO As Long‘顶点编号

c.边的数据结构

Edge(Edge.cls)

Public eS As Point‘边的起点

Public eE As Point‘边的终点

Public LTriNO As Long‘边的左三角形编号

Public RTriNO As Long‘边的左三角形编号

(2)模块

a.三角形数组和点数组,三角形记数和点记数

Modulel(Modulel.bas)

Public triArray As New Collection‘三角形集合

Public pntArray As New Collection‘点的集合

Public edgeArray As New Collection‘边的集合

Public nCount As Long‘点个数

Public eCount As Long‘边个数

Public triCount As Long‘三角形个数

b.存放窗体函数中的调用函数

mathCal(mathCal.bas)

Function TwoPntDistance(ByVal p1As POINT,ByVal p2As POINT)As Double‘计

算两点之间的距离

Function MinDistancePnt(ByVal p As POINT)As POINT‘找与已知点最短距离的点

Function MaxAnglePnt(ByVal e as Edge)As POINT‘找距与已知的基线两端点组成

夹角最大的点

图3TIN的数据结构图4TIN的平面图形

3VB环境中此算法思想以及实现过程

本文选用的方法是一种改进的生长算法,本算法和原始的生长算法比较,具有速度快等优点,主要是在Edge边数据结构中加入了边的使用次数,这样就没有必要对每个新生成的三角形的两条新边都向外扩展生长,有效地减少了扩展的边个数,从而提高了构网速度,本算法的详细如下。

(1)在离散数据点集V中任取一点A,以点A为基点寻找与它最近的一点B。连接AB,就得到

了三角形的一条基边,把该边作为扩展基边,转(2)。

(2)在扩展基边(是有向的)的右边点集中去找与该边两端点连成直线组成的夹角为最大的P

点,就组成了第一个三角形,将所有新生成的边与三角形信息用相应的链表进行存储起来,边每使用一次,其数据结构中的UseTimes就加1,转(3)。

(3)在边链表中取出头位置的边,以该边为扩展基边向外进行扩展。如果该边的使用次数为2

或是右边没有点,该边不进行扩展;否则,转(2)进行扩展,同时存储新生成的边和三角形。转(4)。

(4)对边链表中下一位置的边进行扩展,实现过程同步骤(3),转(5)。

(5)重复步骤(4),直至边链表中的所有边都进行了扩展,就结束构网。

为了对算法的稳定性及可行性进行检验,笔者在VB中实现了上述算法,并用一些实验数据点验证了上述算法,图5是原始的数据点,图6是用该算法实现TIN。应用以上算法原理,基于Visual Basic 6.0编译环境及数据库相结合,高效地实现了海量数据的Delaunay三角网构建,实验表明,此算法的执行效率较高,对计算机硬件配置的要求较低。

图5原始数据点图6原始数据点生成TIN

4数据的存储—数据库管理

由于我们构网所使用的点是我们事先所采样测量得到的点,且对于一个实际的项目应用

来说,数据容量大,而如果是直接人为在窗体的坐标轴中输入数据的话,很难找准所给的采样点位置,因此就要将数据存储在数据库中,进行统一存储管理。本文中,作者是将数据库与VB连接起来,那么在VB中程序运行时可直接调用数据库中的数据。在现实的工程项目中,修路时要将某处的山地挖为平地,旅游园林公园等单位要在某些平坦的地方填方建造山林,采矿单位在地下挖方开采就形成了低洼或山体的峡谷等,形成了地形的复杂多变,那么就要在变化的区域进行点的重新测量采样,在构网时,有的地方要增加点,有的地方要删除点,有时我们还需要查询和编辑修改某个点的说明信息。那么这些都要依靠数据库的管理。当然,也可以将数据存储在文本文件中进行读取,关于从文件中读取数据,相信大家在平时的学习中都有所接触,这里不再赘述。本文空间数据的操作包括图形的显示,放大,缩小,漫游,编辑,拓扑建立,查询和分析。

5改进和提高

数据放在数据库(内存)里,再从内存中读取数据,这比直接从硬盘上读取数据快的多,但是,若数据量很大,Windows就要频繁地在内存和硬盘之间交换数据,反而影响速度,这种方法对硬件的依赖很大,并未从根本上解决问题[4,7]。为了提高构网速度,要采用格网索引,即在寻找第三点时,减少搜寻时间。同时对于生成的三角网的显示和缩放具有优势。在这里的改进方式有文件格网索引和数据库格网索引。对格网索引有兴趣的话可参阅[4,7]。6.结束语

实现上述算法具有很强的现实意义。TIN的直接应用价值就是生成DEM,为DEM的生成在许多领域中打下基础。在土木工程中,如工程项目的填挖方计算,线路勘测设计,水利建设工程等的应用;TIN在GIS中得到了普遍使用,特别是在三维可视化方面受到格外关注,基于DEM的水文分析与GIS结合,DEM库,矢量库,影像库的三维一体化,DEM与数字地球等的应用。还有在摄影测量与遥感方面,气候分析和环境研究中的应用以及在地质和采矿工程,林业,地形学方面都有很强的应用。

本文对不规则三角网生长算法实现的研究,利用了VB6.0强大的可视化用户界面及其编程语言的灵活性及简单易懂特点,基于各行业对于DEM的需要,从而开发出一种利用VB语言生成基于生长算法的不规则三角网,结合数据库强大的数据库存取,编辑,查询功能,共同实现离散点的管理和三角网的构成。此算法思想的实现和数据的存储结构具有可行性,稳定性,高效性,相信这一研究会有很大的现实作用及意义。

参考文献

[1]刘锦中,马辉。基于等高线的DEM生成算法研究和实现。现代测绘,2004:27(3)

[2]徐青,常歌,杨力。基于自适应分块的TIN三角网建立算法[J]。中国图象图形学报,2000:6

[3]武哓波,王世新,肖春生。Delaunay三角网的生成算法研究。测绘学报,1999:28(1)。

[4]郭建忠,欧阳,魏海平,钱海忠。基于文件与基于数据库的格网索引。测绘学院学报,2002:19(3)

[5]李志林,朱庆。数字高程模型,武汉大学出版社,2001

[6]赖鸿斌,李永树。基于不规则网的DTM若干问题的探讨。重庆交通学院学报。2003:l23(2).

[7]刘少华,程朋根,陈斐等.TIN构建算法的研究及OpenGL下三维可视化。计算机工程与应用.2003:18

[8]L EE D T.Generalized Delaunay Triangulation for Plannar Graphs[J].Discrete and Computational Geometry,

1988:44(1--29)

[9]刘学军,龚健雅.约束数据域的Delaunay三角剖分与修改算法[J].测绘学报,2001:30(1)

构造辅助函数证明微分中值定理及应用

构造辅助函数证明微分中值定理及应用 摘要:构造辅助函数是证明中值命题的一种重要途径。本文给出了几种辅助函数的构造方法:微分方程法,常数K值法,几何直观法,原函数法,行列式法;并且举出具体例子加以说明。 关键字:辅助函数,微分方程,微分中值定理 Constructing auxiliary function to prove differential median theorem and its copplications

Abstract: Constructing auxiliary function is the important method to prove median theorem. This paper gives several ways of constructing auxiliary function:Differential equation, Constant K, Geometry law, Primary function law, Determinant law;and Gives some specific examples to illustrate how to constructing. Key words: Auxiliary function; Differential equation; Differential median theorem 目录 一:引言 (4) 二:数学分析中三个中值定理 (4) 三:五种方法构造辅助函数 (6) 1:几何直观法 (6)

2:行列式法…………………………………………………………………… .第7页 3:原函数法 (8) 4:微分方程法 (10) 5:常数k值法 (13) 四:结论 (15) 参考文献 (15) 致谢 (16) 一:引言 微分中值定理是应用导数的局部性质研究函数在区间上的整体性质的基本工具,在高等数学课程中占有十分重要的地位,是微分学的理论基础,这部分内容理论性强,抽象程度高,所谓中值命题是指涉及函数(包括函数的一阶导数,二阶导数等)定义区间中值一些命

特殊三角形常见的题目型

八年级上册第二章 特殊三角形 一、将军饮马 例1 如图,在正方形ABCD 中,AB=9,点E 在CD 边上,且DE=2CE ,点P 是对角线AC 上的一个动点,则PE+PD 的最小值是( ) A 、3 B 、10 C 、9 D 、9 【变式训练】 1、如图,在矩形ABCD 中,AD=4,∠DAC=30°,点P 、E 分别在AC 、AD 上,则PE+PD 的最小值是( ) A 、2 B 、2 C 、4 D 、 2、如图,∠AOB=30°,P 是∠AOB 内一定点,PO=10,C ,D 分别是OA ,OB 上的动点,则△PCD 周长的最小值为 3、如图,∠AOB=30°,C ,D 分别在OA ,OB 上,且OC=2,OD=6,点C ,D 分别是AO ,BO 上的动点,则CM+MN+DN 最小值为 4、如图,C 为线段BD 上一动点,分别过点B ,D 作AB ⊥BD ,DE ⊥BD ,连结AC ,CE . (1)已知AB=3,DE=2,BD=12,设CD=x .用含x 的代数式表示AC+CE 的长; E B C A D P 第2题 B O A P C 第1题 B O A C N 第3题 E

(2)请问点C满足什么条件时,AC+CE的值最小并求出它的最小值; (3)根据(2)中的规律和结论,请构图求出代数式的最小值 二、等腰三角形中的分类讨论 例2(1)已知等腰三角形的两边长分别为8cm和10cm,则它的周长为 (2)已知等腰三角形的两边长分别为8cm和10cm,则它的腰长为 (3)已知等腰三角形的周长为28cm和8cm,则它的底边为 【变式训练】 1、已知等腰三角形的两边长分别为3cm和7cm,则周长为 2、已知等腰三角形的一个角是另一个角的4倍,则它的各个内角的度数为 3、已知等腰三角形的一个外角等于150°,则它的各个内角的度数为 4、已知等腰三角形一腰上的高与另一边的夹角为25°,则它的各个内角的度数 5、已知等腰三角形底边为5cm,一腰上的中线把其周长分为两部分的差为3cm,则腰长为 6、在三角形ABC中,AB=AC,AB边上的垂直平分线与AC所在的直线相交所得的锐角为40°,则底角∠B的度数为 7、如图,A、B是4×5的网格中的格点,网格中每个小正方形的边长都是单位 B A

几种构造辅助函数的方法及应用

几种构造辅助函数的方法及应用 许生虎 (西北师范大学数学系,甘肃 兰州 730070) 摘 要:在对数学命题的观察和分析基础上给出了构造辅助函数的方法,举例说明了寻求 辅助函数的几种方法及在解题中的作用。 关键词:辅助函数 弧弦差法 原函数法 几何直观法 微分方程法 1. 引言 在解题过程中,根据问题的条件与结论的特点,通过逆向分析、综合运用数学的基本概念和原理,经过深入思考、缜密的观察和广泛的联想,构造出一个与问题有关的辅助函数,通过对函数特征的考查达到解决问题的目的,这种解决问题的方法叫做构造辅助函数法。 构造函数方法在许多命题证明中的应用,使问题得以解决,如在微分中值定理、泰勒公式、中值点存在性、不等式等证明。但构造辅助函数方法的内涵十分丰富没有固定的模式和方法,构造过程充分体现了数学的发现、类比、逆向思维及归纳、猜想、分析与化归思想。但如何通过构造,构造怎样的辅助函数给出命题的证明,是很难理解的问题之一,本文通过一些典型例题归纳、分析和总结常见的构造辅助函数方法及应用。 2. 构造辅助函数的七中方法 2.1“逆向思维法” 例1: 设()x f 在[]1,0 上可微,且满足 ()()?=2 1 21dx x xf f ,证明在][1,0内至少有一点θ,

使()() θθθf f -='. 证明:由所证明的结论出发,结合已知条件,探寻恰当的辅助函数. 将()() θθθf f '变为()()0='?+θθθf f ,联想到()[]()()θθθθf f x xf x '?+='=,可考虑 辅助函数 ()()[].1,0,∈=x x xf x F 因为()()ξξf f =1 , 而对于()x F ,有()()ξξξf F =,()().11f F = 所以,()()1F F =ξ ,由罗尔定理知,至少存在一点()1,ξθ∈,使得()0='θF 即:()() θθθf f -='. 证毕 2.2 原函数法 在微分中值定理(尤其是罗尔定理)求解介值(或零点)问题时要证明的结论往往是某一个函数的导函数的零点,因此可通过不定积分反求出原函数作为辅助函数,用此法构造辅助函数的具体步骤如下: (1)将要证的结论中的;)(0x x 换或ξ (2)通过恒等变换,将结论化为易积分(或易消除导数符号)的形式; (3)用观察法或凑微分法求出原函数(必要时可在等式两端同乘以非零的积分因子),为简便起见,可将积分常数取为零;

任意角的三角函数定义

任意角的三角函数定义 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

教材:任意角的三角函数(定义) 目的:要求学生掌握任意角的三角函数的定义,继而理解角与=2k+(kZ)的同 名三角函数值相等的道理。 过程:一、提出课题:讲解定义: 1.设是一个任意角,在的终边上任取(异于原点的)一点P (x,y ) 则P 与原点的距离0222 2>+=+=y x y x r (图示见P13略) 2.比值 r y 叫做的正弦 记作: r y =αsin 比值r x 叫做的余弦 记作: r x = αcos 比值x y 叫做的正切 记作: x y = αtan 比值 y x 叫做的余切 记作: y x =αcot 比值x r 叫做的正割 记作: x r =αsec 比值 y r 叫做的余割 记作: y r =αcsc 注意突出几个问题: ①角是“任意角”,当=2k+(kZ)时,与的同名 三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等。 ②实际上,如果终边在坐标轴上,上述定义同样适用。(下面有例 子说明) ③三角函数是以“比值”为函数值的函数

④0>r ,而x,y 的正负是随象限的变化而不同,故三角函数的符号 应由象限确定(今后将专题研究) ⑤定义域: αααtan cos sin ===y y y )(2 Z k k R R ∈+≠π πα αααcsc sec cot ===y y y ) ()(2) (Z k k Z k k Z k k ∈≠∈+≠∈≠παπ παπα 二、例一 已知的终边经过点P(2,3),求的六个三角函数值 解:13)3(2,3,22 2=-+=-==r y x ∴sin=13133 cos=1313 2 23 cot=32 213 csc=3 13 例二 求下列各角的六个三角函数值 ⑴ 0 ⑵ ⑶ 2 3π ⑷ 2 π 解:⑴ ⑵ ⑶的解答见P16-17 ⑷ 当=2 π 时 r y x ==,0 ∴sin 2π=1 cos 2π=0 tan 2π不存在 cot 2π=0 sec 2π不存在 csc 2 π =1 例三 《教学与测试》P103 例一 求函数x x x x y tan tan cos cos + =的值域 解: 定义域:cosx0 ∴x 的终边不在x 轴上

特殊三角形基本知识点整理汇编

学习-----好资料 特殊三角形的定义、性质及判定

等腰三角形 1.有两条边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形。 2.等腰三角形的性质: (1)等腰三角形的两个底角相等; (2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。 3.等腰三角形的判定: 如果一个三角形有两个角相等,那么这两个角所对的边也相等。 4.等边三角形的性质: 等边三角形的三个内角都相等,并且每一个角都等于60°。 5.等边三角形的判定: (1)三个角都相等的三角形是等边三角形; (2)有一个角是60°的等腰三角形是等边三角形。 6.含30°角的直角三角形的性质: 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。等边三角形 (1)等边三角形的定义:三条边都相等的三角形叫等边三角形. (2)等边三角形的性质: ①等边三角形的三个角都相等,并且每个角都是60° ②等边三角形具有等腰三角形的所有性质,并且每一条边上都有三线合一,因此等边三角形是轴对称图形,它有三条对称轴;而等腰三角形只有一条对称轴 (3)等边三角形的判定 ①三条边都相等的三角形是等边三角形; ②有一个角等于60°的等腰三角形是等边三角形; ③有两个角都等于60°的三角形是等边三角形; ④三个角都相等的三角形是等边三角形. (4)两个重要结论 ①在直角三角形中,如果一个锐角是30°那么它所对的直角边等于斜边的

学习-----好资料 一半? ②在直角三角形中,如果一条直角边是斜边的一半,那么它所对的锐角等于 30° 两个重要结论的数学解释: 已知:如图4,在△ ABC中,/ C = 90°,贝 ①如果AB = 2BC,那么/ A = 30° ; ②如果/ A = 30°,那么AB = 2BC. 直角三角形 1.认识直角三角形。学会用符号和字母表示直角三角形。 按照角的度数对三角形进行分类:如果三角形中有一个角是直角,那么这个三角形叫直角三角形。通常用符号“ Rt △”表示“直角三角形”,其中直角所对的边称为直角三角形的斜边,构成直角的两边称为直角边。如果△ ABC是直角三角形,习惯于把以C为顶点的角当成直角。用三角A、B、C对应的小写字母a、b、c分别表示三个角的对边。 如果AB = AC且/ A = 90°,显然这个三角形既是等腰三角形,又是直角三角形,我们称之为等腰直角三角形。 2.掌握“直角三角形两个锐角互余”的性质。会运用这一性质进行直角三角形中的角度计算以及简单说理。 3.会用“两个锐角互余的三角形是直角三角形”这个判定方法判定直角三角形。 4.掌握“直角三角形斜边上中线等于斜边的一半”性质。能通过操作探索出这一性质并能灵活应用。 5在直角三角形中如果一个锐角是30°,则它所对的直角边等于斜边的一半” 学习-----好资料

直角三角形典型例题总结

勾股定理与勾股定理逆定理典型例题 类型一、勾股定理的构造应用 例1、如图,已知:在中,,,. 求:BC 的长. 思路点拨:由条件,想到构造含角的直角三角形 总结反思: 举一反三【变式1】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 【变式2】

类型二:方程的思想方法 例1、如图所示,已知△ABC 中,∠C=90°,∠A=60°, ,求、、的值。 思路点拨:由,再找出、的关系即可求出和的值 总结升华: 举一反三: 【变式1】如图,四边形ABCD 中,∠ACB=90O ,CD ⊥AB 于点D ,若AD=8,BD=2, 求CD 的长度。 【变式2 】C A

类型三:转化的思想方法 我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决. 例1.如图所示,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE=12,CF=5.求线段EF 的长。 思路点拨:现已知BE 、CF ,要求EF ,但这三条线段不在同一三角形中,所以关键是线段的转化,根据直角三角形的特征,三角形的中线有特殊的性质,不妨先连接AD . 总结升华: 【变式1】如图,已知:,,于P . 求证:. 【变式2】如图,ADC ?和BCE ?都是等边三角形, 30=∠ABC , 求证:2 22BC AB BD +=

3. 类型五:利用勾理作长为 的线段 例1. 作长为、、的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于 ,直角边为和1的直角三角形斜边长就是,类似地可作D C B A

直角三角形的存在性问题解题策略

中考数学压轴题解题策略(3) 直角三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者马学斌 专题攻略 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 例题解析 例?如图1-1,在△ABC中,AB=AC=10,cos∠B=4 5 .D、E为线段BC上的两个动点, 且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E作EF//AC 交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值. 图1-1 【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点. 在Rt△ABH中,AB=10,cos∠B=4 5 ,所以BH=8.所以BC=16. 由EF//AC,得BF BE BA BC =,即 3 1016 BF x+ =.所以BF= 5 (3) 8 x+. 图1-2 图1-3 图1-4

构造正三角形巧解几何问题

构造正三角形巧解几何问题. 构造正三角形巧解几何问题 余凤冈 例1. 如图1,已知在△ABC中,AB=AC,∠BAC=80°,P为△ABC内一点,∠

PBC=10°,∠ACP=20°,求∠APB的度数。 图1 解:如图1,在△ABC的BC的同侧作等边三角形BCD,连结AD 在△DBA和△CBP中 ∠DBA=∠DBC-∠ABC =60°-50° =10° 因为∠CBP=10° 所以∠DBA=∠CBP,

因为∠BCP=∠ACB-∠ACP =50°-20° =30° BDC 平分∠ DA显然. 所以,BDA=∠BCP所以∠BC =因为 BD )(ASA △DBA≌△CBP所以,=BPBA ABP是等腰三角形。即△ 所以

评注:考虑到作等边三角形后形成∠DBA=60°-50°=10°为证全等创造条件是本题的关键。 例2. 如图2,已知在△ABC中,AB=AC,∠BAC=100°,延长AB到D,设AD=BC,连接DC,求∠ACD的度数。 图2 AE ,连结BCE的外侧作等边三角形BC的ABC,在△2解:如图 在△ACE和△CAD中, 因为∠ABC=∠ACB

∠ACE=∠ACB+∠BCE =40°+60° =100° 所以∠ACE=∠CAD 因为 AC=CA,CE=BC=AD 所以△ACE≌△CAD(SAS)故∠CEA=∠D 因为 AE平分∠BEC, 有 所以∠D=30° ∠ACD=180°-∠DAC-∠D

=180°-100°-30° =50° 例3. 如图3,已知在△ABC中,AB=AC,∠BAC=20°,在AB上取AD=BC,求的度数。ACD∠. 图3 解:在△ABC的BC的同侧作等边三角形BCE,连结AE。 在△ACD和△CAE中, ABC∠

任意角的三角函数及基本公式

第 18 讲 任意角的三角函数及基本公式 (第课时) 任意角的三角函数? ? ?? ? ? ? ?? ??? ????? ?? ??????? ±±--?±?+????? ????? ??的函数关系与以及的函数关系 与以及的函数关系与的函数关系与诱导公式倒数关系式 商数关系式平方关系式系式同角三角函数的基本关任意角三角函数定义 弧度制角的概念的扩充三角函数的概念ααπαπααααααα232360180360k 重点:1.任意角三角函数的定义;2.同角三角函数关系式;3.诱导公式。 难点:1.正确选用三角函数关系式和诱导公式;2.公式的理解和应用。 2.理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;3.掌握同角三角函数的基本关系式;4. 掌握正弦、余弦的诱导公式。 ⑴ 角可以看成是一条射线绕着它的端点旋转而成的,射线旋转开始的位置叫做角的始边,旋转终止的位置叫做角的终边,射线的端点叫做角的顶点。 ⑵ 射线逆时针旋转而成的角叫正角。射线顺时针旋转而成的角叫负角。射线没有任何旋转所成的角叫零角。 2.弧度制 ⑴ 等于半径长的圆弧所对的圆心角叫做1弧度的角。用“弧度” 作单位来度量角的制度叫做“弧度制”。 注意:1sin 表示1弧度角的正弦,2sin 表示2弧度角的正弦,它们与?1sin 、?2sin 不是

一回事。 ⑵ 一个圆心角所对的弧长与其半径的比就是这个角的弧度数的绝对值。正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。 ⑶ 设一个角的弧度数为α,则 r l = α (l 为这角所对的弧长,r 为半径)。 ⑷ 所有大小不同的角组成的集合与实数集是一一对应的,这个对应是利用角的弧度制建立的。 ⑸ 1π=?弧度,1弧度?=)180 ( 。 设扇形的弧长为l ,扇形面积为S ,圆心角大小为α弧度,半径为r , 则 αr l = ,α22 1 21r lr S == 。 3.角的集合表示 ⑴ 终边相同的角 设β表示所有终边与角α终边相同的角(始边也相同),则 αβ+??=360k (也可记为 απβ+=k 2 Z k ∈) 。 ⑵ 区域角 介于某两条终边间的角叫做区域角。例如 ?+??<

解直角三角形及其应用--知识讲解

解直角三角形及其应用—知识讲解 【学习目标】 1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形; 2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题. 【要点梳理】 要点一、解直角三角形 在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有: ①三边之间的关系:a2+b2=c2(勾股定理). ②锐角之间的关系:∠A+∠B=90°. ③边角之间的关系: ,,, ,,. ④,h为斜边上的高. 要点诠释: (1)直角三角形中有一个元素为定值(直角为90°),是已知值. (2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解. 要点二、解直角三角形的常见类型及解法 已知条件解法步骤 Rt△ABC 两 边两直角边(a,b) 由求∠A, ∠B=90°-∠A, 斜边,一直角边(如c,a) 由求∠A, ∠B=90°-∠A, 一边一直角边 和一锐角 锐角、邻边 (如∠A,b) ∠B=90°-∠A, ,

一 角 锐角、对边 (如∠A ,a) ∠B=90°-∠A , , 斜边、锐角(如c ,∠A) ∠B=90°-∠A , , 要点诠释: 1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算. 2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边. 要点三、解直角三角形的应用 解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是: (1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 拓展: 在用直角三角形知识解决实际问题时,经常会用到以下概念: (1)坡角:坡面与水平面的夹角叫做坡角,用字母表示. 坡度(坡比):坡面的铅直高度h 和水平距离的比叫做坡度,用字母表示,则,如图, 坡度通常写成=∶的形式. (2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.

中值定理构造辅助函数

微分中值定理证明中辅助函数的构造 1 原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理. 分析:在柯西中值定理的结论 ()()'()()()'()f b f a f g b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()()f b f a g x f x g b g a -=-再两边同时积分得 ()()()()()() f b f a g x f x C g b g a -=+-,令0C =,有() ()()()0()()f b f a f x g x g b g a --=-故()()()()()()() f b f a F x f x g x g b g a -=--为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231 n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++?…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设 231120()231 n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续 2)()F x 在(0,1)内可导 3)(0)F =0, 120(1)0231 n a a a F a n =++++=+… 故()F x 满足罗尔定理的条件,由罗尔定理,存在(0,1)ξ∈使'()0F ξ=,即231120()'0231 n n x a a a a x x x x n ξ+=++++=+…亦即20120n n a a a a ξξξ++++=….

特殊三角形基本知识点

特殊三角形基本知识点整理

————————————————————————————————作者:————————————————————————————————日期:

特殊三角形的定义、性质及判定 三角形类型定义性质判定 等腰三角形有两条边相等的三角 形是等腰三角形,其 中相等的两条边分别 叫做腰,另一条边叫 做底边,两腰的夹角 叫顶角,腰和底边的 夹角为底角 1、等腰三角形是对称图形,顶 角平分线所在直线为它的 对称轴 2、等腰三角形两底角相等,即 在同一个等腰三角形中,等 边对等角 3、等腰三角形的顶角平分线, 底边上的中线和高线互相 重合,简称等腰三角形的三 线合一 1、(定义法)有两 条边相等的三角形 是等腰三角形 2、如果一个三角形 有两个角相等,那 么这个三角形是等 腰三角形,即,在 同一个三角形中, 等角对等边 等边三角形三条边都相等的三角 形是等边三角形,它 是特殊的等腰三角 形,也叫正三角形 1、等边三角形的内角都相等, 且为60° 2、等边三角形是轴对称图形, 且有三条对称轴 3、等边三角形每条边上的中 线,高线和所对角的角平分 线三线合一,他们所在的直 线都是等边三角形的对称 轴 1、三条边都相等 的三角形是等 边三角形 2、三个内角都等 于60°的三角 形是等边三角 形 3、有一个角是 60°的等腰三 角形是等边三 角形 直角三角形有一个角是直角的三 角形是直角三角形, 即“R t△” 1、直角三角形的两锐角互余 2、直角三角形斜边上的中线 等于斜边的一半 3、直角三角形中30°角所对 的直角边等于斜边的一半 4、直角三角形中两条直角边 的平方和等于斜边的平方 (勾股定理) 1、有一个角是直 角的三角形是 直角三角形 2、有两个角互余 的三角形是直 角三角形 3、如果一个三角 形中两条边的 平方和等于第 三条边的平 方,那么这个 三角形是直角 三角形(勾股 定理逆定理)

第3讲特殊三角形专题复习.docx

特殊三角形专题复习 【构造等腰三角形解题的常见途径】 一、利用角平分线+平行线,构造等腰三角形 当一个三角形中岀现角平分线和平行线时,我们就可以寻找到等腰三角形.如图1①中,若4D 平分 ZB4C, AD//EC,则/VICE 是等腰三角形;如图1②中,AD 平分ZBAC, DE//AC,则ZVIDE 是等腰三 角形;如图1③中,AQ 平分ZBAC, CE//AB,则△ACE 是等腰三角形;如图1④中,AD 平分ZBAC, EF //AD,则ZV1GE 是等腰三角形. 例2如图3,在△ABC 中,ZBAC 、ZBCA 的平分线相交于点0,过点。作DE 〃人C,分别交4B 、BC 于点ZX E.试猜想线段AD. CE 、DE 的数量关系,并说明你的猜想理由. 例3 如图4, AABC 中,AD 平分ABAC, E 、F 分别在3£>、AD 上,且DE=CD 求证:EF//AB ? 例1 如图2, /XABC 中,AB=AC,在AC _k 取点P,过点P 作EF 丄BC,交 BA 的延长线于点E,垂足为点F.求证:AE=AP. B C B 图1

二、利用角平分线+垂线,构造等腰三角形 当一个三角形中出现角平分线和垂线时,我们就可以寻找到等腰三角形.如图5 中,若AD平分 ZBAC, AD丄DC,则ZVIEC是等腰三角形. 例 4 如图6,已知等腰Rt/\ABC中,AB=AC, ZBAC=90° , BF 平分ZABC, CD 丄BD交BF的延长 线于D.求证:BF=2CD. A 三、利用转化倍角,构造等腰三角形 当一个三角形中出现一个角是另一个角的2倍时,我们就可以通过转化倍角寻找到等腰三角形.如图7①中,若Z4BC=2ZC,如果作3D平分ZABC.则是等腰三角形;如图7②中,若Z4BC=2ZC, 如果延长线CB到D 使连结AD,则△4DC是等腰三角形;如图7③中,若kB=2ZACB,如果以C为角的顶点,CA为角的一边,在形外作ZACD=ZACB,交BA的延长线于点D,则△DBC是等腰三角形. 例 5 如图8,在△ABC 中,ZACB=2ZB, BC=2AC.求证:ZA=90°? 四、模拟画图例6已知在如图1的ZLABC中,AB=AC, ZA=36°, 仿照图1,请你再用两种不同的方法,将AABC分割成3个三角 形,使每个三角形都是等腰三角形(图2、图3供画图用,作图工 具不限,不要求写出作法,不要求证明,但要标出所分得每个等腰 三角形的内角度数) . 图8 图1图3

初二数学培优之直角三角形

初二数学培优之直角三角形 阅读与思考 直角三角形是一类特殊三角形,有以下丰富的性质: 角的关系:两锐角互余; 边的关系:斜边的平方等于两直角边的平方和; 边角关系:30o 所对的直角边等于斜边的一半. 这些性质广泛应用于线段计算、证明线段倍分关系、证明线段平方关系等方面. 在现阶段,勾股定理是求线段的长度的主要方法,若图形缺少条件直角条件,则可通过作辅助垂线的方法,构造直角三角形为勾股定理的应用创造必要条件;运用勾股定理的逆定理,通过代数方法计算,也是证明两直线垂直的一种方法. 熟悉以下基本图形基本结论: 例题与求解 【例l 】(1)直角△ABC 三边的长分别是x ,1x 和5,则△ABC 的周长=_____________.△ABC 的面积=_____________. (2)如图,已知Rt △ABC 的两直角边AC =5,BC =12,D 是BC 上一点,当AD 是∠A 的平分线时,则CD =_____________. D C (太原市竞赛试题) 解题思路:对于(1),应分类讨论;对于(2),能在Rt △ACD 中求出CD 吗?从角平分线性质入手. 【例2】如图所示的方格纸中,点A ,B ,C ,都在方格线的交点,则∠ACB =( ) A.120° B.135° C.150° D.165°

(“希望杯”邀请赛试题)解题思路:方格纸有许多隐含条件,这是解本例的基础. 【例3】如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC =60°,求∠ACB的度数. B C (“祖冲之杯”邀请赛试题)解题思路:不能简单地由角的关系推出∠ACB的度数,综合运用条件PC=2PB及∠APC =60°,构造出含30°的直角三角形是解本例的关键. 【例4】如图,在△ABC中,∠C=90°,∠A=30°,分别以AB,AC为边在△ABC的外侧作等边△ABE和等边△ACD,DE与AB交于F,求证:EF=FD. B A C (上海市竞赛试题)解题思路:已知FD为Rt△FAD的斜边,因此需作辅助线,构造以EF为斜边的直角三角形,通过全等三角形证明. 【例5】如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD,求证:222 += BD AB BC B (北京市竞赛试题)解题思路:由待证结论易联想到勾股定理,因此,三条线段可构成直角三角形,应设法将这三条线段集中在同一三角形中. 【例6】斯特瓦尔特定理:

构造直角三角形来解题

构造直角三角形巧解题 山东省博兴县锦秋街道清河学校 张海生 256500 有些几何题,若能仔细观察、把握特征、抓住本质、恰当地构造直角三角形进行转化,就会收到化难为易、事半功倍的效果.下面举例介绍构造直角三角形解题的若干常用方法,供同学们复习时参考. 一、利用已知直角构造直角三角形 例1:如图1,在四边形ABCD 中,∠A=060,∠B=∠D=090,AB=2,CD=1.则BC 和AD 的长分别为_______和_______. 解析:考虑到图中含有090和060的角,若延长AD 、BC 相交于E ,则可以构造出Rt △AEB 和Rt △CED ,易知∠E=030,从而可求出DE=3,AE=4,BE=23,故AD=4-3,BC=23-2. 二、利用勾股定理构造直角三角形 例2:如图2,在四边形ABCD 中,AB=AD=8,∠A=060,∠ADC=0150,已知四边形ABCD 的周长为32,求四边形ABCD 的面积. 解析:四边形ABCD 是一个不规则的四边形,要求其面积,可设法变成特殊的三角形求解.连接BD ,则△ABD 是等边三角形, △BDC 是直角三角形,由于AB=AD=BD=8,,求△ABD 的面积不难解决,关键是求△BDC 的面积.可运用周长和勾股定理联合求出DC ,从而求出△BDC 的面积. 解答:连接BD.∵AB=AD ,∠A=060,∴△ABD 是等边三角形. ∴∠ADB=060,BD=AD=AB=8. 因为∠ADC=0150,∴∠BDC=090, 故△BDC 是直角三角形, 因为四边形ABCD 的周长为32, AB=AD=8, ∴BC+DC=32-16=16,BC=16-DC. 在Rt △BDC 中,222BC DC BD =+, 即()222168DC DC -=+.解得DC=6. ∴248621=??=?B DC S .用勾股定理求出等边△ABD 的高为3482 3=?. 3163482 1=??=?A B D S .∴24316+=+=??B DC A B D A B CD S S S 四. 说明:⑴求不规则的图形面积应用割补法把图形分解为特殊的图形;⑴四边形中通过添加辅助线构造直角三角形;⑶边长为a 的等边三角形的高为a 23,面积为24 3a . 三、利用高构造直角三角形 例3:如图3,等腰△ABC 的底边长为8cm ,腰长为5cm ,一动点P 在底边上从B 向C 以0.25cm/s 的速度移动,请你探究:当P 运动几秒时,P 点与顶点A 的连线PA 与腰垂直. 解析:本题是一道探究性的动态问题,假设P 在某一时刻有PA ⊥AC ,此时P 点运动了几秒,这是解决问题的着手点.设BP=x ,PC=8-x ,在Rt △PAC 中,由于PA 不知道,无法建立关系式.考虑△ABC 是等腰三角形,如作底边上的高AD ,则可用x 的代数式表示AP ,用勾股定理便可求出x ,进而求出运动时间.当P 点运动到D 与C 之间时,也存在AP ⊥AB 的情况,故要分类 讨论. 解答:作底边BC 的高AD ,则AD ⊥BC ,垂足为D. 设BP=xcm ,PA ⊥AC. 图1 图2 图3

等边三角形的几种画法

等 边 三 角 形 的 几 种 画 法 姓名:刘欢欢 学号:0801174059 专业:数学与应用数学

等边三角形的几种画法 本学期开设了课件制作这门课程,学习了几何画板的简单应用。老师曾在课堂上布置了一道题:如何利用几何画板作出等边三角形?我将在本文解决这个问题。 第一种画法:直接画。选择自定义工具→05三角形(等边三角形)。 第二种画法:尺规作图。线段直尺工具,得一条线段→选择端点和线段,构造(以圆心和半径作圆)→选中上交点和两端点,构造(线段)→点中两个圆,显示(隐藏圆)。 第三种画法:利用正六边形作图。选择自定义工具→07正多边形(正六边形),把颜色选作白色→分别选中两点对应的点,构造(线段)→点击两点和交点,构造(线段)→选中六边形各边及两条虚线段,显示(隐藏对象)。 第四种画法:利用线段旋转画图。线段直尺工具,得一条线段→文字工具,给两端点标上标签B A、→变换(旋转),固定角度60°,标上标签A'→点A 、, A' 构造(线段)。

第五种画法:把一般三角形转变成正三角形。线段直尺工具,画一个一般的三角形→选中三边,构造(中点)→任选两个中点和对应的顶点,构造(线段),得一交点→任选两顶点和其对应边,构造(垂线),得一交点→分别选择三角形两边,构造(角平分线),得一交点→点中三角形顶点,使得三点合一→选中除三角形三边及顶点以外的线和点,显示(隐藏对象)。 总结:等边三角形的画法或许远远不止这些,那就等我们以后去发现吧。我在这里想说的是,无论哪种画法,利用的都是等边三角形的性质:三边相等、三心合一、每个角都是60°。 这也就告诉我们,几何画板的使用是有一定根据的。要想很好的运用这个工具,我们应该先搞清楚所做图形的原理及性质,之后才能达到自己想要的效果。另外,对于数学这门学科而言,几何画板是个不可缺少的工具。将来等我们也站上讲台,我们可以用它给学生制造一些惊喜,让每个人都能体会数学的奇妙和美好。

中值定理构造辅助函数

中值定理构造辅助函数 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

微分中值定理证明中辅助函数的构造 1 原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理. 分析:在柯西中值定理的结论()()'()()()'() f b f a f g b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()() f b f a g x f x g b g a -=-再两边同时积分得()()()()()()f b f a g x f x C g b g a -=+-,令0C =,有()()()()0()() f b f a f x g x g b g a --=-故()()()()()()() f b f a F x f x g x g b g a -=--为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231 n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231 n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++?…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设 231120()231 n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续 2)()F x 在(0,1)内可导 3)(0)F =0, 120(1)0231 n a a a F a n =++++=+…

一个可以从旋转角度(构造等边三角形)理解的好题及其解法(13)

题目 在凸四边形ABCD 中,60ABC ∠=?,AB BC =,30ADC ∠=?。 证明:222AD CD BD +=。 分析:待证结论让我们联想到勾股定理,需要通过添加辅助线将AD 、CD (作 为直角边)和BD (作为斜边)集中到一个直角三角形里。 图1 图2 证明1:如图1,过D 作DE DA ⊥,且使得ED CD =,连接AE 、CE 、AC 903060CDE ADE ADC ∠=∠-∠=?-?=? ∴CDE ?是等边三角形 ∴CE CD =,60DCE ∠=? 60ABC ∠=?,AB BC = ∴ABC ?是等边三角形 ∴AC BC =,60BCA ∠=? ∴ACE ACD DCE ACD BCA BCD ∠=∠+∠=∠+∠=∠ ∴ACE ?≌BCD ?(SAS ) ∴AE BD = 在Rt ADE ?中,222AD ED AE += ∴222AD CD BD += 评注:意外的是,添加辅助线后原图回到了一个经典(老)问题的图上—两个有公共顶点的等边三角形(不看AD ,试试?)!另外,也可以按如下方式作辅助线:如图2,过D 作DE DC ⊥,且使得ED AD =,连接CE 、AE 、AC (过程基本同证明1,不赘述)。 D B B D B D

图3 图4 证明2:如图3,过C 作CE CD ⊥,且使得CE AD =,连接DE 、BE 360360BCE ECD BCD ABC ADC BCD BAD ∠=?-∠-∠=?-∠-∠-∠=∠ BC BA = ∴BCE ?≌BAD ?(SAS ) ∴BE BD =,CBE ABD ∠=∠ ∴60DBE ABC ∠=∠=? ∴DBE ?是等边三角形 ∴ED BD = 在Rt DCE ?中,222CE CD ED += ∴222AD CD BD += 评注:明白作辅助线的初衷和目的后,问题解决将得心应手,也可以按如下方式作辅助线:如图4,过A 作AE AD ⊥,且使得AE CD =,连接DE 、BE (过程基本同证明2,不赘述)。 后记:1、证明1的图可以看成以CD 为边作等边三角形CDE ,证明2的图可以看成以BD 为边作等边三角形BDE ,你能理解为什么作等边三角形吗? 2、图1可以看成是将BCD ?绕点C 沿顺时针方向旋转60?到ACE ?,图3可以看成是将ABD ?绕点B 沿顺时针方向旋转60?到CBE ?,你能理解为什么旋转60?吗?其实,从旋转的视角来看待本题,过程将十分简洁:如图3,将ABD ?绕点B 沿顺时针方向旋转60?到CBE ?,连接DE ,易知DBE ?是等边三角形,故ED BD =, 由于D C E D B E C E B C D B A B C A D B C ∠=∠+∠+∠=∠+∠+∠603090=?+?=?(凹四边形),所以2 2 2 CE CD ED +=,从而2 2 2 AD CD BD +=。 相关题目如图,在ABC ?中,90ABC ∠=?,AB CB =,45DBE ∠=?D 、E 是AC 上两点。试证明:222 AD CE DE +=。 请务必督促孩子今晚进行独立思考,下午辅导课时在黑板上已抄过B B

相关主题
文本预览
相关文档 最新文档