TD-LTE异系统互操作原理解析
- 格式:ppt
- 大小:3.83 MB
- 文档页数:65
中国联通LTE互操作方案V2.清晨的阳光透过窗帘的缝隙,洒在键盘上,十年的时间仿佛一晃而过。
此刻,我将用这双手,将这些年的经验和思考,倾注在这篇方案中。
一、背景回想过去,2G时代,移动通信市场百家争鸣,3G时代,TD-SCDMA 崭露头角,4G时代,LTE技术引领潮流。
如今,5G时代已悄然来临,中国联通作为通信行业的领军企业,如何在竞争激烈的市场中保持领先,实现LTE互操作成为关键。
二、目标1.提高网络覆盖率,让用户在任何地方都能享受到高速网络;2.提升用户体验,让用户在不同网络间切换时,感受到不到任何延迟;3.降低网络运营成本,提高企业盈利能力。
三、方案内容1.技术层面(1)网络架构优化通过对现有网络架构进行优化,实现多运营商网络之间的互操作。
具体包括:采用统一的网络架构,降低网络复杂度;引入SDN、NFV等技术,提高网络灵活性;构建多层次网络切片,满足不同用户需求。
(2)频率资源共享频率资源是通信网络的核心资源,实现频率资源共享,提高资源利用率。
具体措施如下:采用动态频率分配技术,实现频率资源的合理分配;探索频率共享商业模式,降低企业成本;加强与政府部门沟通,争取更多频率资源。
2.业务层面(1)用户引导为用户提供明确的网络选择指引,让用户在不同网络间切换时,能够快速找到最优网络。
具体措施如下:开发智能网络选择APP,实时推送网络质量信息;加强线上线下宣传,提高用户对互操作的认识;优化用户界面,让用户操作更加便捷。
(2)优惠活动通过优惠活动,吸引用户使用互操作服务,提升用户黏性。
具体措施如下:推出互操作套餐,降低用户使用成本;开展线上线下活动,提高用户参与度;与合作伙伴联合推广,扩大互操作服务影响力。
3.运营层面(1)网络监控加强对网络质量的监控,确保互操作服务的稳定运行。
具体措施如下:建立完善的网络监控体系,实时掌握网络运行状况;引入技术,实现智能故障排查;加强与运维团队协作,提高故障处理效率。
TD-LTE技术原理介绍课程内容 TD-LTE概述 TD-LTE网络架构 TD-LTE协议栈 TD-LTE关键技术 TD-LTE与LTE FDD的区别 1TD-LTE概述 TD- LTE概述 LTE简介 LTE相关组织介绍 LTE背景 LTE表示3GPP长期演进( Long Term Evolution 2004年11月3GPP TSG RAN workshop启动LTE项目 2移动通信技术的演进线路 GSM GPRS EDGE LTE HSPA+ R7 MBMS WCDMA R99 HSDPA R5 HSUPA R6 MBMS HSPA+ R7 FDD/ TDD TDSCDMA HSDPA HSUPA 4G CDMA IS95 CDMA 2000 1x CDMA 2000 1X EV-DO EV-DO Rev. A EV-DO Rev. B 802.16 d 802.16 e 802.16 m 2G 2.5G 2.75G 3G 3.5G3.75G 3.9G 4G 多种标准共存、汇聚集中多个频段共存移动网络宽带化、IP化趋势 LTE的目标更好的覆盖峰值速度 DL: 100Mbps UL: 50Mbps 更高的频谱效率 LTE 低延迟 CP: 100ms UP: 5ms 频谱灵活性更低的 CAPEX & OPEX 3峰值数据率 1 实现峰值速度的显著提高,峰值速度与系统占用带宽成正比 2 在20MHz带宽内实现100Mbit/s的下行峰值速度(频谱效率5 bit/s/Hz 3 在20MHz 带宽内实现50Mbit/s的上行峰值速度(频谱效率2.5 bit/s/Hz 目标中兴通信是业界唯一支持TD-LTE20MHz带宽的系统厂商中兴通信是业界唯一支持TD20MHz带宽的系统厂商移动性 E-UTRAN系统应能够支持: 对较低的移动速度 ( 0 - 15 km/h 优化在更高的移动速度下 (15 - 120 km/h 可实现较高的性能在120 - 350 km/h的移动速度 (在某些频段乃至应该支持500 km/h 下要维持网络的移动性在各类移动速度下,所支持的语音和实时业务的效劳质量都要达到或超过UTRAN下所支持的中兴通信业界首家通过LTE高速(90Km/h)移动测试,吞吐量超级稳固!中兴通信业界首家通过LTE高速(90Km/h)移动测试,吞吐量超级稳固! 4频谱频谱灵活性 E-UTRA系统可部署在不同尺寸的频谱中,包括1.4、 3、五、10、15 和20 MHz, 支持对已利用频率资源的重复利用上行和下行支持成对或非成对的频谱共存与GERAN/3G系统在相同地域邻频与其他运营商在相同地域邻频在边境两偏重合的或相邻的频谱内与 UTRAN 和 GERAN切换与非 3GPP 技术 (CDMA 2000, WiFi, WiMAX切换频谱计划和整合700/1900/850/… AWS LTE2600 LTE2600 LTE2600 LTE2600 LTE2600 LTE2600 LTE2100 LTE2100 LTE2100 LTE2100 LTE2100 UMTS2100 UMTS2100 UMTS2100 UMTS2100 UMTS2100 UMTS2100 LTE1800 GSM1800 GSM1800 GSM1800 LTE900 GSM900 2020 GSM900 2020 GSM900 2020 LTE1800 GSM1800 LTE900 GSM900 2020 LTE1800 GSM1800 LTE900 GSM900 2021 LTE1800 GSM1800 LTE900 GSM900 2021 Y LTE900 LTE1800 5LTE关键技术频谱灵活支持更多的频段灵活的带宽灵活的双工方式先进的天线解决方案分集技术 MIMO技术 Beamforming技术新的无线接入技术 OFDMA SC-FDMA TD-LTE概述 TD- LTE 概述 LTE简介 LTE相关组织介绍 6LTE标准组织功能需求标准制定技术验证 PCG TSG GERAN TSG RAN TSG SA TSG CT 3GPP组织架构 Project Co-ordination Group (PCG TSG GERAN GSM EDGE Radio Access Network TSG RAN Radio Access Network TSG SA Service & Systems Aspects TSG CN Core Network & Terminals RAN WG1 Radio Layer 1 spec SA WG1 Services CT WG1 MM/CC/SM (lu GERAN WG1 Radio Aspects RAN WG2 Radio Layer 2 spec Radio Layer 3 RR spec SA WG2 Architecture CT WG3 Interworking with external networks GERAN WG2 Protocol Aspects SA WG3 Security GERAN WG3 Terminal Testing RAN WG3 lub spec, lur spec, lu spec UTRAN O&M requirements CT WG4 MAP/GTP/BCH/SS SA WG4 Codec CT WG6 Smart Card Application Aspects RAN WG4 Radio Performance Protocol aspects SA WG5 Telecom Management RAN WG5 Mobile Terminal Conformance Testing 7LTE标准化进展 LTE start Work Item Start Work Item Stage 3 Finish 2005 2006 2007 2020 2020 2020 Study Item Stage 1 Finish Work Item Stage 2 Finish First Market Application 3GPP R8 概念了LTE的大体功能,该版本已于2020年3月冻结, 3GPP R9 要紧完善了LTE家庭基站、治理和平安方面的性能,和LTE微微基站和自组织治理功能,估量将于2020年年末冻结 NGMN简介无线宽带创新的发动机一、NGMN( 是2006年初由全世界7家主流运营商发起成立的 NGMN简介非营利性组织二、NGMN :Next Generation Mobile Networks (Beyond HSPA&EVDO 一、使全世界移动通信产业链聚集在统一需求之下,引导、驱动标准研究、产品研发,增进HSPA&EVDO以后的移动网络健康进展二、推动IPR改革,使IPR透明和费率可预见性 NGMN 愿景 NGMN 时刻表一、2020年末完成LTE(R8)标准二、2020年测试3、2020 提供商用一、运营商(Members 20家二、制造商(Sponsors 34家,包括设备制造商,芯片厂家和测试设备厂家 3、研究机构和大学(Advisors 3家 NGMN 成员 8NGMN工作组介绍寻觅可统一利用的频谱与ITU、国家、地域频谱治理部门和谐、沟通Spectrum ( 频谱)对技术进行初期验证向LSTI提测试需求 Trial (实验) TWG (技术组)NGMN IPR (知识产权)推动IPR改革,使IPR 透明和费率可预见从运营的角度,提出各种需求并与制造商讨论可行性驱动标准 Ecosystem (生态系统)与互联网行业合作,构建“多方共赢”生态环境从5个方面推动下一代移动宽带进展 LSTI 组织架构 Steering Board Steering Group Program Office NSN WG PR WG PoC1 WG PoC2 WG IODT WG IOT FCT 9LSTI 工作打算 2007 2020 2020 2020 POC IODT EPC IOT/Trials : Test start Applications Proof of Concept partially compliant Vendor + test UE or UE partner IODT Compliant over key subset Vendor + UE partner pairs IOT Compliant Multiple Partners Vendors and UE Trials Compliant +form factor UE Operator + Vendor + UE partner LSTI各组活动里程碑 2007 2020 2020 2020 Proof of Concept M1 SIMO M2 MIMO M3 RRM M4Mobility M2 M3 M4 TDD M1 IODT M5 start M6a Feature set M6b Agree baseline reporting M7 IODT Complete IOT M8 Tests defined reporting M9 IOT Complete Current projections for FCT Friendly Customer Trials LTE Asia LTE USA LTE London IEEE Comms M1M2 Webcast CTIA Website LTE Berlin NGMN Conf IODT PR Launch PR M1 PR M10 Tests defined M11 M12a Setup Radio M12b End to end trials complete ATIS MWC09 CTIA LTE Berlin LTE Americas LTE Asia MWC10 PR/Marketing 10LTE无线接口—操纵平面 UE NAS RRC PDCP RLC MAC PHY RRC PDCP RLC MAC PHY eNB MME NAS LTE/SAE的协议结构 MME UE NAS APP RRC PDCP RLC MAC PHY RRC PDCP RLC MAC PHY GTPU UDP S1AP X2AP eNB NAS S1AP SCTP IP SCTP IP SGW GTPU UDP IP 信令流数据流 16无线帧结构——类型1 1个无线帧 Tf = 307200 TS = 10 ms 1个时隙Tslot=15360×TS=0.5ms #0 #1 #2 …… …… #17 #18 #19 1个子帧每一个10ms无线帧被分为10个子帧每一个子帧包括两个时隙,每时隙长0.5ms Ts=1/(1500*2048 是大体时刻单元任何一个子帧即能够作为上行,也能够作为下行无线帧结构——类型2 1个无线帧 Tf = 307200 Ts = 10 ms 1个半帧 153600 TS = 5 ms 1个时隙 Tslot=15360TS 30720TS 子帧#0 … 子帧 #4 子帧#5 … 子帧 #9 1个子帧 DwPTS GP UpPTS 1个子帧 DwPTS GP UpPTS 每一个10ms无线帧包括2个长度为5ms的半帧,每一个半帧由4个数据子帧和1个特殊子帧组成特殊子帧包括3个特殊时隙:DwPTS,GP和UpPTS,总长度为1ms 支持5ms和10ms上下行切换点子帧0、5和DwPTS老是用于下行发送 17上下行配例如式“D”代表此子帧用于下行传输,“U” 代表此子帧用于上行传输,“S”是由DwPTS、GP 和UpPTS组成的特殊子帧。
TDLTE基本原理TD-LTE(Time Division-Long Term Evolution)是一种4G移动通信标准,是一种采用时分复用(TDM)技术的高速数据传输技术。
它是TD-SCDMA(Time Division-Synchronous Code Division Multiple Access)的演进版本,可以支持更高的数据传输速率和更低的延迟。
TD-LTE的基本原理可以分为以下几个方面:1.频段和时隙划分:TD-LTE采用时分信道复用技术,将整个频段进行划分,并将其中的每个频段都分为不同的时隙。
这些时隙可以被不同的用户或者传输任务所共享,通过时分信道复用技术,实现多用户同时传输数据。
2.时频资源分配:TD-LTE将整个频谱划分为小的时间间隔,称为子帧。
每个子帧包含多个时隙,每个时隙可以分配给不同的用户或服务。
这种时频资源分配方式可以根据用户需求和网络资源情况进行灵活配置,以满足不同用户的传输需求。
3.多天线技术:TD-LTE支持多输入多输出(MIMO)技术,即在发送端和接收端都配备多个天线。
通过使用多天线,可以提高信号质量和传输速率,并增强系统容量和抗干扰能力。
4.先进的调制解调技术:TD-LTE采用先进的调制解调技术,如16QAM、64QAM甚至256QAM。
这些调制技术可以在相同的频谱带宽下实现更高的数据传输速率,提高系统的吞吐量和效率。
5.资源分配和调度算法:TD-LTE采用先进的资源分配和调度算法来优化系统性能。
通过动态分配网络资源,可以根据用户需求和网络条件实现高效的网络资源利用,并最大限度地提供服务质量和用户体验。
6.自适应调整功率控制:TD-LTE利用功率控制技术来优化系统的无线链接和传输质量。
通过根据信道质量和干扰情况自适应调整发射功率,可以提高覆盖范围和系统的容量。
总之,TD-LTE采用时分复用技术,通过划分频段和时隙,实现多用户同时传输数据。
同时,它还利用多天线、先进的调制解调技术、资源分配和调度算法以及自适应功率控制等技术来提高系统的传输速率、容量和效率。