NOx的治理方法
- 格式:doc
- 大小:37.00 KB
- 文档页数:4
大气中氮氧化物的危害及治理大气中的氮氧化物(NOx)包括一氧化氮(NO)和二氧化氮(NO2)。
它们是大气污染的主要成分之一,主要来源于工业活动、交通运输和能源消耗等人类活动。
氮氧化物的危害主要体现在以下几个方面:1. 对健康的危害:氮氧化物被吸入人体后,会对呼吸系统产生刺激作用,引起呼吸道疾病如哮喘、支气管炎等。
它们也会与空气中的颗粒物一起形成细颗粒物(PM2.5),对心脏和肺部造成损害,增加心脑血管病、呼吸道疾病和肺癌的风险。
2. 对环境的危害:氮氧化物是使水体中产生酸性的主要原因之一,导致酸雨的形成。
酸雨会造成土壤酸化,使植物无法吸收养分,对农作物的生长产生负面影响。
酸雨还会对湖泊、河流和地下水系统产生影响,破坏生态平衡。
3. 臭氧形成:氮氧化物与挥发性有机物(VOCs)在光照下反应,形成臭氧。
臭氧是一种对植物生长有害的氧化性气体,会导致叶片脱落、影响光合作用,并对作物产量和质量造成损害。
针对氮氧化物的治理,可以从源头控制、减排技术和监测手段几个方面入手。
1. 源头控制:加强对工业排放源和汽车尾气的管理,通过使用更清洁的能源、推广低排放车辆、提高工业设备的燃烧效率等方式,减少氮氧化物的生成量。
2. 减排技术:在工业生产和交通运输中采用先进的氮氧化物去除技术,如选择性催化还原技术(SCR)和选择性非催化还原技术(SNCR),能有效地减少氮氧化物的排放。
3. 监测手段:建立完善的氮氧化物监测体系,对污染源进行监测和追踪,及时发现问题,指导治理措施的制定和落实。
加强公众对氮氧化物污染的认识,提高环境意识,鼓励公众参与环境保护和大气污染治理工作。
氮氧化物是大气污染的重要成分之一,对健康和环境造成严重危害。
通过源头控制、减排技术和监测手段的综合应用,可以有效地治理氮氧化物污染,改善空气质量,保护人民健康和生态环境。
氮氧化物治理
氮氧化物(NOx)是空气污染的主要成分之一,对人类健康和环境产生负面影响。
氮氧化物治理包括两种方法:一种是控制污染源的排放,另一种是捕获和处理已经排放的氮氧化物。
控制污染源的排放:这是最有效的防治措施之一。
主要包括以下几个方面:
1. 采用清洁燃料:例如天然气、生物质燃料等。
因为这些燃料的含氧量较低,所以在燃烧时产生的氮氧化物的排放量也会降低。
2. 安装氮氧化物减排设备:例如SCR(选择性催化还原)技术和SNCR(选择性非催化还原)技术等。
这些技术通过将氨水或尿素等还原剂注入到烟道中,与氮氧化物反应生成氮气和水蒸气,从而降低氮氧化物的排放浓度。
3. 优化制造工艺:这可以通过改变产品生产工艺来降低氮氧化物的排放。
例如,选择低氮化合物的催化剂,使用更高效的燃烧控制技术等。
捕获和处理氮氧化物:这是另一种重要的治理方法,主要包括以下两个方面:
1. 烟气脱硝技术:这是通过在排烟管中添加吸收剂,使氮氧化物被吸收或转化为无害的物质,从而实现净化排放气体的目的。
比较常见的方法包括湿式脱硝和干式脱硝技术。
2. 氮氧化物后处理技术:这种技术主要通过化学反应将氮氧化物转化为无害的物质。
比较常用的方法包括氨氧化和光催化氮氧化物降解技术等。
总体来说,氮氧化物的治理需要从多个方面入手,包括控制污染源的排放和捕获和处理已经排放的氮氧化物等。
除此之外,政府需要加强监管,切实执行环保法
律法规,加大对氮氧化物治理的投入力度,才能实现氮氧化物治理的效果。
氧化还原法除氮氧化物1.引言1.1 概述氮氧化物是大气中重要的污染物之一,对于环境和人类健康造成了严重的影响。
减少氮氧化物的排放已经成为当今社会所面临的一个重要课题。
氧化还原法被广泛应用于氮氧化物的除去。
这种方法利用了氧化还原反应中发生的电荷转移过程,将氮氧化物还原为低毒或无毒的物质。
氧化还原法的原理是在一定的温度和氧气浓度下,将氮氧化物与还原剂反应,将其还原为氮气或其他无害物质,从而将其从废气中去除。
氧化还原法除氮氧化物具有许多优点。
首先,这种方法可以在较低的温度下进行,从而降低了能源消耗。
其次,氧化还原反应是可逆的,可以实现连续循环使用还原剂,提高了氮氧化物的去除效率。
此外,氧化还原法应用广泛,可以在多种工业领域中使用,如电力、化工、钢铁等。
然而,氧化还原法除氮氧化物也存在一些挑战。
首先,还原剂的选择对反应效果具有重要影响,需要针对不同情况进行合理选择。
其次,氧化还原法在一些复杂的废气组分中可能受到干扰,需要进行适当的预处理。
此外,还需要考虑废气中其他污染物的处理问题,以综合考虑环境保护的整体效果。
本文将重点介绍氧化还原法除氮氧化物的原理和应用。
通过分析和总结已有研究成果,总结氧化还原法在氮氧化物控制方面的效果,并展望其发展前景。
希望本文能对进一步推动氮氧化物的减排工作提供一定的参考和指导。
1.2 文章结构文章结构部分内容:本文分为引言、正文和结论三个部分。
其中引言部分包括概述、文章结构以及目的三个子部分。
正文部分主要介绍了氧化还原法除氮氧化物的原理和应用。
结论部分总结了氧化还原法除氮氧化物的效果,并展望了其未来的发展。
在引言部分,首先进行了对整篇文章的概述,简要介绍了将要讨论的主题——氧化还原法除氮氧化物。
接着我们对文章的结构进行了介绍,明确了整篇文章的框架和分部内容。
最后,我们明确了本文的目的,即通过对氧化还原法除氮氧化物的原理和应用进行探讨,来深入了解这种方法在减排领域中的作用和效果。
2024年氮氧化物治理市场分析现状引言氮氧化物(NOx)是大气环境中的主要污染物之一,其排放对人体健康和环境的影响不容忽视。
为了减少氮氧化物的排放,各国纷纷采取措施进行治理。
本文将对氮氧化物治理市场的现状进行分析,以全面了解该市场的发展趋势和前景。
氮氧化物治理技术概述氮氧化物治理技术主要包括选择性催化还原(SCR)、非选择性催化还原(SNCR)、氧化催化(CO)等方法。
SCR技术采用催化剂将氨气与氮氧化物反应,使其转化为氮气和水蒸气,从而实现氮氧化物的脱除。
SNCR技术通过向燃烧设备喷射尿素或氨水等还原剂,使其与氮氧化物发生化学反应,最终转化为无害物质。
CO 技术则通过将燃烧设备排放的废气中的氮氧化物氧化为二氧化氮,再通过催化剂将其转化为氮气和水蒸气。
氮氧化物治理市场现状分析市场规模目前,全球氮氧化物治理市场规模逐年扩大,预计在未来几年内将保持较高的增长率。
据市场研究机构的数据显示,2019年全球氮氧化物治理市场规模达到XX亿美元,预计到2025年将达到XX亿美元。
市场驱动因素氮氧化物治理市场的发展受到以下几个因素的推动: 1. 政策法规的支持:各国政府相继颁布了一系列的环保政策和法规,要求降低氮氧化物的排放,从而促进了氮氧化物治理市场的发展。
2. 环境意识的提高:随着人们对环境保护意识的提高,对大气污染物的治理要求也越来越高,这对氮氧化物治理市场的发展起到了推动作用。
3. 技术进步和创新:氮氧化物治理技术不断改良和创新,使得治理设备更加高效和节能,这也促进了氮氧化物治理市场的发展。
市场竞争格局氮氧化物治理市场竞争激烈,主要由一些大型跨国公司和国内知名企业占据主导地位。
这些企业拥有先进的技术和丰富的经验,可以提供全面的治理方案和设备。
此外,一些新兴企业也加入到市场竞争中,通过技术创新和差异化服务来争取市场份额。
市场前景与挑战氮氧化物治理市场的前景广阔,随着环保意识的提高和政府政策的推动,市场需求将持续增长。
大气氮氧化物排放的来源和控制措施大气氮氧化物(NOx)排放的来源和控制措施随着工业化和城市化进程的不断推进,大气氮氧化物(NOx)排放成为环境污染的一个重要因素。
本文将详细介绍大气氮氧化物排放的来源以及常见的控制措施。
一、大气氮氧化物的来源:1. 工业排放:工厂、发电厂、炼油厂等工业设施的燃烧过程中,燃料中的氮元素与氧气反应生成氮氧化物。
2. 车辆排放:汽车、摩托车等交通工具的燃烧过程也会产生大量的氮氧化物。
尤其是柴油车辆排放的氮氧化物含量较高。
3. 家庭燃烧:家庭使用的煤气、石油等燃料也会释放出氮氧化物。
4. 农业活动:农业生产中使用的化肥、农药等含氮物质在作物的生长过程中会转化为氮氧化物。
此外,畜禽养殖中排放的粪便也是氮氧化物的重要来源。
5. 自然过程:雷电、火山喷发等自然现象也会释放出大量的氮氧化物。
二、大气氮氧化物的控制措施:1. 燃烧控制:减少燃烧过程中氮氧化物的产生是最关键的控制措施之一。
通过提高燃烧炉燃烧效率、调整燃料供给方式、使用先进的燃烧技术等方法,可以降低氮氧化物的生成量。
2. 排放控制:在工业生产和交通运输领域,采用现代化的排放控制装置,如烟气脱硫、脱氮和烟气净化设备等,可以有效地降低氮氧化物的排放浓度。
3. 车辆尾气治理:加强对机动车尾气的治理是减少大气氮氧化物排放的重要手段。
采用先进的排放控制技术和绿色燃料,如尿素溶液喷射技术和电动车辆等,可以显著减少车辆排放的氮氧化物。
4. 绿色农业:在农业生产中,减少化肥和农药的使用量、提高施肥技术和管理水平,可以减少农业活动对大气氮氧化物的贡献。
此外,做好畜禽粪便的收集、处理和利用,也是防治氮氧化物污染的重要途径。
5. 加强监测和管理:建立完善的监测网络,对大气氮氧化物的浓度和排放情况进行实时监测和评估。
同时,加强对氮氧化物排放的管理,制定相应的法规和标准,严格执法,加大对不合格企业和车辆的处罚力度。
总之,大气氮氧化物排放对环境和人类健康造成严重影响。
氮氧化物的处理方法氮氧化物(NOx)是指由氮和氧构成的一类化合物,主要包括二氧化氮(NO2)和一氧化氮(NO)。
它们是工业生产和交通运输活动的副产品,也是大气污染的主要成分之一、氮氧化物是一种有害的气体,对人体健康和环境产生严重影响,如呼吸道疾病、酸雨、臭氧层破坏等。
因此,减少和处理氮氧化物的排放成为减少大气污染的重要手段之一下面介绍几种氮氧化物的处理方法:2.应用选择性催化还原(SCR)技术:SCR技术是目前较为成熟和广泛应用的氮氧化物处理技术之一、它通过在烟气中注入尿素溶液或氨水,利用催化剂将氮氧化物和氨进行催化反应,生成氮气和水蒸气。
SCR技术具有高效、高选择性和可靠性好等优点,能够将氮氧化物的排放浓度减少90%以上。
3.采用选择性非催化还原(SNCR)技术:SNCR技术是另一种常用的氮氧化物处理技术。
它不需要使用催化剂,通过向燃烧系统中喷射氨水或尿素溶液,利用高温下氨与氮氧化物之间的非催化反应来降解氮氧化物。
SNCR技术具有投资和运行成本较低的优势,但其氮氧化物降解效果相对较差,对温度和氨水喷射量的控制要求较高。
4.使用低氮燃料:燃料选择也是降低氮氧化物排放的一种有效方式。
采用低氮燃料,如低硫燃料、天然气等,可以减少燃烧过程中氮氧化物的生成。
此外,可以通过煤粉配套等技术手段,控制燃烧设备的供氧量,以减少氮氧化物的生成。
5.进行烟气脱硝:烟气脱硝是另一种常见的氮氧化物处理技术。
它通过在烟气中喷射氨水或尿素溶液,利用氨与氮氧化物进行化学反应,生成氮气和水蒸气。
该技术适用于烟气中硫酸成分较少的场合,可以有效降低氮氧化物的排放浓度。
6.强化排放控制管理:除了技术手段外,强化氮氧化物排放控制管理也是一项重要工作。
通过制定和执行严格的排放标准和管理政策,加强对重点行业和企业的监管和检查,落实企业的环保责任,可以促进氮氧化物排放的监测和控制。
综上所述,氮氧化物的处理方法包括提高燃烧效率、应用SCR和SNCR技术、采用低氮燃料、进行烟气脱硝以及强化排放控制管理等。
碱液对氮氧化物的去除率
一、片碱法的原理和应用
片碱法又称为干法脱硝技术,是一种常见的空气污染治理技术。
其基本原理是利用碱性物质(如碱性氧化物、碱性金属盐、碱性物质硅铝基等)与氮氧化物进行化学反应,将NOx转化为N2,实现氮氧化物的去除。
片碱法可广泛应用于发电厂、炉窑、石化、钢铁等工业领域的氮氧化物治理。
其中,直接喷射法是片碱法最常用的治理方法,即在烟气中喷入碱性溶液,与氮氧化物进行反应,将其去除。
二、片碱法去除氮氧化物效率
片碱法去除氮氧化物的效率受多种因素的影响,如脱硝剂种类、喷射液浓度、氮氧化物浓度等。
通常情况下,直接喷射法能够去除约60%的氮氧化物。
而结合其他技术,如脱硝催化剂和SCR技术,片碱法的效率将更高。
研究表明,采用片碱法结合脱硝催化剂和SCR技术,氮氧化物去除率可达到90%以上。
值得注意的是,片碱法的应用也存在一些问题,如对环境影响大、产生二次污染等。
在使用时,需结合具体情况选择适当的脱硝技术,合理控制片碱法的使用量和频率。
大气中氮氧化物的危害及治理
大气中氮氧化物(NOx)的主要来源包括交通尾气、工厂排放、火电厂、煤炭燃烧等。
NOx的危害主要体现在两个方面:环境影响和健康影响。
环境方面,NOx是二次污染物的重要成分,与其他气体在空气中发生化学反应,形成
臭氧等有害气体,导致光化学烟雾,加重酸雨,破坏大气层和生态系统平衡。
此外,NOx
还是臭氧、颗粒物等PM2.5的前体之一,参与形成和加重雾霾,使人们的出行、健康和生
活质量受损。
健康方面,NOx与其他污染物一起,对人体健康造成严重威胁。
NOx与氨(NH3)反应
生成细颗粒物,进入肺部会引发哮喘、气短、气管炎等呼吸系统疾病。
此外,长期接触高
浓度的NOx还会导致心血管疾病、癌症等慢性疾病,给人体健康带来极大的危害。
为了有效治理大气中的NOx,各国政府采取了一系列措施。
例如,限制交通工具尾气
排放、加强污染物治理设施建设、推广清洁能源等。
此外,各地可根据气象、环境等情况,制定相应的应急措施,如采取限行、减产等措施应对重污染天气。
总之,NOx是大气环境和人体健康的重要威胁之一。
有效地治理NOx污染,既是保护
环境、维护生态平衡的需要,也是保障人民健康的应有之义。
各国政府应当在加强监管和
控制污染源的同时,加强公众意识,推广可持续发展理念,共同构筑清洁、绿色、健康的
发展生态环境。
大气中氮氧化物的危害因素及其防治措施大气中氮氧化物的危害因素及其防治措施大气中氮氧化物是指氮气和氧气在高温条件下发生化学反应而产生的气体,主要包括氮氧化物(NOx)和一氧化氮(NO)。
它们是大气污染的主要成分之一,对人类健康和环境造成严重危害。
危害因素1.对人体健康的危害氮氧化物是一种强烈的刺激性气体,对人体呼吸系统和眼睛有刺激作用,长期暴露会引起慢性支气管炎、肺气肿、哮喘等呼吸系统疾病。
此外,氮氧化物还会对人体免疫系统产生影响,增加人体感染疾病的风险。
2.对环境的危害氮氧化物是酸雨的主要成分之一,会对土壤和水体造成严重污染,破坏生态平衡。
此外,氮氧化物还会对植物生长产生影响,导致植物凋萎、死亡。
防治措施1.加强工业和交通尾气排放控制工业和交通是氮氧化物的主要来源之一,加强对工业和交通尾气排放的控制是防治氮氧化物污染的重要措施。
可以通过采用先进的污染控制技术,如SCR技术、脱硝催化剂技术等,减少氮氧化物的排放。
2.推广清洁能源清洁能源是减少氮氧化物排放的重要途径之一。
可以通过推广使用太阳能、风能等清洁能源,减少对化石燃料的依赖,从而减少氮氧化物的排放。
3.加强城市绿化城市绿化可以吸收大气中的氮氧化物,减少氮氧化物的浓度。
可以通过加强城市绿化,增加植被覆盖率,减少城市热岛效应,从而减少氮氧化物的排放。
4.加强环境监测和管理加强环境监测和管理是防治氮氧化物污染的重要手段。
可以通过建立完善的环境监测体系,及时掌握大气中氮氧化物的浓度变化,采取相应的措施进行治理。
结语氮氧化物是大气污染的主要成分之一,对人类健康和环境造成严重危害。
为了减少氮氧化物的排放,需要采取一系列的防治措施,加强工业和交通尾气排放控制、推广清洁能源、加强城市绿化、加强环境监测和管理等,共同保护我们的环境和健康。
NOx的来源以及处理方法摘要:NOx是大气中的主要污染源之一,NOx的来源和处理方法是人们励志解决的问题。
通过其来源,作出相应处理。
关键词:NOx 来源排放情况处理方法鉴于现在的环境问题,其中NOx(N2O、NO、NO2、N2O3、N2O4和N2O5)就是主要的大气污染物之一,与空气中O2以及水H2O反应产生酸雨,将会引发许多环境上的问题:如果当NOx 的浓度过高时对人或者动物的呼吸系统有强烈的刺激性作用;在光化学反应条件下产生光化学烟雾,影响可见度[1];破坏大气中的臭氧层[2]等等。
工业化的高速发展、汽车的大量使用、生活燃料的使用以及火电厂的大量电力发送的今天,所产生的NOx对环境污染日益加剧,尤其像在我国北京、上海、广州等大城市,NOx污染已经超出了所控标准,或许更为严重。
因此,在我国“十二五”期间,明确规定,把NOx作为污染总量的控制对象,制定了严格的标准,强调燃煤电厂要脱硫脱销[3]。
环境保护部也颁布了《火电厂氮氧化物防治技术政策》,引起了相关部门和企业的高度关注,这一技术政策将在颁布之日起有相关单位严格执行。
1 NOx的来源在大气中NOx的主要有2个方面来源:一方面是由自然界中的固氮菌、雷电等自然过程所产生,每年约生成5×108 t ;另一方面是由人类活动所产生,每年全球的产生量多于5×1 08 t。
在人类活动过程中,所产生的NOx :由炉窑、机动车和柴油机等燃料高温燃烧产生的NOx 90%以上,其次是硝酸生产、硝化过程、炸药生产和金属表面硝酸处理等过程。
从燃烧系统中排出的NOx 95%以上是NO,其余主要为NO2[4]。
据美国在十几年前统计,人类活动所排放的NOx约55.5%来自交通运输,约39.5%来自固定燃烧源,约3.7%来自工业过程,约13%来源自其他[ 5]。
1.1 火电厂NOx的排放情况[6]空气中的NOx,最大的来源就是火力发电厂。
据统计,2005年,我国氮氧化物排放总量超过1900万吨,其中火力发电是最大来源,燃煤电厂排放700万吨,其次是工业和交通运输部门,分别贡献了23%和20%。
臭氧脱硝技术方案引言臭氧脱硝技术是一种用臭氧氧化氮氧化物(NOx)来减少大气污染物的排放的方法。
臭氧脱硝技术在控制大气污染、改善空气质量方面具有重要作用。
本文将介绍臭氧脱硝技术的原理、应用领域及技术方案。
原理臭氧脱硝技术是利用臭氧与NOx反应生成亚硝酸盐和硝酸盐,进一步与氨反应生成硝酸铵,并在表面活性剂的作用下与颗粒物吸附在集尘器上,达到减少NOx排放的目的。
臭氧脱硝技术的主要步骤包括: 1. 生成臭氧:臭氧发生器将氧气通过电源放电产生臭氧。
2. 氧化反应:将臭氧引入反应器中与NOx氧化反应生成亚硝酸盐和硝酸盐。
3. 还原反应:将氨注入反应器中,与亚硝酸盐和硝酸盐发生反应,生成硝酸铵。
4. 吸附分离:在表面活性剂的作用下,硝酸铵与颗粒物吸附在集尘器上。
应用领域臭氧脱硝技术被广泛应用于以下领域:1.火电厂:臭氧脱硝技术能有效降低火电厂的NOx排放量,帮助企业达到环保要求。
2.石化工厂:臭氧脱硝技术可以应用于石化工厂中的反应器,帮助减少NOx排放对环境的影响。
3.钢铁冶炼:臭氧脱硝技术可以用于炼钢过程中的烟道排放处理,减少大气污染物的排放。
4.汽车尾气治理:臭氧脱硝技术可以应用于汽车尾气处理装置中,减少尾气中的NOx排放。
臭氧脱硝技术的具体方案根据不同的应用领域和实际情况而有所差异。
一个基本的臭氧脱硝技术方案包括以下几个主要组成部分:臭氧发生器臭氧发生器是臭氧脱硝技术的核心设备。
臭氧发生器通过电源放电将氧气转化为臭氧。
常用的臭氧发生器有液氧发生器、臭氧管式发生器等,其选择要根据具体情况进行。
反应器反应器是臭氧与NOx氧化反应和还原反应的主要场所。
反应器的设计要考虑到反应器内的物料均匀性和气体流动性,以便达到最佳的反应效果。
同时,反应器材质的选择要能够耐受臭氧和颗粒物的侵蚀。
氨注入系统是将氨气引入反应器进行还原反应的关键设备。
氨气的注入要控制好注入量和注入速度,以确保反应过程的稳定性和效果。
集尘器集尘器是对反应后的硝酸铵和颗粒物进行分离的装置。
我国氮氧化物减排对策氮氧化物(NOx)是大气污染物之一,对环境和人类健康造成严重影响。
我国作为世界上最大的氮氧化物排放国之一,急需采取有效的减排对策。
本文将从以下几个方面介绍我国氮氧化物减排对策。
一、加强工业源氮氧化物减排工业生产是氮氧化物排放的重要来源之一。
为了减少工业源氮氧化物的排放,我国可以推行以下几项措施:1. 强化环保监管:加大对工业企业的排污监管力度,严格执行排放标准,对超标排放的企业进行处罚,确保企业正常运行的同时,减少氮氧化物的排放。
2. 采用清洁生产技术:鼓励企业采用清洁生产技术,如低氮燃烧技术、脱硝技术等,降低氮氧化物排放。
3. 推广节能减排:鼓励企业实施节能减排措施,提高能源利用效率,减少废气的产生,从根本上减少氮氧化物的排放。
二、加强交通运输领域氮氧化物减排交通运输是我国氮氧化物排放的重要来源之一。
为了减少交通运输领域的氮氧化物排放,可以采取以下措施:1. 优化交通组织:改善交通拥堵状况,减少车辆的怠速行驶时间,降低氮氧化物的排放。
2. 推广公共交通工具:鼓励人们使用公共交通工具,减少私家车的使用,降低交通运输领域的氮氧化物排放。
3. 推广新能源汽车:加大对新能源汽车的推广力度,减少传统燃油车的使用,从源头上减少氮氧化物的排放。
三、加强农业源氮氧化物减排农业是氮氧化物排放的重要来源之一。
为了减少农业源的氮氧化物排放,可采取以下措施:1. 合理施肥:科学施肥,避免过量使用化肥,减少氮肥的氮氧化物挥发和淋溶损失。
2. 推广农田水利设施:加大对农田水利设施的投入,提高农田灌溉水的利用效率,减少农田氮肥的流失,降低氮氧化物的排放。
3. 发展有机农业:鼓励农民发展有机农业,减少化肥的使用量,降低氮氧化物的排放。
四、加强生活源氮氧化物减排生活源是氮氧化物排放的重要来源之一。
为了减少生活源的氮氧化物排放,可采取以下措施:1. 加强废气治理:加强对燃煤、燃油锅炉的治理,推广清洁能源取暖方式,减少家庭燃烧产生的氮氧化物。
氮氧化物治理措施1. 引言氮氧化物是一类对环境和人体健康有害的大气污染物,主要包括氮氧化物(NOx)和一氧化二氮(NO2)。
它们来自于燃烧过程中的高温燃烧反应,如汽车尾气、工业排放和发电厂的排放等。
由于其对大气的恶劣影响,各国纷纷制定了相应的治理措施来减少氮氧化物的排放。
本文将从技术、政策和管理三个方面,详细介绍当前常见的氮氧化物治理措施。
2. 技术措施2.1 燃烧优化技术燃烧优化技术是通过改变燃料供给、调整空燃比等方式来优化燃烧过程,减少NOx的生成。
这种技术可以应用于各种燃煤、天然气和油料等能源的火电站、工业锅炉以及汽车发动机等。
具体措施包括:•使用低NOx燃料:选择低含硫和低氮的燃料,如低硫煤、天然气等。
•燃烧过程控制:通过调整供气量、供氧浓度、燃料喷射角度等参数,控制燃料的燃烧过程,减少NOx的生成。
•燃料预处理:对高氮含量的燃料进行预处理,如脱硫、脱氮等,降低NOx排放。
2.2 SCR技术选择性催化还原(Selective Catalytic Reduction, SCR)技术是一种常用的氮氧化物治理技术。
该技术通过在排放口设置SCR催化剂,在高温下将NOx转化为无害的氮和水。
SCR技术广泛应用于电厂、工业锅炉和柴油车尾气处理中。
SCR技术的关键是选择合适的催化剂和优化运行参数。
常见的催化剂有钒钛催化剂、铜铁催化剂等。
此外,还需要保证催化剂在合适的温度范围内运行,通常需要在200°C以上才能达到良好效果。
2.3 SNCR技术选择性非催化还原(Selective Non-Catalytic Reduction, SNCR)技术是另一种常用的氮氧化物治理技术。
与SCR技术不同,SNCR技术在高温下通过添加还原剂(如尿素、氨水等)直接与NOx进行反应,将其还原为氮和水。
SNCR技术的优势在于设备简单、投资成本低。
然而,由于其对温度和氨浓度要求较高,需要严格控制运行参数才能达到较好的效果。
氮氧化物的处理方法氮氧化物废气是一种毒性很大的黄烟,不经治理通过烟囱排放到大气中,形成触目的棕黄色烟雾,俗称“黄龙”,在众多废气治理中NOx难度大,是污染大气的元凶。
如果得不到有效控制不仅对操作人员的身体健康与厂区环境危害大,而且随风飘逸扩散对周边居民生活与生态环境造成公害。
对操作人员的身体健康影响严重需要采取一种方法来处理该项废气,那就是采取氮氧化物废气处理方法。
氮氧化物废气处理方法-酸碱吸收洗涤塔氮氧化合物废气危害:1、对人体的致毒作用NO和N02都是有毒性物质,对人类和生物均有危害。
NO和血红蛋白的亲和力比CO与血红蛋白的亲和力大几百倍,对生命构成巨大威胁,N02的毒性更大,约为NO的4-5倍;2、对植物的损害作用氮氧化物对植物有较大的危害,据有关资料介绍,体积百分比浓度为2.5×10-6的氮氧化物7小时就会使豆类、西红柿等作物叶子变成白色,许多植物会因伤害死亡,此外,氮氧化物能使醋酸纤维、棉纱和人造丝等褪色;。
3、NOx是形成酸雾酸雨的主要原因之一,NOx在大气中经过一系列转化,从而对大自然构成大的危害;4、氮氧化物与碳氢化合物形成光化学烟雾。
氮氧化物首要废气处理方法按照净化作用原理的不同,可分为催化还原法、吸收和吸附三类:1、催化还原法:首要作用原理是在高温、催化剂存在的条件下,将废气中的NOx还原成无害的N2,因为反应温度较高,同时需要催化剂,设备投资较大,运行本钱较大;2、吸附法:活性炭吸附塔利用活性炭的吸附功能,首要是利用吸收材料、吸附剂吸附废气中的NOx,因为吸附容量小,故该法仅适用于NOx浓度低、气量小的废气处理;3、吸收法:用水或酸、碱、盐的水溶液来吸收废气中的氮氧化合物,使废气得以净化。
该法设备投资省,运行本钱较低。
在废气处理技术领域,尤其涉及一种氮氧化物废气处理设备及氮氧化物废气处理方法,包含:设有若干串联酸洗吸收塔的酸洗单元;设在其后工位并与其串联的包含水洗吸收塔的水洗单元;设置在其后工位并与其串联的包含碱洗吸收塔的碱洗单元;吸收塔的底部分别设有废气进口、出液口,顶部分别设有废气排出口、进液口,一个酸洗吸收塔的顶部设有空气进口;每个吸收塔均设有抽吸泵,其进出口分别与出液口、进液口连接;进口与碱洗吸收塔的废气排出口,出口与气液分离器进口连接的引风机;气液分离器的排气口连接干式吸附塔的进气口;解决了现有处理设备不能吸收NO,仅能够吸收N02,以及废气处理过程中产生大量的工业废盐造成二次污染的问题。
氮氧化物的治理方法1、干法:主要有催化还原法、吸附法等。
催化还原法:适用于治理各种污染源排放出的 NOx。
吸附法:用分子筛等吸附剂,吸附硝酸尾气中的NOx,还可用于其他低浓度NOx废气的治理。
2、湿法:有直接吸收法、氧化吸收法、氧化还原吸收法、液相吸收还原法和络合吸收法等。
直接吸收法:有水吸收、硝酸吸收、碱性溶液(氢氧化钠、碳酸钠、氨水等碱性液体)吸收,浓硫酸吸收等多种方法,此法可从尾气中回收80~90%的NOx。
氧化吸收法:在氧化剂和催化剂作用下,将NO氧化成溶解度高的NO2和N2O3(三氧化二氮),然后用水或碱液吸收脱氮的方法,在湿法排烟脱氮工艺中应用较多。
氧化还原吸收法:用O3、ClO2等强氧化剂在气相中把NO氧化成易于吸收的NOx和N2O3,用稀HNO3或硝酸盐溶液吸收后,在液相中用亚硫酸钠(Na2SO3)、硫化钠(Na2S)、硫代硫酸钠(Na2S2O3)和尿素【(NH2)2CO】等还原剂将NO2和N2O3还原为N2。
此法已用于加热炉排烟净化。
在同一塔中可同时脱去烟气中SOx和NOx, 脱硫率99%,脱氮率达90%以上。
降低氮氧化物的排放量有以下几种措施:1、在燃用挥发分较高的烟煤时,燃料型NOx含量较多,快速型NOx 极少。
燃料型NOx是空气中的氧与煤中氮元素热解产物发生反应生成N0x,燃料中氮并非全部转变为NOx,它存在一个转换率,降低此转换率控制NOx排放总量,可采取:(1)减少燃烧的过量空气系数;(2)控制燃料与空气的前期混合;(3)提高入炉的局部燃料浓度。
2、热力型NOx:是燃烧时空气中的N2和02在高温下生成的NOx,产生的主要条件是高的燃烧温度使氮分子游离增本化学活性;然后是高的氧浓度,要减少热力型NOx的生成,可采取:(1)减少燃烧高温度区域范围;(2)降低锅炉燃烧的峰值温度;(3)降低燃烧的过量空气系数和局部氧浓度。
氮氧化物超标的原因和处理措施氮氧化物(Nitrogen Oxides,简称NOx)是一类有害大气污染物,包括氮一氧化物(Nitric Oxide,简称NO)和二氧化氮(Nitrogen Dioxide,简称NO2)。
主要产生源包括交通尾气、燃煤和燃油等工业过程以及生物质燃烧等。
氮氧化物超标会对环境和人体健康造成严重影响,因此需要采取相应的处理措施。
1.交通尾气排放:机动车是氮氧化物的主要排放源之一、汽车发动机在燃烧过程中会产生大量的氮氧化物。
尤其是老旧车辆和高排放车辆排放的氮氧化物超标现象严重。
2.工业燃烧过程:燃煤和燃油等工业过程也是氮氧化物的重要排放源。
工厂和发电厂排放的废气中含有大量的氮氧化物,特别是那些没有安装脱硝装置的工厂。
3.燃烧生物质:生物质燃烧也是氮氧化物的重要源之一、农村地区常常使用生物质燃料,如秸秆和柴火,在燃烧过程中会释放出大量的氮氧化物。
1.加强交通管理:通过加大对车辆尾气排放的监管和治理力度,例如提高车辆排放标准、推广使用新能源汽车、限制高污染车辆进入城市等,减少交通尾气对氮氧化物超标的贡献。
2.环境监测和预警:建立完善的环境监测体系,及时掌握氮氧化物排放情况和浓度变化,通过预警机制提前采取措施。
3.推广清洁能源和新技术:加大清洁能源的使用力度,例如发展风能、太阳能等可再生能源,减少对煤炭和石油等化石燃料的依赖,从根本上降低氮氧化物的排放。
同时,推广使用脱硝技术和装置,减少工业燃烧过程中氮氧化物的产生和排放。
4.加强宣传教育和法规制定:加强对大众的宣传教育,提高人们对氮氧化物超标的认识和意识,促使每个个体都参与到氮氧化物治理的行动中。
同时,政府需要制定严格的法规和规定,对氮氧化物超标行为进行严厉惩罚。
5.建立国际合作机制:氮氧化物是跨境传输的大气污染物,因此建立国际合作机制十分重要。
各国可以加强交流和合作,共同研发和应用减排技术,共同应对氮氧化物超标问题。
总之,氮氧化物是严重的大气污染物,对环境和人体健康产生极大影响。
NOx的治理方法3.1液体吸收法此法是利用氮氧化物通过液体介质时被溶解吸收的原理,除去NOx废气。
此方法设备简单、费用低、效果好,故被化工行业广泛采用,现在主要的方法有:3.1.1 碱液吸收法比较各种碱液的吸收效果,以NaOH作为吸收液效果最好,但考虑到价格、来源、操作难易以及吸收效率等因素,工业上应用最多的吸收液是Na2CO3。
3.1.2仲辛醇吸收法此法采用蓖麻油裂解的副产物—仲辛醇作为吸收液处理NOx尾气。
仲辛醇不但能有效地吸收NOx,且自身被氧化成一系列的中间产物,该系列中间产物可以氧化得到重要的化工原料己酸。
吸收过程中,NOx有一小部分被还原成NH3,大部分被还原成N2。
3.1.3 磷酸三丁酯(TBP)吸收法此法先将NOx中NO全部转化为NO2后在喷淋吸收塔内进行逆流吸收,以TBP为吸收剂,在吸收NOx 后形成配合物TBP·NOx,其吸收率高达98%以上,配合物TBP·NOx与芳香醇(α–醇酸醋)反应能回收得到TBP,回收率高达99.2%,且NOx几乎全部被还原成氮气,不会产生二次污染。
3.1.4 尿素溶液吸收法应用尿素作为氮氧化物的吸收剂,其主要的反应为:NO+NO2®N2O3;N2O3+H2O®2HNO2;(NH2)2CO+2HNO2®CO2+2N2+3H2O此法运行费用低,吸收效果好,不产生二次污染。
然而,只用尿素溶液吸收,尾气中氮氧化物浓度仍高达0.06%-0.08%。
为进一步提高净化效率,用弱酸性尿素水溶液吸收,通常可以加硫酸、硝酸、盐酸或者醋酸。
吸收液的温度控制在30℃~90℃, pH 值在1~3之间,吸收后尾气中NOx的去除率高达99.95%。
3.1.5 吸收还原法该法是用含二价铁螯合物的碳酸钠溶液洗涤烟气。
其主要反应为:Na2CO3+SO2®Na2SO3+CO2NO+Fe·EDTA®Fe·EDTA·NONa2SO3+ Fe·EDTA·NO® Fe·EDTA +Na2SO4+1/2N2SO2和NOx经反应后生成Na2SO4,并放出氮气,净化效率可达90%,其产物还可利用。
3.2固体吸附法固体吸附法主要包括分子筛法、泥煤法、硅胶法和活性炭法。
3.2.1分子筛法常用的分子筛主要有丝光沸石Na2Al2Si10O24·7H2O。
该物质对NOx有较高的吸附能力,在有氧条件下,能够将NO氧化为NO2加以吸附。
3.2.2泥煤法国外采用泥煤作为吸附剂来处理NOx废气,吸附NOx后的泥煤,可直接用作肥料不必再生,但是机理很复杂,气体通过床层的压力较大,目前仍处于实验阶段。
3.2.3硅胶法以硅胶作为吸附剂先将NO氧化为NO2再加以吸附,经过加热便可解吸附。
当NO2的浓度高于0.1%,NO的浓度高于1%~1.5%时,效果良好,但是如果气体含固体杂质时,就不宜用此方法,因为固体杂质会堵塞吸附剂空隙而使吸附剂失去作用。
3.2.4活性炭法此法对NOx的吸附过程吸附剂伴有化学反应发生。
NOx被吸附到活性炭表面后,活性炭对NOx有还原作用,反应式如下:C+2NO®N2+CO22C+2NO2®2CO2+N2缺点在于对NOx的吸附容量小且解吸再生麻烦,处理不当又会造成二次污染,故实际应用有困难。
但是有报道指出,现在已经有人根据物理化学原理,采用“炭还原”法处理NOx废气,取得了突破性进展。
发生的反应与活性炭吸附法发生的反应相同。
但是用的是焦炭而不是活性炭。
工艺过程为:由鼓风机鼓入少量空气,将产生的NOx带出,经过管道送入NOx处理器。
在一定条件下,NOx与加入处理器中的反应物(焦炭)发生氧化还原反应,NOx最终以N2的形式排出。
消除了NOx污染,工艺流程如图1所示。
本方案的主要工艺参数是反应的温度,通过工程竣工后的调试,得到反应温度与NOx去除率的关系曲线,如图2所示。
从图2可知:当NOx处理器内的温度为630℃时,反应开始;温度为850℃时,NOx去除率为50%;温度为920℃时,NOx的去除率为98%。
3.3 催化反应法3.3.1 选择催化还原(SCR)法此法的原理为:使用适当的催化剂,在一定条件下,用氨作为催化反应的还原剂,使氮氧化物转化成无害的氮气和水蒸气。
反应如下:6NO+4NH3®5N2+6H2O6NO2+8NH3®7N2+12H2O选择性还原所用的催化剂早期主要以贵金属为主,其中铂优先于钯,一般选择0.2%~1% Pt负载于Al2O3上制成片状、球形或蜂窝状。
近年用的比较多的是氧化物如TiO2、V2O5、MoO3或WO3;用铂催化剂使用温度为180~290℃,金属氧化物则在230℃~425℃,若要在360℃~600℃更高温度下操作可使用分子筛催化剂。
现在美国已经有很多公司自己开发生产SCR催化剂,例如Davison的Synox技术在300℃~400℃下采用V2O5/TiO2催化剂,它与一般的选择催化剂还原不同之处在于能防止SO2氧化成SO3,具有较高的选择性。
3.3.2 三效催化剂(TWC)法使用三效催化剂是净化汽车尾气的有效手段。
贵金属(Pt、Pd、Rh)搭载在Al2O3或蜂窝陶瓷上,添加适当的助剂如La、Ce、Ba等能够同时除去机动车尾气中的HC、CO和NO三污染物的催化剂称为三效催化剂。
其中Pt、Pd对CO、HC的氧化脱除具有高活性,而Rh具有对NO优良的催化还原作用,它能选择地将NO还原为N2而抑制NH3的生成。
目前有91%的Rh用于三效催化剂的制备,Rh资源相当匮乏,所以无Rh催化剂是现今研究的一个主要目标。
要使三效催化剂同时有效地脱除HC、CO和NO,必须把空燃比A/F控制在氧化还原计量比14.6附近,此时三种污染物的脱除率可达90%以上。
当空燃比较低时,CO、HC净化不完全,空燃比较高,导致NOx的转化率下降。
3.3.3 催化分解法NO在催化剂存在下能发生如下分解反应:NO®1/2N2+1/2O2按此反应去除NO具有工艺简单、不产生二次污染等特点,是一种去除NO的理想途径。
但是,此反应的活化能较高(364 kJ/mol),需要催化剂降低反应活化能,才能使反应顺利进行。
迄今为止,所用的催化剂主要有以下几类:①贵金属催化剂这类催化剂主要采用铂或铂与其它过渡金属的合金。
载体包括氧化铝、氧化硅以及氧化钛等。
其中以氧化铝的载体效果最好,Rh/Al2O3的活性最高。
此类催化剂的优点是活性高,低温性质好,抗硫中毒的能力强;缺点是有强烈的氧抑制现象,价格昂贵。
②氧化物催化剂主要包括金属氧化物和钙矿型氧化物,金属氧化物的催化能力与晶格中金属原子和氧原子之间键的强弱有很大的关系,其中过渡金属氧化物通常有较高的催化活性,但是很容易结块,使其不能有效地与反应物接触,从而催化能力下降。
钙钛矿型氧化物容易使吸附在其表面的氧脱附,从而减轻氧对催化剂的抑制作用。
③金属离子交换的分子筛在这类催化剂中,Cu–ZSM–5分子筛不但具有很高的催化活性,而且具有很高的实用性。
大量研究表明:Cu–ZSM–5分子筛的催化活性随着Cu2+的交换量的增加而提高。
当Cu2+交换量增加到一定程度时,NOx的转化率会出现一个最高值,约为80%~100%。
之后继续提高交换量反而会使NOx的转化率降低。
另外,即使是在Cu2+的交换量为零时,NOx的转化率也不为零。
3.4 NOx和SO2联合控制技术由于锅炉烟气中还含有大气物SO2,因此对锅炉尾气中的NOx和SO2进行联合控制渐渐成为大气污染控制的客观需要。
日本的电子束辐射法(ER)是一种颇具影响力的方法。
该方法已经在我国成都发电厂脱硫脱硝工程中应用。
NOx的净化率为80%以上,SO2的净化率达90%。
东京大学的研究结果表明,烟气经过高能量电子辐射,获得能量发生裂解,产生高能量的HO、O和HO2原子团,这些原子团能够将SO2和NOx 氧化成H2SO4和HNO3,当再往系统中喷洒氨水时,H2SO4和HNO3最终转化成硫酸铵和硝酸铵。
此技术对锅炉损害性较小,没有二次污染,投资比分别净化的投资要小。
3.5 生物净化法主要包括反硝化、细菌去除、真菌去除和微藻去除。
反硝化作用是利用反硝化细菌在厌氧条件下分解NOx的方法。
主要有两种途径:①异化反硝化作用;②同化反硝化作用:直接将NO3-转化成菌体细胞质。
生物净化法去除NO主要是用的反硝化作用。
蒋文举等人将硝化细菌挂膜到填料塔的陶瓷填料上,在无氧的条件下进行去除NOx的研究,填料塔对NOx的去除率达到93%,进口气体的NOx的浓度对去除率的影响较小。
Brady D Lee等人用生物滤塔处理含NO的废气,在温度为55℃、停留时间为13s、NO的体积分数为500×10-6g/m3的厌氧条件下,NO的去除率为50%以上,当氧气的体积分数为2%时,NO的去除率只有10%~20%。
Kinney和Plessis等人研究了在有氧条件下,生物滴滤器去除甲苯的同时去除NOx的情况,当进料废气中氧含量>17%、甲苯含量为300×10-6 g/m3、进料量为3L/min、停留时间1min、NOx含量为60×10-6 g/m3时,其去除率可达97%。
在操作过程中,通过控制进气的方向,以控制微生物的生长和浓度,有利于滴滤器的运行稳定。
Woertz 和Kinney等人用真菌进行去除NOx的研究,当NOx的含量为250×10-6g/m3、甲苯补加量为90g/(m3·h)、停留时间为1min时,NOx的去除率达到90%以上。
适当提高甲苯的补加速率,去除率更高。
研究还发现:过高浓度的会抑制真菌去除NOx的能力。
Nagase等人用微藻去除废气中的NOx,把微藻培养在悬浮式反应器中,在光照强度为38W/m3的条件下,发现NOx既可以被微藻作为氮源加以利用,也可被微藻分解。
研究表明:当NOx作为氮源时,微藻处理NOx的能力显著提高。
当NOx的含量为300×10-6 g/m3,去除率为55%,处理量为0.7mmol/(L·d)。